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ABSTRACT

The generation and ampli�cation of vortices by surface inhomogeneities,

both in the form of surface waviness and of wall-normal velocity, is investigated
using the nonlinear PSE equations. Transients and issues of algebraic growth
are avoided through the use of a similarity solution as initial condition for the
vortex.

In the absence of curvature, the vortex decays as
q
1=x when 
owing over

streamwise aligned riblets of constant height, and grows as
p
x when 
owing

over a corresponding streamwise aligned variation of blowing/suction transpi-

ration velocity. However, in the presence of wall inhomogeneities having both
streamwise and spanwise periodicity, the growth of the vortex can be much

larger. In the presence of curvature, the vortex develops into a G�ortler vortex.

The \direct" and \indirect" interaction mechanisms possible in wave-vortex
interaction are presented. The \direct" interaction does not lead to strong

resonance with the 
ow conditions investigated. The \indirect" interaction leads
to K-type transition.
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Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center,

Hampton, VA 23681.
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1 Introduction

We present results from an investigation into the laminar-turbulent transition

process over a plate with wall undulations, wall blowing & suction, and con-

cave curvature. The investigation is based on numerical simulations using the

nonlinear PSE equations. The curvature is su�ciently small to allow the Bla-

sius pro�le to be used as the mean-
ow in all the conditions investigated. The

particular topics covered in this report are:

1. The seeding of G�ortler vortices by streamwise aligned wall corrugations
and blowing/suction inhomogeneities.

2. The receptivity of vortices to three dimensional wall corrugations and

blowing/suction inhomogeneities.

3. The e�ect of curvature on three-dimensional TS waves.

4. Some cases of nonlinear wave-vortex interactions.

Two geometries are considered. Figure 1a displays the geometry used in
the study of topic 1. The wall corrugations vary sinusoidally in the spanwise
direction, z, with a wavenumber�, and have the crests aligned in the streamwise,
or x, direction. The label xk denotes the location at which the curvature departs

from zero and increases downstream up to a constant �nal value. The initial
location for the PSE marching solution, x0, is upstream of xk.

Figure 1b displays the geometry used in the study of the receptivity of
vortices (G�ortler and other types) to wall corrugations which vary sinusoidally

in both x and z (topic 2). This receptivity problem is steady in time. Moreover,

when the acoustic source is added (represented in the �gure by the speaker), the

distributed receptivity mechanism described by Crouch [1] is activated, creating

Tollmien-Schlichting waves. These waves then interact with the vortex (topic
4).

In �gure 1, the wall undulation can be interpreted as either a physical un-
dulation present on the plate surface, or, in the case of blowing/suction, as

an iso-level of wall-normal velocity on a smooth plate. The height of the wall
undulation is of the order of 0.1% of the boundary layer thickness, hence the

undulation can represent imperfections on wing surfaces due to, for example,

temperature or direct stresses in 
ight. The peak surface transpiration veloc-
ity in the blowing and suction study is of order of 1 � 10�4 U1, in agreement

with levels used in Laminar Flow Control experiments (P. Spalart, personal

communication).
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Figure 1: Geometry used in the simulation. Top, the corrugated plate with an
initial 
at section, followed by a section of concave curvature. Bottom, the same

geometry as above with wall undulations in the streamwise direction added, as

well as acoustic forcing.
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The main results corresponding to the topics listed above are:

1. Wall-aligned corrugations provide an e�cient means for the generation of

G�ortler vortices.

2. Vortices exhibit growth when 
owing over three dimensional wall corru-

gations or blowing/suction inhomogeneities, even in the absence of cur-

vature. This receptivity persists when the wavenumbers of the wall inho-

mogeneities di�er greatly from those of the vortex, i.e. short wavelength
undulations in x and z can force a large wavelength vortex.

3. The neutral stability curves for three-dimensional TS waves enlarge in size
as curvature is increased, and eventually extend to zero frequency; thus

connecting with the G�ortler vortices.

4. The direct and indirect wave-vortex interaction is presented. The indirect
interaction leads to a K-type resonant triad, while the direct interaction

shows no wave-vortex resonance at the conditions investigated.

A brief description of the PSE equations and the numerical algorithm em-

ployed to solve them is given in the appendix A.We also describe, in appendix B,
the construction of a self-similar solution that, when used as initial condition for
the vortex in the PSE marching procedure, yields results free of transients and
of algebraic growth (see Schimd and Henningson [2]). The self-similar solution,
thus, allows for the investigation of vortex receptivity to distributed forcing.
Otherwise, if an initial condition is used that leads to strong algebraic growth,

the e�ects of the distributed forcing will be masked. A similarity solution for
the G�ortler vortex was �rst presented by Denier, Hall & Seddougui [3] in their

investigation of vortex forcing from a plate with a localized hump.

1.1 Reference quantities, and geometry description

The reference length chosen is ��r =
q
��x�1000=U

�

1
where x�1000 is the location

at which the Reynolds number Rx = U1x
�

1000=�
� equals 1 � 106. The symbol

* denotes a dimensional quantity. This reference length is used throughout
this report, with the exception of appendix B, which deals with the self-similar

solution.
The non-dimensional curvature is K = ��r=a

�

kur, where a
�

kur is the radius of

curvature. Typical values of K are 1; 2; 4 and 8�10�4. In the case of a subsonic

wind-tunnel test with U1 = 15 m/s, the reference length is ��r = 1:2 mm, and

the radius of curvature is 12; 6; 3 and 1:5 meters respectively.
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The coordinate along the streamwise direction is x, the plate normal direc-

tion is y, and the spanwise direction is z The corresponding velocity components

are u, v, and w. The representation of the 
ow-�eld is described in appendix

A.

All modes are identi�ed with the three integers in the triplet p = (l; n; k);

corresponding to the indices in the Fourier expansion ein�x+ik�z�il!t: The values

of �, � and ! are prescribed as input parameters to the PSE calculation. The

wavy-wall surface is represented by the function,

H(x; z) =
NX

n=�N

KX
k=�K

W(0;n;k)e
in�x+ik�z + c.c (1)

where \c.c" denotes complex conjugate. The coe�cients W are complex con-
stants. The boundary conditions over the wavy wall are transferred to y = 0 via
a Taylor series expansion (see appendix A). The blowing/suction wall normal
velocity is described by,

Vsuc(x; z) =
NX

n=�N

KX
k=�K

S(0;n;k)ein�x+ik�z + c.c (2)

The boundary conditions at the wall satis�ed by the disturbances are then,

up = 0 vp = S(0;n;k) wp = 0 (3)

The homogeneous boundary condition for up and wp implies weak suction
rates (Spalart [4]). Lastly, in the presentation of the results we use the local

Reynolds number R =
q
��x�=U�

1
=
p
Rx, and the nondimensional frequency

F = 2�f�U�2
1
=��, where f� is the dimensional frequency in Hz.
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2 Validation of the self-similar vortex

The construction of the self-similar vortex solution is described in appendix B.

Here, we present the results which prove that the asumptions and approxima-

tions used to obtain the self-similar formulation are sound.

A test for the accuracy of the self-similar form of the vortex �eld can be

made by running the PSE using as initial conditions the solution to (19) and

(20). If the PSE solution remains close to self-similar over a downstream range

su�ciently long to otherwise display algebraic growth and decay, then the self-
similar approximation provides an acceptable initial condition for vortices in
both direct numerical simulations of the Navier-Stokes equations, and in PSE

integrations. The test was run using the linearized PSE equations with the
initial condition given at R = 300. The riblets on the wall were held constant
at an amplitude of 0.004 ��(R=300), while in the suction case, the level was held

constant at 1�10�5. Figure 2 displays the maximumamplitude of the u velocity

component as function of Reynolds number, for various values of the spanwise
wavenumber �1 = ����(R=300). Note the abscence of transients in the plot. In
the case of the wall riblet, the amplitude decreases with streamwise distance
due to the following reason: the maximum of the u velocity occurs at y = 0
where the boundary condition (21) imposes a constant amplitude for uself , and

the physical u is related to the self-similar uself by the factor x0=x. On the
other hand, constant suction leads to a self-simialr vortex with umax increasing
proportional to

p
x. The departure of the PSE solution from the self-similar one

as � is increased shows the error introduced by freezing the coe�cent �2(x=x0)
in the self-similar formulation.

Figure 3 displays the velocities uself (�) and vself (�) at the initial location
R = 300, and downstream, at R = 1136 and 1670. The dots trace the shape of

the self-similar functions uself (�) and vself (�), while the solid and dashed lines

show the corresponding pro�les obtained by extracting the uself and vself pro�les
from those given by the PSE equations at R = 300 to R = 980 and R = 1600.
Both the u and the v velocity components computed with the PSE collapse close

to the self-similar pro�les. This agreement, along with the abscence of algebraic

growth or other transients, validates the assumptions and approximations used
in generating the self-similar solution.
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Figure 2: Self-Similar amplitudes
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Figure 3: Self-Similar pro�les
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3 Vortex Seeding

The generation of G�ortler vortices by a localized hump was investigated by

Denier, Hall & Seddougui [3], and found that the mechanism was ine�cient

in generating vortices. Later, Bassom and Hall [5] corrected some errors and

extended the work, and found that distributed forcing functions are much more

e�cient in the generation of G�ortler vortices.

We study the birth and growth of the G�ortler vortices that develop on top

of the corrugated (i.e. ribbed) plate with a concave curvature. Initially, the
curvature of the corrugated plate is zero, and is increased smoothly from zero
at R = 300 to the maximum constant value at R � 500 with a half-period

cosine function.
At the onset of curvature, the 
ow is composed of the Blasius 
ow plus the

self similar solution discussed above. Downstream, G�ortler vortices develop with
the same spanwise wavenumber as the wall corrugation. The self-similar solution
has a non-zero projection onto the G�ortler eigenmode, and, thus, provides the

initial amplitude for the vortex.
The �ve cases studied are categorized by the variation in x of the wall

corrugations. The case `in�nite' has constant amplitude for all R � 300; the
case `400-500' has a constant amplitude up to R = 400, then decreases smoothly
to zero between 400 < R < 500 and remains zero afterwards; the cases `400-600'

and `400-800' and `300-400' are of equal nomenclature. For each case, 5 runs are
made with the curvature taking on values of K = 0; 1� 10�4; 2� 10�4; 4� 10�4

and 8�10�4. The spanwise wavenumber in all cases is � = 0:15. The calculation
is maintained purely linear by arti�cially neglecting the nonlinear terms that
arise from a �nite amplitude vortex.

Figure 4 displays the maximum amplitude of the u component of velocity as
function of Reynolds number. The plots on the left column of �gure 4 display

the umax amplitude of the vortex mode versus Reynolds number for the cases
`in�nite', `400-600', and `300-400'. The G�ortler vortex amplitude is ploted on

the right column. This amplitude is computed by subtracting from the 
ow-�eld
the 
ow �eld due to the wall corrugation in the absence of curvature.

The `in�nite' case produces the fastest growth of the G�ortler mode. This
fact suggests that the vortex is receptive to the forcing from the wall corrugation

over an extended streamwise extent. Indeed, the extend seems larger than the

region of strong nonlocal receptivity (Crouch[1], Crouch & Bertolotti [6]) for
traveling waves. The growth rates in all cases asymptote to a single curvature-

dependent value at R = 1400: the di�erence in amplitude at this position from

case to case is due to the di�erent corrugation geometry.
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Figure 4: umax amplitudes for various values of curvature, �. The left column

is the amplitude of the total disturbance, the right column is the amplitude of

the G�ortler vortex.
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The `kink' in the amplitude curves of the `400-600' and `300-400' cases occurs

at the streamwise location where the decaying wall-mode's umax amplitude,

which is maximum at the wall, equals the growing G�ortler amplitude, which

has a maximum at about y = 2:5.

An interesting phenomena can be seen in the amplitude plots of the G�ortler

vortex in the `300-400' case. The kink in the amplitude curve in the neighbor-

hood of R = 800 divides the upstream region dominated by the wall mode from

the downstream region dominated by the G�ortler vortex. The streamwise po-

sition of this kink shifts downstream when curvature is increased. This suggest
that the wall-mode retards the growth of the G�ortler vortex.

4 Vortex Receptivity

We study the e�ect of surface roughness on the growth of vortices. I have
used the word \seeding" in the previous section and the word \receptivity" in
this section to di�erentiate between the types of forcing given to the vortex.
Seeding occurs when the forcing comes directly from the boundary condition,
and hence, is a linear process (the word \seeding" was suggested by M. Morkovin

in a private communication). Receptivity occurs when the forcing comes from
the nonlinear interaction between other modes. In the absence of nonlinearity
(or in the limit of small amplitude), these modes do not a�ect the vortex at
all. In our case these modes are due to wall undulations or wall suction having
wavenumbers di�erent from that of the vortex.

In order to isolate the receptivity e�ect from centrifugal instabilities, we
consider the case of a 
at plate at zero angle of attack. The plate's surface

contains a spanwise periodic rib with streawise aligned peaks and valleys. This

rib generates the vortex - and at the initial marching location the vortex form
is given by the self-similar solution. The height of the rib is constant in x, and

corresponds to the coe�cient W(0;0;2) = 1 � 10�3 (see equation 1). In addition
to this rib, we add the source for other steady disturbances, either in the way of

additional surface undulations, or using blowing and suction periodic in x and

z. The height or strength of this additional source is increased from 0 to its �nal
value using a ramp function starting at R = 425 and ending at R = 700. The

gradual introduction of these modes reduces the amount of algebraic growth
that is introduced into the evolution of the vortex.

The �rst set of results are for the case in which the wall contains one addi-

tional Fourier mode mode (besides the rib), having a streamwise wavenumber �
that is varied parametrically, and a spanwise wavenumber � that is half that of

the vortex. The indices for the wall mode are of the form (0; n; 1), while that of
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the vortex is (0; 0; 2). Thus, the interaction of mode (0; n; 1) with its companion

mode (0;�n; 1) (i.e. from symmetry in z) creates a forcing at (0; 0; 2).

Figure 5 displays the results for the case of a wavy wall with Fourier coef-

�cient W(0;n;1) = 2 � 10�3, and the case of blowing/suction with a coe�cient

S(0;n;1) = 5 � 10�5, for di�erent values of �. In the wavy-wall case, increasing

� increases the forcing e�ciency. For � = 1:0 the vortex increases one order in

magnitude. In the suction case, the opposite trend exists; reducing � increases

the forcing. The explanation for this opposite trends can be seen in the velocity

pro�les of the steady modes, shown in �gure 6. Shortening the wavelength of
the wavy-wall mode increases the slope @u=@y at the wall, which is multiplied
by the wall undulation height to produce the forcing (see equation (11)). On
the other hand decreasing �, while holding the suction level constant, increases
the u component of the velocity, hence the forcing in the interior of the domain.

The second set of results we present contain a pair of steady modes having
a di�erence in spanwise wavenumber equal to the vortex's wavenumber,

W(0;n;m) = 2� 10�3 W(0;n;m+2) = i 2 � 10�3

S(0;n;m) = 5� 10�5 S(0;n;m+2) = i 5 � 10�5

The quadratic nonlinearity then produces a forcing at (0; 0; 2) for any value
of n and m. In this way, short wavelength disturbances can directly in
uence
long wave-length disturbances. This type of coupling was used by Crouch [7]

in a study of TS wave receptivity to short-scale waviness. The phase-shift of
90 degrees between the two steady modes leads to a more e�ective forcing than
the case were both Fourier coe�cientsW are purely real.

Figure 7 displays the result for the combinations n = 1,m = 2, and n =
1,m = 6, with � = 1:0 and � = 0:15. The vortex has a spanwise wavenumber
of � = 0:30, as in the previous case. For reference, the case � + � form �gure 5

is included in the plot. The large vortex amplitude created by the \di�erence

interactions" shows that the coupling between short and long wavelengths can
be strong.

Figure 8a show the e�ect of the surface's undulation height on the evolution
of the vortex. A height as small as 2:5� 10�3 can produce a noticeable increase

in vortex amplitude. For reference, it is useful to consider dimensional quan-

tities. In a slow-speed wind-tunnel with a free-stream velocity of 10 m/s, the
reference length is �o = 1:5 mm (i.e. at R = 1000), thus the surface undula-

tions are roughly 15 micrometers. This small value suggest that the distributed

forcing form small plate undulations can introduce vortices in cases where the

curvature is nominally zero. In particular, distributed forcing can be a cause
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Figure 5: umax amplitude versus Reynolds number of a vortex with spanwise
wavenumber 2� 
owing over a surface with wavenumber (0; �; �). Top, surface

mode corresponds to surface undulation; bottom, surface mode corresponds to

blowing/suction. The line labeled \rib only" shows the amplitude of the vortex

owing over the streamwise ribs only.

12



Figure 6: u velocity pro�les at R = 600 due to a wavy-wall, left, and suction,

right, with spanwise wavenumber � = 0:3 and di�erent values of streamwise

wavenumber �.
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Figure 7: umax amplitude versus Reynolds number of a vortex with spanwise
wavenumber 2� 
owing over a surface with modes (0; �; n�), where � = 1:0,

and � = 0:15. Top, surface modes corresponds to surface undulation; bottom,

surface mode corresponds to blowing/suction. The line labeled \rib only" shows
the amplitude of the vortex 
owing over the streamwise ribs only.
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of the Klebano� mode [8], in addition to the possibility of algebraic growth as

investigated by Herbert and Lin [9].

Figure 8b shows the velocity pro�les of the vortex for the case n = 1,m = 1

of �gure 8a. The u pro�les agrees in shape with the experimental measurements

of Kendall [10] of the Klebano� mode.
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(A)

(B)

Figure 8: (a) E�ect of surface height, jWj, on the umax amplitude for a vor-

tex with spanwise wavenumber 2� 
owing over a surface with wavenumbers
(0; �; 4�) and (0; �; 2�). (b) vortex u and v velocity pro�les at various stream-

wise locations for the case jWj = 5 � 10�3.
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5 The e�ect of curvature on three-dimensional

TS waves

We turn our attention now to three-dimensional TS waves and the e�ect that

curvature has on them. The motivation for this study is two-fold. First, we look

at the e�ect of curvature on disturbances that have a wave-vector orientation

in between that of vortices (i.e. purely along z) and that of two-dimensional TS

waves (i.e. purely along x). Second, the waves studied will be candidates for
the nonlinear wave-vortex study, discussed in the next section.

In this study, the wall corrugations are omitted, leaving a smooth plate.

The boundary conditions are homogeneous, leading to the classical eigenvalue
problem for the TS waves. We solve for an augmented eigenvector composed
of fu; v; @u=@x; @v=@xg and an augmented eigenvalue (a; da=dx) using the \lo-
cal procedure" described in Bertolotti, Herbert & Spalart [11]. This procedure
yields an improved solution over the standard Orr-Sommerfeld solution: in par-

ticular, it captures the increased e�ect of non-parallelism on three-dimensional
waves (Bertolotti [12]). However, the procedure becomes invalid in the limit of
low-frequency and long-wavelengths, where the governing equation cannot be
reduced to ordinary di�erential form. In particular, the validity of the local pro-
cedure breaks down when the streamwise wavelength of the eigenmode becomes
of order O(R), hence the procedure cannot reach the limit of pure vortices.

We use the local procedure because it allows the neutral curves to be traced
e�ciently in the R-F plane. Using the PSE solution, on the other hand, requires
many runs at di�erent frequencies in order to \raster-scan" the neutral curve,

like, if you will, the electron beam on a TV screen.
The neutral stability curves, based on

R
1

0 udy, for TS waves having a �xed

spanwise wavenumber, � = 0:30 and � = 1:0 are shown in �gure 9. In the
absence of curvature the low-frequency TS waves are stable, but with some

curvature present a second region of instability appears near F = 0. Focusing
on the � = 0:3 case, we see that as the curvature increases, two neutral curves

form: the upper is the continuation of the curve for the 
at plate; the second,

at low frequencies, displays the fact that centrifugal instability is amplifying the

G�ortler vortices (F = 0) as well as modes with low frequency. At a curvature

value of 8�10�4 the two curves merge. At this point there is a smooth connection
between TS waves and the G�ortler vortices.

The numbers along the outer neutral curve represent the wave-angle of the

TS wave when K = 8� 10�4. The table below gives the phase-speed of the TS

wave at the location where the symbol of the wave angle appears in �gure 9.

Note the increase in phase-speed as the frequency is lowered, and the wave-angle
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Figure 9: E�ect of curvature, �, on the neutral stability curves for 3-D Tollmien-

Schlichting waves over a smooth plate. The numbers along the � = 8 � 10�3

curve show the angle (deg.) of the wave-vector to the free-stream direction.
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is increased.

Neutral curve, � = 0:3, � = 8� 10�4

Wave Angle (deg.) Phase Speed

34:4o 0:4016

43:2o 0:3984

44:8o 0:3930

53:8o 0:4019

59:1o 0:4014
65:4o 0:4174
69:4o 0:4226

72:8o 0:4401

83:5o 0:5114
85:4o 0:5735

Neutral curve, � = 1:0, � = 8� 10�4

Wave Angle (deg.) Phase Speed

85:1 0:6180
86:2 0:6510

86:5 0:6424
86:7 0:6829

TS waves with a � = 1:0 have a 1=3 shorter spanwise wavelength than those

with � = 0:3, and, hence, are more densely packed. In the Blasius boundary

layer, these waves are stable. Furthermore, the well-known types of nonlinear
wave interactions, i.e. K-type and H-type, involve waves with � roughly equal
to �, hence in the range � < 0:5. Thus, we must look at the growth rates to

make some comments on importance of these densely packed waves.

Figure 10 compares the growth rates of a vortex with � = 0:3 and those of
a TS wave with � = 0:3 and F = 20. The vortex grows over a fully corrugated

wall, while the waves grow over a smooth wall. The growth rate of the vortex
is greater than that of the TS wave, being roughly twice as large for the case

of curvature = � = 8 � 10�4. For comparison, the maximum growth rate of a

2-D TS wave with F = 60 is 
 = 0:0141. Thus, the low-frequency 3-D TS wave
undergo slower growth, but do so over a more extended streamwise distance.

We conclude this section with �gure 11, which shows the variation of the

receptivity coe�cient in Crouch's receptivity model [1] with curvature for a 2-D
TS wave at F = 60 and a 3-D TS wave with F = 60 and � = 0:15. The
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Figure 10: Comparison of growth rates, based on umax, of a G�ortler vortex with
� = 0:3, and a TS wave of frequency F = 20 and � = 0:3, for various values of
curvature.
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Figure 11: E�ect of curvature on the receptivity coe�cient for a two-dimensional
TS wave, � = 0, and a three-dimensional TS wave, � = 0:15 with frequency
F = 60.

data shows a weak in
uence of curvature on the receptivity mechanism (at this
frequency).
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6 Some case-studies of wave-vortex interac-

tion.

The interaction between vortices and traveling waves in boundary-layers can

play a major role in determining the transition location on swept wings. Partly

for this reason, this interaction has been the focus of numerous studies.

β
Direct
Interaction

β

F F

Indirect
Interaction

The two possible ways a vortex and a wave can interact are shown in the

�gure above. The left diagram shows the triad interaction between a vortex
and two oblique TS waves of equal frequency and streamwise wavenumber,

but opposite spanwise wavenumber. We shall refer to this interaction as the

\direct interaction", since in a perturbation approach employing an expansion
in amplitude, the waves interact at �rst order. The right diagram shows a triad

interaction between a vortex, a two-dimensional traveling wave and a three-
dimensional traveling wave. The traveling waves have equal frequency and a

nearly equal streamwise wavenumber. The oblique vector is of a lighter shade of
gray to indicate that its presence is not necessary at the onset of the interaction

- this wave will be generated by the interaction between the vortex and the 2D

wave, and will rise in amplitude to close the triad interaction. We shall refer to

this interaction as the \indirect interaction", since in a perturbation approach

employing an expansion in amplitude, the waves interact, initially, at second
order.

The direct interaction has been investigated more thoroughly than the indi-

rect interaction. Studies of the direct interaction include those of Hall and Smith
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[13] who employed a triple-deck asymptotic expansion in an analysis entitled

\on strongly nonlinear vortex/wave interactions in boundary-layer transition";

Davis and Smith [14], who extended the investigation to three-dimensional

boundary layers; Thumm, Wolz and Fasel [15], who looked at the interaction in

a compressible boundary-layer using a direct numerical simulation, starting with

only the oblique waves; Chang and Malik [16], who looked at the same case using

the PSE equations; and Spalart [4], who employed a direct numerical simulation

to look at the generation of cross-
ow vortices by suction non-uniformities, and

the subsequent breakdown induced by interaction with a TS wave.
With the exception of Spalart [4], the vortex in these investigations was

generated by the nonlinear interaction of two oblique TS waves. Through this
process, the vortex's motion is \in tune" with the forcing provided by the trav-
eling waves, and the triad interaction is optimal from a phase point of view. In

our investigation the vortex and the traveling waves exist independently at the
initial marching location, and may not be as much \in tune". This di�erence
may explain the lack of resonance found in the results presented below.

The indirect interaction was studied by Bertolotti [12]. The PSE equations
where employed in a parametric study of the e�ect of initial amplitude levels

and vortex spanwise wave-number on the location of \transition", (de�ned as
the onset of rapid spectrum �lling). It was shown that vortex and TS wave
behaved linearly up to the streamwise location where the the oblique wave
matched amplitudes with the vortex. Downstream of this location a strong
resonance ensued, wherein the growth rates of the vortex and of the oblique
wave where equal to one another, and were one order of magnitude larger than

those given by linear calculations. These growth rates matched those given by
Floquet theory for K-type transition. Figure 12, taken from Bertolotti [12],

displays these results. The initial conditions consists of the (2,0) TS mode, and

the (0,1) vortex. (In this work the disturbances were phased-locked, thus the
index (2,0) stands for (2,2,0) in the current terminology). The dots represent

the amplitude of the K-type secondary-instability wave with equal parameters
�, F , and ATS as in the vortex case. The agreement in slope between the

dots and growth-rates of the vortex and the (2,1) mode indicates that these
two modes undergo resonance as in the Floquet model. This �gure was not

published because the investigators felt that the way in which the vortex was

initialized, namely by taking the limit of F ! 0 holding � constant in the local

procedure was too arbitrary a choice.

In our study of wave-vortex interaction, we will include the receptivitymech-
anism. In this way, the initial conditions are speci�ed by a small set of data,

namely the description of the wall geometry and of the acoustic �eld present
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Figure 12: Wave-vortex indirect interaction: Amplitudes of selected modes ver-

sus Reynolds number. Initial conditions speci�ed for the vortex and the (2,0)
TS wave at frequency F = 30. The dots show the results from K-type secondary

instability given by Floquet theory. (Plot taken from Bertolotti's PhD Thesis,
page 165)
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in the free-stream. We employ Crouch's model [1] for the generation of the TS

waves form the interaction of the acoustic �eld and the wall geometry. (See

Bertolotti and Crouch [17] for details on the PSE implementation.)

Two TS frequencies were investigated, one at F = 60, representing the higher

frequency modes, the other at F = 20, representing the lower frequencies. As

shown in �gure 9, low-frequency TS waves are ampli�ed when concave curvature

is present, and, thus, might play an important role in the transition process

over concave surfaces. The curvature is held �xed at � = 2 � 10�4. This small

value of curvature is chosen because it leads to G�ortler vortices with growth
rates similar to those of the TS waves. If the curvature is increased to higher
values, say 8 � 10�4, then the growth of the vortex is too rapid to allow for
signi�cant interaction with the traveling waves, and at large amplitudes the
vortex generates the transitional state suggested and investigated by Hall and

Horseman [18], wherein the in
ectional mean-
ow pro�le induced by the vortex
gives rise to inviscid (i.e. Rayleigh) instabilities.

At each frequency, two selections of surface roughness are used, a lower one
with peak-to-peak variations in the range of 1 � 10�3�o, and a higher one with
variations in the range of 1 � 10�2�o.

The parameters describing each case are listed in the table below:

Direct Interaction

F=20 F=60
� = 0.0260, � = 0.15 � = 0.0840, � = 0.15
Low High Low High

W(0;2;1) 1:0� 10�3 0:5 � 10�2 0:5 � 10�3 0:5 � 10�2

W(0;0;2) 1:0� 10�3 1:0 � 10�3 1:0 � 10�3 1:0 � 10�3

Indirect Interaction

F=20 F=60

� = 0.03525, � = 0.15 � = 0.09086, � = 0.15

Low High Low High

W(0;2;0) 2:0� 10�3 1:0 � 10�2 1:0 � 10�3 1:0 � 10�2

W(0;0;1) 1:0� 10�3 1:0 � 10�3 1:0 � 10�3 1:0 � 10�3

Since the mean-
ow is independent of z, symmetric disturbances in z are
assumed. To obtain peak-to-peak values, one must multiplyW(0;n;0) andW(0;0;n)

by 2, and W(0;n;m) by 4 to take into account the complex conjugate modes.
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Indirect interaction Indirect interaction

Direct interaction Direct interaction

Figure 13: umax amplitudes versus Reynolds number with a traveling-wave fre-

quency of F = 20.
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The amplitude evolution of the vortex, the traveling waves, and the mean-


ow distortion are displayed in �gure 13 for the frequency F = 20 and in �gure

14 for the frequency F = 60. (These frequencies values refer to the traveling

waves). Both the low and high wall roughness cases lead to a vortex-wave

resonance in the case of the indirect interaction. The location of this resonance

is only slightly a�ected by the level of the wall undulations.

On the other hand, the cases involving the direct interaction do not lead to

a wave-vortex interaction. The traveling wave (i.e. mode (2,2,1)) is dampened

past R = 1200, most likely due to the presence of the large mean-
ow distortion
induced by the vortex. The higher growth rate of the vortex in the \High" case
is due to the receptivity of the vortex to the (2,2,1) wall mode, as discused
in section 5. The absence of a wave-vortex interaction is surprising, since the
papers cited at the beginning of this section predict a strong resonance. A

possible reason was thought to be due to an unfavorable phase relation between
the vortex and the 3-D TS wave. However, changing the phase by 90 and 180
degrees did not change qualitatively the results. Thus, the reason for the lack
of resonance remains at the moment unresolved.

The surface heights considered here are of the same order of magnitude as

adhesive tape. The indirect interaction calculations, then, can help understand
in a quantitative way Klebanov's experiment [19], in which strips of adhesive
tape where placed under the vibrating ribbon to help steady the transitional

ow structure.

7 Conclusions

The response of vortices to surface inhomogeneities, both in the form of surface

waviness and of wall-normal velocity, has been successfully investigated using

the nonlinear PSE equations. Transients, and issues of algebraic growth, have
been avoided through the use of a similarity solution as initial condition for the

vortex.
In the absence of curvature, the vortex decays as

q
1=x when 
owing over

streamwise aligned riblets of constant height, and grows as
p
x when 
owing

over a corresponding streamwise aligned variation of blowing/suction at the

wall. However, in the presence of wall inhomogeneities having both streamwise

and spanwise periodicity, the growth of the vortex can be much larger. In the
presence of curvature, the vortex develops into a G�ortler vortex.

The \direct" and \indirect" interaction mechanisms possible in wave-vortex
interaction are presented. The \direct" interaction does not lead to strong

resonance in the 
ow conditions investigated. The \indirect" interaction leads
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Indirect interaction Indirect interaction

Direct interaction Direct interaction

Figure 14: umax amplitudes versus Reynolds number with a traveling-wave fre-

quency of F = 60.
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to K-type transition.
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9 Appendix A: The governing equations

We eliminate pressure by taking the curl of the Navier-Stokes equation. Since

the 
ow �eld is harmonic in z, we can eliminate w using continuity, and then

take the combinations of @=@x(k component) - @=@z(i component) , and @=@z(j

component) of the vorticity equation to obtain two equations governing u and

v.

The resulting formulation o�ers two advantages over the original equations

for the full set of primitive variables: reduced computational work, and PSE
equations that are free from numerical instabilities at short marching steps.

We separate the 
ow �led vT into the basic-
ow, VB(x; y) and the remain-

der v(x; y; z; t), which we call the disturbance. Our basic-
ow is the Blasius
boundary layer, and terms involving the second derivative with respect to x are
of negligible magnitude. Excluding these terms, the governing equations for the
disturbance components u and v are:
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We have placed the nonlinear terms involving the product of disturbance quan-
tities as right-hand-side terms because these terms will be lagged in the iterative
process used to solve the system of equations.

The basic-
ow terms on the third line of equation (4a) are negligible within
boundary-laye theory. When the disturbance has velocities components of equal

magnitude, such as a traveling wave, then these terms are negligible. However,
when the disturbance has u and v velocity components that scale like those of
the Blasius 
ow, such as vortices, then the terms on the third line of (4a) become
of equal order to terms in the �rst two. Thus, in cases where the disturbance
�eld includes both waves and vortices, as in the present study, these terms
should be kept. In passing we note that, for steady vortices, equations (4a) and

(4b) equal Hall's equations for G�ortler vortices [22].
The parabolized stability equations, commonly abbreviated to PSE, were

conceived by Herbert and developed by Herbert & Bertolotti [20] to incorporate
nonlinearity and the slow growth of the boundary layer into the boundary-layer
stability computations. The results were found to agree with those of full DNS

simulations up to \spike stage", where the complexity of the 
ow rapidly spreads

beyond the resolution of the PSE code [11,12,21].
We express the disturbance velocity �eld in a series in time (index l), in x

(index n) and in z (index k),

v(x; y; z; t) =
1X

l=�1

1X
n=�1

1X
k=�1

vp(x; y; z; t) (5)

where, p is the wave-vector (l; n; k). The velocity �eld of each mode is parti-

tioned into

vp(x; y; z; t) = v̂p(x; y)�p(x; z; t): (6)

The function
v̂p(x; y)
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describes (in a sense made speci�c below) the velocity pro�le of each mode and

the function � incorporates the growth and wavelike part of the mode's velocity

�eld

�p(x; z; t) = exp

�Z x

x0

ap(s)ds + ik�z � il!t

�
: (7)

where the complex wavenumber ap is composed of a real growth rate, 
p, and

an imaginary wavenumber �p,

ap = 
p + i�p

The partial di�erential equation governing the velocity pro�les v̂p is ob-

tained by substituting the expansion (5) into equations (4a) and (4b). For the
streamwise derivatives we make use of the slow change with x of the pro�les
and growth rates with the rule

@mvp

@xm
=

"
am
p
v̂p +mam�1

p

@v̂p

@x
+
m

2
(m� 1)am�2

p

dap

dx
v̂p

#
�p; (8)

where ap(x) = 
p(x) + in�. For m > 1 the streamwise derivatives of the
mean-
ow VB are zero, in accordance with the boundary-layer approximation.
Similarly, in (8) we drop second- and higher-order derivatives with respect to
x of v̂p and ap. Performing harmonic balance yields an in�nite set of coupled
partial di�erential equations of parabolic type in x of the form

Lv̂p + M
@v̂p

@x
+

dap

dx
Nv̂p =

X
r

Q [vr ; vp�r] ; (9)

where the operators L;M;N and Q contain derivatives with respect to y only.
The summation on the r.h.s. of (9) is is truncated to some number (L;N;K) in

the numerical computations. Due to the symmetry in z we only need to solve

for modes with non-negative wave numbers in t, x, and z. Upstream traveling

modes are not allowed.

An \auxiliary" condition is needed in all PSE formulations to remove the
ambiguity in (8) caused by the dependence of both vp and ap on x. This

condition as also been called a \normalization" condition in PSE literature. In
our particular case we employ the condition,

Z
1

0
ûy
p

@ûp

@x
dy = 0 (10)

where y denotes the complex conjugate. Equations (9) and (10) form a complete

set for the unknows vp and ap.
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We transfer the zero-slip wall boundary condition to y = 0 via a Taylor

series expansion about y = 0, and stop the expansion at terms linear in jHj
since this quantity is assumed small, although including higher orders in jHj
can be done in a straight forward fashion. Performing harmonic balance yields

the boundary conditions satis�ed by v̂p for each p,

v̂p(x; 0) =
�1

Ap(x)

"
Wp

@VB(x; 0)

@y
+

X
r

Wp�r

@v̂r(x; 0)

@y
Ar(x)

#
: (11)

where
Ap = exp[

Z x

xo

ap(s)ds]:

The xPSE transition analysis tool-kit has been employed for the computa-

tions. The partial di�erential equations (9) are transformed into algebraic
form by use of a multi-domain spectral collocation technique in y, and a �-
nite di�erence discretization in x. Five domains are used in y, with limits
at [0; 1:6] ; [1:6; 4] ; [4; 14] ; [14; 56] ; [56; 96] (recall the reference length is �� at
R = 1000), and u and v are approximated by 17 and 19 Chebychev polynomials,

respectively, in each domain. Asymptotic boundary conditions are imposed at
y = 96. For each mode p, we construct the vector of unknows

xp = fun; vn; agp
composed of the Chebychev coe�cients for u and v, and the complex wavenum-
ber a for the mode, at the new marching location. The nonlinear algebraic
system is solved iteratively by lagging the nonlinear terms one iterate, and us-
ing a Newton method to solve the linear problem

5xF ��xp = �F(xp) +NLp (12)

for each mode p. Here, the term NLp represents the nonlinear terms, and the

function F the terms in (4a) and (4b) that are linear in u and v.
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10 Appendix B. The self-similar vortex

We approximate the vortex 
ow from the leading edge to the downstream lo-

cation at which we begin the PSE simulations, say xo, with a self-similar form.

Such a form satis�es continuity and the boundary conditions exactly, but pro-

duces a small residual error in the momentum equations. All terms of the

Navier-Stokes equations reduce to terms dependent on the self-similar variable

� except some coe�cients, comming from z derivatives, that depend on x but

with a variation su�ciently slow to allow the term to be approximated as con-
stant. The curvature is set to zero.

The case of constant (in x) riblet height and the case of height proportional

to
p
x, as well as the case of blowing/suction of constant (in x) strength and

of decaying strength proportional to
q
1=x, yield quasi self-similar solutions.

Herein we will focus on the constant amplitude cases. The surface geometry in
the case of constant riblet height is described by the function,

H(x; z) =W(0;1) exp[i�z] + c:c:;

where W(0;1) is a real quantity that controls the height of the riblets. In the
case of blowing/suction the wall velocity is given by the function,

V (x; z) = S(0;1) exp[i�z] + c:c::

where S(0;1) is a real quantity that controls the strength of the suction.
For the ribbed geometry we seek steady solutions of the form,

u(x; y; z) = uself (�)e
i�z

r
x0

x
+ c:c: (13)

v(x; y; z) = vself (�)e
i�z 1

x
+ c:c: (14)

w(x; y; z) = wself (�)e
i�z 1

x

s
x0

x
c:c: (15)

where � = y
q
x=x0 is the Blasius similarity variable. For the suction case we

seek steady solutions of the form,

u(x; y; z) = uself (�)e
i�zpxx0 + c:c: (16)

v(x; y; z) = vself (�)e
i�z + c:c: (17)

w(x; y; z) = wself (�)e
i�z

r
xo

x
+ c:c: (18)
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Reference length is xo!.

Equation (1a) and equation (1b) become ordinary di�erential equations with

independent variable �. These equations are, respectively,

a0uself + a1u
0

self + a2u
00

self +

b0vself + b1v
0

self + b2v
00

self + b3v
000

self + b4v
iv
self = 0 (19)

c0uself + c1u
0

self + c2u
00

self + d0vself = 0 (20)

where the primes denote di�erentiation with respect to �. The formulation (?)
for the constant riblet height yields,

a0 = [5f 00 + 7�f 000 + �2f iv + C(f � �f 0 � �2f 00) ]=4 c0 = �f 00=2 + f 0=2 � C
a1 = �(3f 00 + �f 000)=2 c1 = f=2
a2 = [�2f 00 � �f 0 + f ]=4 c2 = 1

b0 = ��f iv=2 � 2f 000 + C(C � f 0 + �f 00=2) d0 = �f 00
b1 = ��f 000 � f 00=2 � Cf=2
b2 = 2f 0 � �f 00=2� 2C
b3 = f=2
b4 = 1

while the formulation (?) for the constant suction yields,

a0 = [f 00 + 3�f 000 + �2f iv + C(f � �f 0 � �2f 00) ]=4 c0 = �f 00=2 � f 0=2
a1 = �(f 00 + �f 000=2) c1 = f=2

a2 = [�2f 00 � �f 0 + f ]=4 c2 = 1

b0 = �[�f iv + f 000 + C�f 00 + 2C2 ]=2 d0 = �f 00
b1 = ��f 000 � f 00=2 � Cf=2
b2 = f 0 � �f 00=2� 2C
b3 = f=2
b4 = 1

where f(�) is the Blasius stream-function variable, and the symbol

C = �2 x

x0

represents the coe�cient that is dependent on x. The no-slip boundary condi-

tions on the surface of the undulated wall are transferred to y = 0 via a Taylor
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series expansion. These conditions are,

uself (0) = �W(0;1)f
00(0) (21)

vself (0) = 0 (22)

v0self (0) = 0 (23)

while the boundary conditions for the suction case can be directly obtained,

uself (0) = 0 (24)

vself(0) = W(0;1) (25)

v0self(0) = 0 (26)

The condition on v0self follows from continuity. The coe�cient C prevents the
system of equations from being truly self-similar. As an approximation, we
neglect the x=x0 dependence in C to arrive at a system of ordinary di�erential
equations. This approximation is acceptable in view of the small values of � of
interest - typically less than 0:1 (nondimentionalized with � at the PSE starting

location xo). Thus, over the region 0 < x � xo, the magnitude of C is less than
�2 < 0:01, which is small when compared to the order O(1) coe�cients in (2a)
and (2b).
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