A Parallel Prefix Algorithm
for
Almost Toeplitz Tridiagonal Systems *

Xian-He Sun Ronald D. Joslin
Dept. of Computer Science Mail Stop 156
Louisiana State University NASA Langley Research Center
Baton Rouge, LA 70803-4020 Hampton, VA 23681-0001
Abstract

A compact scheme is a discretization scheme that is advantageous in obtaining highly
accurate solutions. However, the resulting systems from compact schemes are tridiago-
nal systems that are difficult to solve efficiently on parallel computers. Considering the
almost symmetric Toeplitz structure, a parallel algorithm, simple parallel prefiz (SPP),
is proposed. The SPP algorithm requires less memory than the conventional LU de-
composition and is efficient on parallel machines. It consists of a prefix communication
pattern and AXPY operations. Both the computation and the communication can be
truncated without degrading the accuracy when the system is diagonally dominant. A
formal accuracy study has been conducted to provide a simple truncation formula. Ex-
perimental results have been measured on a MasPar MP-1 SIMD machine and on a Cray
2 vector machine. Experimental results show that the simple parallel prefix algorithm
is a good algorithm for symmetric, almost symmetric Toeplitz tridiagonal systems and
for the compact scheme on high-performance computers.

Note:
Most of the detailied proofs given in Section 4 are for review purposes. They
will be removed in the final paper.

*This research was supported by the National Aeronautics and Space Administration under NASA contract NAS1-
19480 while the first author was in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.

A SIMPLE PARALLEL PREFIX ALGORITHM

FOR
COMPACT FINITE-DIFFERENCE SCHEMES

By

Xian-He Sun*
Corresponding Author

ICASE
Mail Stop 132C
NASA Langley Research Center
Hampton, VA 23681-0001
(804) 864-8018, (804) 864-6134 fax, sun@icase.edu

And

Ronald D. Joslin

Theoretical Flow Physics Branch
Mail Stop 156
NASA Langley Research Center
Hampton, VA 23681-0001
(804)-864-2234, (804) 864-6134 fax, joslin@tab00.larc.nasa.gov

* This research was supported by the National Aeronautics and Space Administration under
NASA contract NAS1-19480 while the first author was in residence at the Institute for Computer
Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA
23681-0001.

1 Introduction

Recent technological advances have made it possible to build computers that contain thousands of
processors and can obtain gigaflops (10° floating-point operations per second) on real applications.
Emerging parallel computers are designed to solve large problems and achieve better accuracy
than could previously be obtained [20]. Parallel computers demand new models, new discretization
methods, and new algorithms to explore the potential of high-performance computing.

Conventionally, partial differential equations (PDEs) are discretized by finite-difference or finite-
element methods, and are solved by Gauss-Seidel, conjugate-gradient, or successive overrelaxation
(SOR) methods. A new discretization method, the compact finite-difference scheme (or compact-
difference scheme, compact scheme) was proposed by Kreiss and Oliger [11] and was later im-
proved upon by Lele [14]. Compared with the traditional finite-difference scheme, the compact
finite-difference scheme achieves higher accuracy with smaller difference stencils and leads to more
accurate approximations because of the smaller coefficients on the truncation error. With these ad-
vantages, the compact scheme has quickly gained popularity. In practice, the resulting discretized
system of the compact schemes are tridiagonal systems that can be solved efficiently on sequential
machines. However, tridiagonal systems are difficult to solve efficiently on parallel computers. For
example, to study the physics of compressible homogeneous turbulence, the CDNS (compressible
direct simulation of Navier-Stokes) code, based on a sixth-order compact scheme and a third-order
time discretization, was implemented on the Intel Delta [6]. After carefully choosing an existing
tridiagonal solver, mapping the algorithm to the architecture, and overlapping communication with
computation, the communication overhead consumed about 30 percent of the total execution time.
Clearly, more efficient algorithms are needed to explore the potential of compact schemes on parallel
computers.

In recent years, intensive research has been done to develop efficient tridiagonal solvers on
parallel computers. A good survey can be found in references [15], [8], and [12]. Of the known
tridiagonal solvers, both the recursive-doubling reduction method (RCD) developed by Stone [17],
and the odd-even, or cyclic, reduction method (OER) developed by Hockney [9] are able to solve an
n-dimensional tridiagonal system in O(log(n)) time using n processors. These methods are designed
for fine-grain computing. Substructured methods developed by Lawrie and Sameh [13], Wang [25],
and Sun, Zhang, and Ni [24] were designed for median-grain and coarse-grain computing (i.e., the
case of p < m or p << n, where p is the number of processors available). Lawrie and Sameh’s
algorithm is designed for shared-memory machines; Wang’s algorithm is designed for distributed-
memory machines; and Sun et al. proposed three different algorithms, each of which may be a better
choice depending on the problem and the machine. For compact schemes, the tridiagonal systems
have a special structure that consists of diagonal dominance and are almost symmetric Toeplitz.

For this special structure, a parallel tridiagonal solver for fine-grain computing, the simple parallel

prefiz (SPP) algorithm, is proposed in this paper. It shows that compact schemes can be solved
efficiently on parallel computers. Since the same special structure appears in many other scientific
applications, such as alternating direction implicit method [19], wavelet collocation method [2],
spline curve fitting [3], etc., the importance of the SPP algorithm is beyond compact schemes.

Compared with the popular tridiagonal solver for fine-grain computing known as the cyclic
reduction method [9], the SPP method is simple to implement and computationally efficient. It
requires only 2-log(n) AXPY (vector plus scalar times vector) operations and prefix communication
patterns. If the tridiagonal system is diagonally dominant, then the AXPY operations can be
truncated after a certain number of steps without degrading the accuracy. A formal accuracy
analysis is conducted and simple formulas are provided to compute the number of AXPY operations
necessary.

This paper is organized as follows. Section 2 will present the compact scheme and discretized
tridiagonal systems. Section 3 will introduce three versions of the simple parallel prefix algorithm:
the SPP for tridiagonal systems with the given special structure, the SPP for solving symmetric
Toeplitz tridiagonal systems, and the SPP for solving almost symmetric Toeplitz systems. Accuracy
analysis will be conducted in Section 4. Section 5 will give experimental results on a 16K processing
elements (PEs) MasPar SIMD computer and on a Cray 2 supercomputer. Finally, Section 6 will

give the conclusions.

2 Compact Finite-Difference Schemes

With the conventional finite-difference and finite-element discretization methods, as the order of
the approximation increases, the required number of boundary and near-boundary relations and
the required number of mesh points per derivative stencil increases accordingly. To achieve higher
accuracy with less additional mesh points, the compact scheme [11] was introduced. As originally
suggested by Kreiss and Oliger [11], and later discussed for fluid dynamics problems by Hirsh [7],

the first and second derivatives for compact differences may be approximated by

D " D.D_
£l = (—1 -)fn and f, = (—) Fs (1)
1+ 2D D_ 1+ Lh2DyD_

where
1 1
DOfn = m(.fn—l—l - fn—1)7 D—I—fn = E(fn-l—l - fn)7

D—fn = hi(fn - n—1)7

xr

and h, is the mesh spacing, which is constant for simplicity. By multiplying (1) by the respective

denominators, relations for the derivatives may be found, which yield

1 2 1 1
gf/—1 + gfé + gffﬂ-l = m(fn-u — fa-1), (2)
and
1 5 1 1
ID o1+ gfé/ + Ef?ia/-l—l = @(fn-l—l —2fu + fac1) (3)

These equations yield tridiagonal systems when the appropriate boundary conditions are applied.
To make an accurate comparison between the compact-difference (eqs. (2) and (3)) and the
standard central-difference schemes, Taylor-series expansions are employed. As Hirsh has shown,

the truncation error for the compact differences are

1 v 1 v
E(f,) = —@hi @) and E(f))= —%hi),

Similar error analyses for the central differences yield

B(f)) = o7 and B(f) =~ oohd (0D,
Although both schemes are fourth-order accurate, the compact-difference scheme should lead to
more accurate approximations as a result of the smaller coefficients on the truncation error. Similar
results hold for other higher order approximations.

As yet, no mention has been made about the boundary treatment for the compact scheme.
At the boundaries, Hirsh [7] experimented with a variety of boundary conditions, and Adams [1]
suggested a boundary relation that includes near-boundary derivatives in the formulation. The
boundary conditions used by both Hirsh and Adams retained the tridiagonal nature of the sys-
tem. To demonstrate the SPP algorithm, fourth-order one-sided finite differences will be used for
boundary conditions.

Many relevant fluid dynamics applications can make use of high-order compact-difference oper-
ators to numerically solve the governing systems of equations. For example, Burger’s equation, the
boundary-layer equations, and the driven cavity problem were solved by Hirsh [7] with compact-
difference operators. Further, Joslin et al. [10] used the compact-difference equations (2) and (3)

to numerically solve the fully nonlinear Navier-Stokes equations of fluid dynamics.

ou;

ou; ou; 1 ap 0%,

ot Y Ge, T T pde T da00; (5)

where u; = (uy, ug, us) are the velocity components that correspond to the steamwise, normal, and

spanwise directions, ; = (21,2, 23); v is the kinematic viscosity, p is the density, and repeated
indices infer a summation over the index. To demonstrate how compact-difference operators could
be employed to solve the nonlinear PDE’s (4) and (5), consider the model problem of the one-

dimensional heat-conduction equation: ,
el (6)
To solve this equation computationally, discretizations in time and space must be chosen. From
the Taylor-series expansions in time, one derives the discrete equation
"t =" 4 I{At%, (7)

where 7 is the number of time levels. If the result at level 4" is known, then the solution u"*!

can be obtained if d%u/d2% can be determined. The spatial derivative can be computed with the
second-derivative operator (3). Fach time-step advancement requires a single compact-difference
solve. In the original nonlinear PDE systems (4) and (5), both the first and second derivative
operators are required; the problem is multidimensional and requires a compact-difference solver
with many right sides. Time-marching is necessary and requires compact-difference solves at each
time level. This necessitates a fast compact-difference solver. By observation, equations (2) and

(3) take the matrix form

where z = {f’, f"} and ¢ = {4,10} correspond to the compact-difference parameters. The first and
last rows of equation (8) arise from boundary conditions. The boundary condition that corresponds
to dy41 can be rolled into the system by xx41 = dy41 and dy = dy — dyy1. Thus, the system is
reduced to the N x N system:

With higher orders of approximation, the resulting matrix will differ only in the boundary
conditions. However, with the appropriate restructuring given above, the resulting tridiagonal

systems can be written in the almost symmetric Toeplitz form described in the next section, Eqn.

(10), where A is given by (12).

3 The Simple Parallel Prefix Algorithm

We are interested in solving a tridiagonal linear system of equations
Az = d. (10)

In this system of equations, A is either a symmetric Toeplitz tridiagonal system of order n
c 1
1 ¢ 1

A= T = [1707 1]7 (11)
-1

1 ¢

or an almost symmetric Toeplitz tridiagonal system of order n

a 0
1 ¢ 1
A= .o \ (12)
-1
1 ¢
where © = (21,-++,2,)" and d = (dy--+,d,)" are n-dimensional vectors. We assume that matrix

A is diagonally dominant (i.e., |¢| > 2). Although we assume that A, z, and d have real coefficients,

the extension to the complex case is straightforward.

3.1 The Simple Prefix Method

In this section, we study how to efficiently solve the system

Az =d (13)
on parallel computers, where
a 1 1 1 b
- b 1
i=| b = . = a-[b.1,0]- [0, 1.8,
1 - b
1 e b1 1

and a and b are the real solutions of:
at+b=c

a-b=1 (14)

Because a -b =1 and |¢|] > 2, we may further assume that |a] > 1 and |b] < 1. By equation (13),

F=a"'-[0,1,0]7'[b,1,0]""d = b-[0,1,b]"'[b,1,0] " d.
Let L = [—b,0,0]. Then
[b,l,()] = [07170]_ [—b,0,0] =I1-1

and

[b7170]_1 (I+L+L2++Ln—1) (15)

(L4 L2+ 22T (T LY+ I+ L), (16)

Note that n is the dimension of matrix A and that equations (15) and (16) can be verified directly.

The superscript of matrix L represents matrix multiplication

0
0 .
i=1 (=" 0 0
0 0 (=b 0 0
where the first nonzero element (—b)' is at position (i + 1, 1). Similarly, let U = [0,0, —b]. Then,
[0,1,6] =[0,1,0]—[0,0,-b]=1—-"U,
and

[0,1,()]_1 = (I—I—U-|-U2_|_..._|_Un—1)
— (I_I_ U?ﬂgn]—l) “““ (I‘I‘Uz)(I‘I‘U),

where

' P
vt = 0 0 (=by
0 0
0

The first nonzero element of U® is at position (1,7 + 1). Thus, the solution of equation (13) is

F=b- I+ U™ Uy (T LTy (I+ L)d. (17)

Let v = (v1, v, -,vn)T be an n-dimensional vector. Given the special structure of L?, we find
(I + Lo = v+ (=b) v,

where
v(z) = (07 © 'Ovvlv t 'vn—i)T

and vy is the 7 + 1 element of v(;y. Similarly, given the special structure of U, we find
(I+ U =v+(=b)v®,

where
- (Dig1s- 0y 0---0)T,

Equation (17) shows that equation (13) can be solved with 2 - [lgn] AXPY operations. Because
|b] < 1, ||L¥|| — 0 and ||U’|| — 0 when n — oo, the AXPY operation may be truncated without
influencing the accuracy. Formulas will be given in Section 4 to compute the smallest truncation

integer k. A sequential code for solving equation (17) within truncation error is given in Figure 1.

for 1+~ 0 to k-1 do
for j—2° to n do
d]‘ = d]‘ + (—b)zldj_zi
J—J+1
1 —14+1

for 1+~ 0 to k+1 do
for j—1 to n-2' do
d]‘ = d]‘ + (—b)zldj_l_Qi
J—=J+1

1 —14+1

for <1 to n do
T;=b-d;

J—=J+1

Figure 1. The simple prefix method.

If n processing elements are available and d; is stored in processor j, then the two for loops of
v in Figure 1 will lead to prefix computations. Figure 2 shows the prefix computation pattern that

correspond to the second for loop of ¢ when n is equal to 8. The first for loop of ¢ in Fir. 1 leads

to a similar prefix computation pattern, except that the communication is from right to left. Prefix
(or recursive doubling) computation is a widely used computation model in scientific computing.
Any linear recursive relation can be computed by recursive doubling [21]. A recursive-doubling
algorithm exists for solving tridiagonal systems and involves matrix-matrix multiplications [5, 24].
Compared with the existing recursive-doubling algorithm, our method achieves a smaller operation
count by adopting the “vertical prefix” computation, in which the matrix-vector multiplication
in Eq. (17) is conducted in a parallel prefix fasion. Compared with the cyclic reduction method
[9], the proposed prefix method has a simpler communication pattern. We call the prefix method
given in Fig. 1 the simple prefix method. Figure 3 shows the communication pattern of the widely
used cyclic reduction method [9]. In a comparison of figures 2 and 3, we can see that the prefix
method has a relatively simple communication pattern. On the other hand, with the above listed

advantages, the proposed prefix method also has its limitation. It is only feasible for solving almost

DGR
EREBEN

ELITIE:
LI

Figure 2. Communication of prefix computation.

Toeplitz tridiagonal systems.

3.2 Modification of Symmetric Toeplitz System

Our goal is to find the solution of equation (10). Modification is needed to convert the solution of
equation (13) to the desired solution. The modification will be different for symmetric Toeplitz sys-
tems and for almost symmetric Toeplitz systems. For a given symmetric Toeplitz system, equation

(13) is modified as
A=A+ANA=A+VET,

where

3200039000550
INTEEEEN
0

5w 6 &

CE O DO n o h

Figure 3. Communication of cyclic reduction method.

AA= : (18)

and V = (0,0,---,0)T and £ = (1,0, ---,0)" are n-dimensional vectors. By the matrix-modification

formula [16, 4, 24], equation (10) can be solved by

]
(

A~'d = (A+VET)"'d
A — A=W(I+ ETA-'W)"'ETA-'d
F— ATW(I+ ETAW) iy,

]
(

where 7 is the first element of vector Z. If the calculation approach given in [19] is followed, we

have
- 1
T+ETA 'y = —
(i V) 1 + Z?:l sz
and))
A_lv = (Z bziv Z(_b)b%v Z(_b)zbziv T (_b)n+1)‘
=1 =1 =1
Thus

AW+ ETA V) !

; T
e L= 1 -y i1 -2 w1 (1—02)
- (1—b2<n+l>’(‘ gy Y ey Y e) o (1)

The final solution is

r=1-— iz, (20)

where vector z is the right side of equation (19). Because |b| < 1, z can be truncated at some
integer ky without affecting the accuracy (see section 4). Furthermore, when n is large, p2n—it1)

1=0,1, -,k will be less than machine accuracy, and z reduces to
Z= ((_b)27 (_b)37) (_b)k1+27 07 o '70)T-

The program of modification is given in Figure 4, and the algorithm for solving the symmetric

Toeplitz tridiagonal system is given in Figure 5.

for 1—1 to k; do
=8 — 1%
1 —14+1

Figure 4. Modification for symmetric Toeplitz systems.

Step 1:
Use the simple prefix method to find the solution to equation (13).
Step 2:

Use the modification equation (20) to obtain the final solution.

Figure 5. Algorithm for solving symmetric Toeplitz system.

3.3 Modification of Almost Symmetric Toeplitz System

A similar modification can be given to solve almost symmetric Toeplitz systems. For almost sym-

metric Toeplitz systems, equation (13) is modified such that

where

0 -1 0
0 0 0
AA = - : (21)
0 0 0
0 0
0

V =(-1,0,---,0)T, and £ = (0,1,0,---0)". Following the matrix modification formula [24, 19],

the solution to equation (10) becomes

_ AV (I 4 BTACW)LET A1

where 5 is the second element of Z. With this new modification,

a

0~ S (b

(I+ ETA17)~ =

n—1) n—2) n—j 4 '
A—lf/ — _b(z b227 Z(_b)bzlv . ‘72(_1))]—1()227 . ‘7(_b)n—1)7
1=0 1=0 1=0
5 5 o N 11— b2(n—i—|—1) 1 — b2
AW+ ETATW) ™ = (b, (—b)f o (—h) e T 22
VU4 ETATPY = (b (cop A L2 (22)
The final solution is
T =1 — Tqy, (23)

where the vector y is the right side of equation (22). Like the symmetric case, only the addition of
the first kg elements in equation (23) may be needed for a given accuracy for some integer kg, and

b/2("=9) may be less than machine accuracy for 0 < i < ko when n is large. Let
g
y= (_bv(_b)zv"'v(_b)k2707'"70)T' (24)

The modification computation for the almost symmetric Toeplitz system is given in Figure 6. The
algorithm for solving the almost symmetric Toeplitz systems is similar to the algorithm for solving
the symmetric Toeplitz system (see Figure 5), except in step 2 the new modification (Figure 6) is

used to replace the symmetric Toeplitz system modification.

11

for 1—1 to ky do
T =3 — Tl
1 —14+1

Figure 6. Modification for almost symmetric Toeplitz system.

4 Accuracy Analysis

In a previous section, the claim was made that the AXPY operations and modifications can be
truncated without influencing the accuracy. In this section, we will study the truncation accuracy.
For simplicity, we truncate the first for loop and the second for loop at the same step k. The

norm used in this section is the L;-norm.

4.1 Accuracy Study of the Simple Prefix Method

Let #,y be exact solutions as

y = b-[b,1,0]7"d,

= (I+L+L*+--+L""b-d,
& = b-[0,1,0]7'b,1,0]7" - d

= (I+U4U+-+U0"")-y.

Let y* and &’ be the solutions given by the first for loop and the second for loop, respectively,
as

yv=(I+L+---+ L) b-d,

where k is a power of 2, and

F=(I+U+ -+ Uy

Also, we define * as a hypothetical solution by

F=I+U+---+U" Ny

12

The difference between and Z* is

i— " (I—I—U—I— U”—l)y—(I+U+---+Uk—1)y
= (UF4 UM b U7y
=(UF 4+ U™ 1)(1_ U)i
= (UF - U™z
Thus, we find o
W2 2200 g = o) < ol o, (25)

1zl
Equation (25) gives the relative error between # and Z*. Because the difference between * and &’

18

- =+ U+ Uy —(I+U+ -+ Uy
={I+U+---+ Uy -y)
=(I+U+--+UYLF -+ L5 b d
= +U+---4+ UYL+ IYHY(T - D) - U)i
=+

ce URY(LF - LMY (T - Uz,

the norm becomes) y
[
Nzl = 1-19]

If equations (25) and (26) are combined, then the relative error between the exact solution # and

I - (1 [B"F) (L + [b]). (26)

the truncated solution ' is

|2 — &'l it N T |

1] [12]]
1 [b*
—[0]

IN

B (1 + 1B]"~*)(1 +

(L+1o]))

IN

2 [o" - (1+ IbI”_k)-

4.2 Final Accuracy of Symmetric Toeplitz Systems

The truncation error of the simple prefix method (Figure 1) will be carried into the modification
step and will influence the accuracy of the final solution. Let x be the solution of a symmetric
Toeplitz tridiagonal system (10) and 2* be the corresponding solution that has been modified with

the truncated solution,

13

n n— _52 T .
where z = b? (1_15_2(bj+1) , (—b)}:g;gn;;) -(—b)”_l%) ; see equation (19). The error gener-

ated by this truncation is

|z —2™|] = |I(Z =) + (81 -)zl
< =2 2= -]
< [l = A+ 1)

The norm of vector z can be computed directly as

1=

By - 2
WZW’)ZO—(’ Bl
=0

b2 = 7 = 2n—1
< m(gw +;|b|)

LB (L)
= 1= p2Ant) (1—18)
N e N
- (L= ol *+H) (1 —ol) = 1 =[] [a] =1
Therefore,
; — 0]
o=l < JlF = Fi1+) (21)
. cl—1
- Il - 71 (25)
=6+ |b)? o 1
= —¥||(————) < ||z - & 2
I = # (o) < 12 = # (=) (29)
and
||z — 2] |2 — &' 1 — [b] + [B]?
—— < 30
el R 0
|z =& [l 1 - 16| + [bf?
ot)- (31)
[zl el 1 =10l
The only unknown in the right side of equation (31) is M,Whereiis the solution of equation (13
[l

and z is the solution of equation (10). For a symmetric Toeplitz system,

A=A+ AA,

14

where AA is given by equation (18). If equations (10) and (13) are combined, we have
(A+ AA)x = Az,

(I+ A 'AA) = i,

and)
% <[+ A7tAA). (32)
F
After several calculations, we find
1 -b ¥ - (=b)! 1
i 1 —b (—b)n2 —b 1
A7t = . b? -b 1
1 —b .
1 (=b)n—t b 1
and '
S B0 - -0
SO 0 0
ATNAA = | S22 (-0)%¥ 0 - - 0
(—b)ntt 0 - -0
Therefore,
~ — 252 1_b2(n—i)
JATIAA] <30 |(=b) %‘
< g Ty (1= 620
b2 1+ (B 1) (1—|b|"
<L (1+] |(1_|)£|) [5]™)
and

b (LR — (B

T+ AT A<+ .
I <1+ 0= A= o)

The relative error of the solution to equation (10) is

||z — 27| Nz = |l 1

ol = Al Tl (33)
A+ 15m*) (=)+ [8]) DAL+ [b™+1)(1 = [b]")
S (H L=)(“ (=)=))'(34)

When the order of the tridiagonal system n is large, || may be less than machine accuracy. In

this case, the inequality (34) becomes

15

e — Il L) (|, (0= B+ D) 2
i< P (o) (0). @

when truncation is applied in the modification. In addition to the truncation error carried from

step 1, the truncated modification will also generate truncation error. If
(Figures 4 and (20)), then

The Li-norm is given by

e =2 < || =&+ 12 =& - |12l + =] - ||z = Z]|
< 1z = @A+ ED + =] -]2 = 211,
which leads to I 1 15— & Nl
T —z T -7 z
< = e (L ED + 12 = 2] (36)
IEdl 1zl =l
In equation (36),
b2 n—1
3 - s 7 _ p2(n—1)
o=l = g 2 W00
(=5

nl-—1

b2 7 nl—j
- 1 — p2(n+1) Z |b+k1(1 _b)z(!]))|v
j=0

where j =1 — k1, nl = n — ky. Then

o™+ (L4 oA — o)

_ 3 < .
b=l < e (1 [o])
P S T U e (U
S T-peE ()
o+
ST

Note that ||Z|| < ||z]|, so that we have the inequality

o s md 5~ bk1-|—2
|| — '] || wIIIIwII(HHZHHIlI_ -

el = Izl =]l

16

bl (1= [B[*)(1 + [b]) b2 (p[Fa2
< 1_|b|(1—|— .)(1+(1—b2)(1—|b|))+1—b'

The error introduced by the truncated modification is insignificant if ky > k& — 2. In practice, we

can choose k1 = k and use the inequality (34) to compute the truncation number k.

4.3 Accuracy of Solving Almost Symmetric Toeplitz Systems

Following the similar arguments given in last section, error bounds can be obtained for almost
symmetric Toeplitz systems. For almost symmetric systems, we have a different modification
vector y and a different modification matrix AA. From equation (23), the exact solution to the
almost symmetric Toeplitz system is

96:95—9523/7

where (» 1)))
1 =07 . 1—0b
y= (_bv(_b)2W7 s (20)
The norm of vector ¥ is
n 1 — p2An—i+l)
= i’
1 = .2(n L
< (B B o)
=1 =1
<

1 (Ibl(l—lbln)(HlbI”“)) < 1o
1— b2 (1— [8]) =1

Let z* be the solution modified with the truncated solution as

~1 ~1
=3 — 3y,

where &', %}, are the same as defined in Section 4.1. Then, following a similar deduction for the

inequality (29), we have

le =2 < {2 = &[|(L+ [yl
|| — 2~]] & =& ||Z]] 0]
< e (L)
||| |l =l 1ol
IIf—f’ll.llfll(L
|l =l 1-0

17

The above inequality is in the same form as inequality (31), except that the ratio % is different

for the almost symmetric system. For the almost symmetric Toeplitz system,
r=A+ AA,
where A A is defined by equation (21). By direct calculation, we find

0 St —b-0* 0 - 0
SIS (=0 0 - 0

o

0 (=b)™ 0 -0
Therefore,

_b)i+1 (1 _ b2(n—i))

n—1
1iad < Yo

pad (1—102)
[BI(L + [o" (1 — [o[")
N (1—=02)(1—[8])

For the almost symmetric system,

-LHSHI+A*AAH§1+HAAAAH

(See inequality (32).) We conclude that

=1

=

o=l Q) (= R D [B+ (L ()
=TS iop (” .)(” 1~)1 o))(37)

OF ([) o
- (” T) (1 TG |b|>)' (38)

When compared with inequality (34), the numerator of the last term in inequality (38) is slightly

IN

increased.

If the modification is truncated to ky (Figure 6), then

Following the derivation of inequality (36), we have

|z =" _ [l2 =2 [l - -
S (B gD+ Hly = gl (39)

el = Mzl]zl

18

where

||y_y|| = 2}; 1_b2n
1=ko
< |b| = bz 1 b2(n—i)
Z:kg
B (14 o)(1 — [pfrFe)
S T [
|b|k2+1
< T
Thus,
e =l ot ((1—|b|k>(1+|b|))() e
< 1+ 14 + . 40
Tl T T o A=) T W

Similar to the symmetric case, the error introduced by modification truncation is insignificant

if kg > k — 1. We could choose ky = k and use inequality (38) for error estimates.

5 Experimental Results

In this section, the performance of the SPP algorithm on the MasPar parallel computer and on the

Cray vector computer will be presented.

5.1 Parallel Computing

The MasPar MP-1 is a distributed-memory massively parallel SIMD computer with a high-speed
two-dimensional toroidal mesh topology. A control unit (ACU) has a direct connection to all
the processing elements (PEs) and issues instructions at a 12.5 MHz clock rate. Each processing
element in the array is a 4-bit custom load and storage processor with a minimum of 16 kilobytes
of memory. Communication is relatively cheap on the MasPar. For example, on the MasPar M-1,
a double-precision multiplication function is ten times more expensive than sending the product to
an adjacent PE.

Table 1 gives the computation and communication count of the simple parallel prefix (SPP)
algorithm based on the algorithm (see Fig. 1) and the communication pattern (see Fig. 2). The
best sequential algorithm used is the conventional sequential algorithm, Thomas algorithm [18].
Factorization, which is considered in solving sigle system, is no considered in solving systems with
multiple right sides. We assume that both the AXPY operations and the modification are truncated
after k operations; the modification vector used is either equation (20) or (24), respectively. The

b* i =1,---,k, are computed sequentially, or redundantly, on each PE. The modification vector

19

Table 1. Computation and communication count of the Simple Prefix Algorithm

Best SPP
System sequential Computation Communication
Single system 8n-7 5-log(k) + 10 2log(k)-a+
Multiple right sides | (57 — 3)*nl | (4-log(k)+ 2) * nl | (2-log(k) - a + nl * 3)

Z or § will be computed concurrently on different PEs. We count a power-function computation
as 8 floating-point operations. So, the modification phase costs 10 parallel operations in total.
The calculation of b (equation (14)) is not considered. In the computing phase, 2 - log(k) parallel,
one-to-one communications are required. We use a to represent the one-to-one communication.
On the MasPar, the one-to-one communication is achieved by using the router command. We use
[to represent the broadcast. On the MasPar, the broadcast is achieved by transferring the local
data to ACU and then distributing it to all PEs. One broadcast communication is needed in the
modification phase. Because the tridiagonal systems that arise in the compact scheme have multiple
right sides, the computation and communication count for solving multiple right-side systems is
also listed in Table 1, where the computation of b2 and the modification vector are not considered.
Note that ny is the number of right sides.

Two sample matrices are chosen to illustrate the performance of the SPP algorithm and to
verify the theoretical error bounds given in the previous section. Both of the matrices are almost

symmetric Toeplitz matrices that arise in the compact schemes. One matrix is

Ay =[1,3,1]— AA.

The other matrix is

Ay =[1,10,1]— AA.

Equation (18) defines AA. The corresponding solution of equation (14)is b = 3%@ and b = 52@
for Ay and A,, respectively. The error is measured relative to the LU solution. The accuracy
comparison for solving system A is given in Figure 7. In this implementation, no truncation is
implemented in the modification phase, and the prediction formula used is equation (38). In solving
As, the modification is applied at the modification stage with k; = k, and the prediction formula
used is equation (39). The accuracy comparison for solving system A is given in Figure 8. From
Figures 7 and 8, we can see that the theoretical bound matches the measured results well.

Figure 9 shows the speedup of the SPP algorithm over the best sequential algorithm for solving a
single system. The best sequential algorithm, Thomas algorithm, is based on the LU decomposition,
and is fine-tuned to take advantage of the almost symmetric Toeplitz structure. All computations

are double precision. Truncation numbers & = 64 and & = 16 are chosen to achieve double-

20

-20

-15

Error -10

Figure 7. Measured and predicted accuracy for solving matrix Aj.

-20

-16

-12

Error

Figure 8. Measured and predicted accuracy for solving matrix A,.

Theoretical bound ——
Measured ——

5 10 15 20 25
Order of truncation (Qk)

30

35

40

Theoretical bound —-—
Measured —»—

4 8 12
Order of truncation (Qk)

21

16

20

precision (1071¢) and single-precision (10~7) accuracy, respectively. The order of matrix is the
same as the number of PEs available. Because of the high-speed communication, with n equal to
1k, 2k, 4k, 8k, and 16k, the execution time is not noticeably changed in parallel processing. The
sequential algorithm is implemented on a single PE. Because of memory limitations, only small
systems are solved by the sequential algorithm. The data used in Figure 9 is predicted based on
the small-size timing. Figure 10 shows the corresponding speedup of solving a system with 1024
right sides. The factorization of the matrix is not included in timing for solving the system with

multiple right sides. The speedup is slightly higher for solving multiple right-side systems.

1600
1400 - y

1200 Double Precision —e—
Single Precision ——

1000
Speedup 800
600
400
200

0 | | |
2 4 6 8 10 12 14 16

Number of Processors in 210

Figure 9. Speedup over the best sequential algorithm on single system.

Because the order of the matrix increases linearly with the number of PEs available, the speedups
given by Figures 9 and 10 are memory-bounded speedup [22]. From table 1, the problem size,
in terms of floating-point operations, is a linear function of the order of the matrix. The linear
memory-bounded speedups given by Figures 9 and 10 indicate a linear speed increase. In accordance
with the isospeed metric of scalability [23], the SPP algorithm is perfectly scalable on the SIMD
MasPar machine. The reader may refer to [23] for more information regarding scalability of parallel

algorithm-machine combinations.

5.2 Vector Computing

Vector computing is widely used at national laboratories, universities, and supercomputing cen-
ters for large-scale computing applications. For this reason, a CRAY-25/4-128 at NASA Langley

Research Center was also used to test the SPP algorithm on a vector machine. The Cray-2 no-

22

1600

1400

1200 Double Precision ——
Single Precisio —e—

1000

Speedup 800
600
400
200

0 ! ! ! ! ! ! !
2 4 6 8 10 12 14 16

Number of Processors in 210

Figure 10. Speedup over the best sequential algorithm on system with 1024 right sides.

tation “S” indicates that the memory is static rather than dynamic, and “4-128” indicates that
the machine has 4 processors and 128 million 64-bit words of central memory. Each CPU is a
register-to-register vector processor with a 4.1 nsec minor cycle clock that can generate 100-300
megaflops. The four processors can be used for a single problem (multi-tasking) to achieve over 1
gigaflop of performance.

The speed of a vector machine depends on the vector length, vector stride, and the computa-
tional richness of the loops. Because the vector register length is 64 and the CPU is extremely
fast in carrying out floating-point operations, once operands are in the registers, best performance
can be obtained with loop which have lengths that are multiples of 64, which are computationally
intensive, and which use unit stride (separation of memory between elements).

The chosen sample tridiagonal matrices are almost symmetric Toeplitz and correspond to the
first and second derivative compact-difference operators (2) and (3). The diagonals and necessary
coeflicients are:

As =[1,4,1] with a, b=24++3
Ay =[1,10,1] with a, b=5+2V6

For the first experiment on the Cray, single tridiagonal solves were made. The test problem
used here and in the rest of this section corresponds to f(x) = 32® — 22 + 1, which has smooth
exact derivatives f/(z) = 92% — 2 and f”(x) = 18z. Figure 11 shows the performance of the
SPP in terms of CPU seconds and the matrix order compared with the LU decomposition for

computing f" and f”. In addition to the reduced memory requirements of SPP compared to LU,

23

the performance shown in Figure 11 clearly indicated that the SPP is faster on the vector machine
than the conventional LU solver; the benefits increase with the operator size. The significant
difference between the SPP and LU timing can be explained in light of vector operations versus
scalar operations. The SPP approach can be vectorized over the direction of the solve; the LU
approach must use scalar operations. For the SPP approach, note that the diagonal dominance of
the second-derivative operator [leads to faster computations compared with the first-derivative
operator f’. This time reduction results from the truncation of the SPP approach to obtain a
predetermined level of error (1071%), which is essentially machine precision. For the first-derivative
operator (As), k = 32 and ky = 24; for the second-derivative operator (A3), kK = 16 and k1 = 16,

where k and ky are the truncation numbers on the solving and modification phases, respectively.

0.001 :

0.0008 -

0.0006 |-
Timing

0.0004

0.0002

0 ! ! ! ! !
0 50 100 150 200 250

Oredr of matrix

Figure 11. Timing of SPP and LU algorithms: single system.

Real applications which use compact-difference operators require many tridiagonal solves that
correspond to time-marching algorithms and involve many right sides corresponding to the mul-
tidimensionality of the application. In this second evaluation, with the same accuracy 1074, the
performance of the SPP is compared with LU for multiple right sides. Shown in Figure 12 are
CPU times for the SPP and LU for various orders of the second-derivative compact operator A,.
(Similar results were obtained with the operator As but are not shown.) For applications that
use small operators (N < 96), the LU solver is more efficient than SPP; for applications that use
large operators (N > 96), the SPP is much cheaper than the LU approach. This difference occurs
because the LU approach vectorizes the do loop associated with the number of right sides, and
the SPP vectorizes in the direction of the tridiagonal solve. With some creative programming, one

could potentially vectorize the entire SPP approach with a single array, while the LU approach can

24

vectorize over the right-side arrays.

0.03 I T n

SPP: n=64 —-—

SPP: n=128 ©—

SPP: n=256 -e—

0.02 LU: n=64 £—
LU: n=128 ——]

Timing LU: n=256 4—

0.01 -
1
0 | |

0 50 100 150 200 250

Number of right-sides

Figure 12. Timing of SPP and LU algorithms: multiple right sides.

In the final experiment, the ability of SPP to control truncation error is demonstrated. The
highest order of accuracy in the solution is based on the truncation error of the compact-difference
approaches in equations (2) and (3). As a result, to require machine-zero is overkill for the compact
solver and leads to unnecessary computational cost. By using the inequality (40), the choice of
truncation can be determined based on a desired error bound. Figure 13 shows the SPP results
0-14

of truncations & = 8 and k& = 32, which correspond to errors 107° and 1 , respectively. If the

accuracy of the SPP is relaxed, the computational cost decreases by a factor of 2.

6 Conclusion

A central goal of parallel processing is to achieve better, more accurate solutions. Because obtaining
more accurate solutions, in general, means adding more discretization points, larger systems result
and require greater computational power. The accuracy of a simulation solution is also bounded
by the discretization scheme used. A clear requirement for obtaining a more accurate solution is
to adopt discretization methods with high-order accuracy. Previously, a highly accurate discretiza-
tion scheme, the compact finite-difference scheme [14], has been proposed. However, the almost
symmetric Toeplitz tridiagonal systems that arise from compact schemes are sequential in nature
and difficult to solve efficiently on parallel computers. In this paper, we have introduced a parallel
algorithm, the simple parallel prefiz (SPP) algorithm, for compact schemes.

The SPP algorithm is designed for fine-grain computing. With n processors, the SPP algorithm

25

0.025 : : :

0.02 -

0.015 |
Timing

0.01

0.005

0 50 100 150 200 250
Number of right-sides

Figure 13. Timing of SPP with different accuracies.

solves an n-dimensional system with 2log(n)+ 1 AXPY operations. Two prefix communications
are required in the solving phase and one broadcast communication is required in the modification
phase. In comparison with existing tridiagonal solvers [17, 9], the SPP algorithm is simple in
computing and simple in communication. It requires storage of only one log(n)-dimensional vector
for the computing phase and one n-dimensional vector for the modification phase. When the
tridiagonal system is diagonally dominant, both the computing and the modification phases can
be truncated without degrading the accuracy. Memory requirements will be further reduced when
truncation is applied. A detailed accuracy analysis has been conducted to find the appropriate
truncation number. Experimental results show that the SPP algorithm achieves a speedup greater
than 1000 over the best sequential algorithm on a 16K PEs MasPar M-1 SIMD parallel computer.
In addition to the good performance on the SIMD machines, the SPP algorithm also out performs
the best sequential algorithm on a vector machine (Cray 2), even on systems with multiple right
sides. Experimental and theoretical results show that the SPP algorithm is a good choice for
compact schemes and for the emerging high-performance parallel computers.

The SPP algorithm is designed for symmetric and almost symmetric Toeplitz tridiagonal sys-
tems. It is a good candidate for compact schemes, alternating direction implicit method, wavelet
collocation method, spline curve fitting, and many other scientific applications. It can be modified
for different boundary conditions and for cases where the number of processors p is less than the
dimension of the system. However, generalization of the algorithm for general tridiagonal systems
or for band systems is unlikely.

The work presented in this paper is a continuation of efforts to design efficient parallel solvers

26

for compact scheme. An efficient solver, the PDD algorithm, for coarse- or median-grain computing
has been proposed [19]. The PDD algorithm and the SPP algorithm can be combined on parallel

machines with vector processing units.

Acknowledgements

We would like to thank J. Gustafson and M. Carter of the Scalable Computing Laboratory at
Ames Laboratory for providing the access and general help on the Ames 16k PEs MarPar parallel

computer.

References

[1] Apams, Y. Highly accurate compact implicit methods and boundary conditions. Journal of
Computational Physics 24 (1977), 10-22.

[2] Ca1, W., aND Wang, J. Adaptive wavelet collocation methods for initial value boundary
problems of nonlinear PDE’s. ICASE Technical Report, 93-48, ICASE, NASA Langley Re-
search Center, 1993.

[3] CuunG, K.-L., AND SHEN, L.-J. Vectorized algorithm for b-spline curve fitting on Cary
X-MP EA/16se. In Proc. of Supercomputing 92 (1992), pp. 166-169.

[4] Durr, 1., ERISMAN, A., AND REID, J. Direct Methods for Sparse Matrices. Clarendon Press,
Oxford, 1986.

[6] EcecroGcLu, O., Koc, D., AND LAUB, A. A recursive doubling algorithm for solution of
tridiagonal systems on hypercube multiprocessors. J. of Comp. and Appl. Math. 27 (1989).

[6] EipsoN, T., AND ERLEBACHER, G. Implementation of a fully-balanced periodic tridiagonal
solver on a parallel distributed memory architecture. ICASE, NASA Langley Research Center,
1993. In preparation.

[7] Hirsu, R. Higher order accurate difference solutions of fluid mechanics problems by a compact
differencing technique. J. Comput. Phys. 19 (1975), 90-109.

[8] Ho, C., aAND JoHNSsSON, S. Optimizing tridiagonal solvers for alternating direction methods
on boolean cube multiprocessors. SIAM J. Sci. Stat. Comput. 11, 3 (1990), 563-592.

[9] HocKNEY, R. A fast direct solution of Poisson’s equation using Fourier analysis. J. ACM 12
(1965), 95-113.

[10] JosLiN, R., STREETT, C., AND CHANG, C.-L. Validation of three-dimensional incompressible
spatial direct numerical simulation code. NASA Technical Report, TP-3025, NASA Langley
Research Center, July 1992.

[11] KrEIss, H., AND OLIGER, J. Methods for the approximate solution of time dependent prob-
lems. GARP Report No 10, 1973.

[12] LAMBIOTTE, J., AND VoiaT, R. The solution of tridiagonal linear systems on the CDC
Star-100 computer. ACM Trans. Math. Soft. 1, 4 (Dec. 1975), 308-329.

27

[13] LAwRrIE, D., AND SaAMEH, A. The computation and communication complexity of a parallel
banded system solver. ACM Trans. Math. Soft. 10, 2 (June 1984), 185-195.

[14] LeLE, S. Compact finite difference schemes with spectral-like resolution. J. Comp. Phys. 103,
1(1992), 16-42.

[15] OrRTEGA, J., AND VoIGT, R. Solution of partial differential equations on vector and parallel
computers. SIAM Review (June 1985), 149-240.

[16] SHERMAN, J., AND MORRISON, W. Adjustment of an inverse matrix corresponding to changes

in the elements of a given column or a given row of the original matrix. Ann. Math. Stat. 20,
621 (1949).

[17] SToNE, H. An efficient parallel algorithm for the solution of a tridiagonal linear system of
equations. J. of ACM 20, 1 (Jan. 1973), 27-38.

[18] STRIKWERDA, J. C. Finite Difference Schemes and Partial Differential Equations. Wadsworth
& Brooks/Cole, Mathematics Series, 1989.

[19] Sun, X.-H. Application and accuracy of the parallel diagonal dominant algorithm. ICASE
Technical Report, 93-6, ICASE, NASA Langley Research Center, 1993. A short version appears
in Proc. of ICPP ’93.

[20] Sun, X.-H., aND GusTaFrsoN, J. Toward a better parallel performance metric. Parallel
Computing 17 (Dec 1991), 1093-1109.

[21] Sun, X.-H., aAND Ni1, L. A structured representation for parallel algorithm design on multi-
computers. In Proc. of the Sizth Conf. on Distributed Memory Computing (April 1991).

[22] Sun, X.-H., AND NI, L. Scalable problems and memory-bounded speedup. J. of Parallel and
Distributed Computing 19 (Sept. 1993), 27-37.

[23] Sun, X.-H., AND RoVER, D. Scalability of parallel algorithm-machine combinations. IFFF
Transactions on Parallel and Distributed Systems (1994). to appear.

[24] Sun, X.-H., Zuana, H., anDp N1, L. Efficient tridiagonal solvers on multicomputers. IFFFE
Transactions on Computers 41, 3 (1992), 286-296.

[25] WaNaG, H. A parallel method for tridiagonal equations. ACM Trans. Math. Software 7 (June
1981), 170-183.

28

