
Figure 7: Target solution is h(x) = 2:5X + 0:4=X + 10; and the shape function for which
minimum is sought is h(x) = �1X +0:3=X +5: Divide and conquer procedure was used to
�nd zero of gradient. (a) Convergence of gradient to zero. (b) Functional value, at zero of

gradient, is reduced to half by doubling grid points. (c) Design variable.
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Figure 6: Target solution is h(x) = 2:5X+0:3=X+10: First guess is h(x) = 5X+0:3=X+10:
Shape function for which minimum is sought is h(x) = �1X+�2=X +10; and optimization
algorithm used is BFGS. Starting value of functional is of order of 10�3: At minimum it is

of order 10�9: Gradient components are of order 10�12 at minimum.
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Figure 5: Target solution is h(x) = 2:5X+0:3=X+5: First guess is h(x) = 2X+0:52=X+5:
Shape function for which minimum is sought is h(x) = �1X + �2=X +5; and optimization
algorithm used is BFGS. Starting value of the functional is of order 10�3: At minimum it

is of order 10�9: Gradient components are of order 10�12 at minimum.
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Figure 4: Result shown is obtained with h(x) = �1X + 0:3=X + 10: For each value of �1


ow equation is solved by a Godunov like scheme, and gradient is calculated as proposed

in this paper. Each time the shock goes through grid point, discretized functional does
not have a monotonic derivative; gradient has discontinuities, but is still monotonic. (a)
Functional. (b) Gradient.
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Figure 3: Analytical solution calculated with shape function h(x) = �(x3 � x2) + 1:05;

functional has been calculated with trapezoidal approximation. (a) Solution distributed

over 20 grid points. (b) Solution distributed over 80 grid points.
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Figure 1: Characteristic patterns. (a) Transonic expansion. (b) Correspondent shocklike

structure for costate equations.

Figure 2: Characteristic pattern for �t + [H(x) � 1=2]�x = 0: Boundary conditions are

needed on both sides of discontinuity.
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the mesh is re�ned, the number of the discontinuities increases, while the jumps become

smaller.

Note that if the dependence of the geometry on the shape coe�cients is smooth, then

the functional
@E

@�i

=
Z



@p

@�i

(p� p�)dx

is always de�ned with the assumption that @p=@�i is de�ned everywhere except at a �nite

number of points. This assumption is reasonable because the solution of eq.(1) changes

smoothly with the geometry. For this reason, even if no certainty exists that the solution

depends monotonically on the shape coe�cients, this behavior can be the interpreted in

this way. Suppose that the integrand of the functional can be represented by a simple

rectangular function. If in attaining the minimumthe area under the curve decreases and its

\height" increases, the functional will eventually increase before the edges of the rectangle

pass another grid point, because the mesh resolution is not su�cient. The functional will
exhibit a local minimum and a subsequent discontinuity.

A method that derives a formulation for the gradient of E from a discrete approximation
of the functional will obtain meaningless solutions as a result of the discontinuities of the
discrete functional, such that no optimization algorithm alone could anyway get to the

minimum. In the present formulation, an approximate representation of the analytical
gradient of the functional is derived. For this reason, the approximation of the analytical
gradient will be, at most, a�ected by discontinuities due to the discretization and will be
always monotonic (if the analytical functional does not change curvature) and bounded. See
�g.4. In �gs.5 and 6, we present two sets of results in which the target pressure distribution
was generated with the same h(x) that was used in the optimization procedure. In �g.5,

the target pressure distribution is obtained starting from a subsonic �rst guess. This result
shows the e�ectiveness of the method. Fig.6 shows that we can achieve the optimum from
both sides of the discontinuity.

In general, when p�(x) is �xed, the minimum of E is reached for di�erent values of the
shape coe�cient �i: These di�erent values depend on whether one considers the analytical

or the discretized functional, even if the results are converged on the grid. If the target

solution can be attained exactly, then both values coincide. The gradient calculated after
the proposed derivation, will still depend on the discretization through the nonhomogeneous
term in eq.(14). In �g.7, we show, for a case in which p� cannot be reached exactly, that

the distance between the two minima becomes approximately half when the grid resolution

is doubled. This result supports the hypothesis that the minimum calculated through the
analytical gradient will inde�nitely approach to the actual minimum as the grid is re�ned.

In conclusion, a method has been presented to calculate the gradient components of a
generic functional, in which (regardless of the number of the shape coe�cients) only one

linear costate equation must be solved. The minimum computed in this way di�ers from

the minimum of the discrete functional; however these minima inde�nitely approach as the
grid is re�ned.
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characteristics are nonzero at the throat, this error can degrade the entire calculation. To

avoid this problem, we approximate u � a with its value at the neighboring point on the

side from which the vanishing characteristic propagates.

Since with a Godunov-type solver the shock is resolved with three grid points, we must

decide on which of these to impose the boundary conditions for �. We must consider that

the middle point of the three cells on which the shock is solved, is almost sonic; if the

boundary conditions for � at a subsonic inlet (eq.(10)) were imposed at this grid point,

then the convergence rate to the steady solution would be considerably slower. For this

reason we impose the condition for supersonic outlet � = 0; on the middle grid point,

eliminating it from of the computation.

Another remark should be made in regard to the order of magnitude of the residu-

als of eq.(23), for which we can consider the solution steady. Close to the minimum, the

gradients in eq.(15) are almost zero; nevertheless the optimization algorithm requires a

careful computation of these values, such that in order to consider the time-dependent so-
lution converged, the residuals must be some orders of magnitude smaller than the gradient
components.

In the results that follow, we used a representation of the nozzle geometry de�ned by
h = �1X + �2=X + �3; where X = x+ 10�3; this representation allows two independent

design variables because � = hx=h.
In this work, we do not address the methods to accelerate the numerical scheme to

obtain an optimal shape; the strategy used to achieve the minimum of the functional is
straightforward:

1. Start with a �rst guess for the shape coe�cients.

2. Solve the 
ow equation.

3. Solve the costate equation with the values computed in step 2 for the 
ow �eld.

4. Update the shape coe�cient with a gradient-based criterion.

5. Restart the procedure from step 2 until the gradient is zero.

To update the shape coe�cients a BFGS algorithm was used. See [8]. In some cases,

as we will discuss, we used an ine�cient, but robust, algorithm that simply makes a line

search for a zero of the gradient.

6 Discussion of the Results and Conclusions

The values for the functional E; computed with an analytical solution of eq.(1), are shown
in �g.(3). The numerical values of the analytical solution are computed on the same grid
presented above; then, the functional is computed by a trapezoidal approximation. The

discrete functional, which is a result of the trapezoidal integration, shows some disconti-

nuities and a local minimum that disappears as the number of grid points increases. As

10



as a supersonic outlet, where we must impose the proper boundary condition, eq.(12), as

discussed earlier. With this approach, �L1 = 0 and �L2 = 0 independently at the minimum.

The two approaches presented to handle the shock are not signi�cantly di�erent. In

the numerical calculations that follow, we have implemented the second set of boundary

conditions.

5 Numerical Approach

The 
ow-�eld solution is obtained by introducing a discrete grid (xn; tk) = (x0+ n�x; t0+P
k�tk); where �x is constant and �tk changes to satisfy the CFL condition. The con-

servative variables U(x) are computed at the cell centers and integrated in time with a

three-stage Runge-Kutta scheme, as explained in [5]. In this implementation, we interpo-

late U(x) to the cell faces by using characteristic di�erences and a minmod limiter. The


ux derivative in eq.(1) is then computed using an approximate Riemann solver. See [4].
Away from discontinuities, the scheme is second order accurate.

Depending on the case considered, the solutions of the costate eq.(14), are sought as
steady results of eq.(17), with boundary conditions applied as explained in the previous
section. Although eq.(17) is linear, it presents some numerical di�culties because of the

characteristics pattern at the throat and at the shock location. In particular, consider
eq.(20) discretized over the same uniform grid of the analysis problem with spacing �x. If
we denote by �(�)v the �nite increments of the function (�) with respect to the superscripted
variable, we have, at each grid point

PT ��
t

�t
�DPT ��

x

�x
+PTST�+PT @p

@U
(p� p�) = 0 (23)

De�ne the local increment �W = PT��; with this notation eq.(23) becomes

�Wt

�t
�D

�Wx

�x
+PTST�+PT @p

@U
(p� p�) = 0: (24)

This equation describes the signals that propagate along the characteristics; therefore,

the increment �Wx; is one-sided depending on the sign of the corresponding propagation

speed. Note that for this equation it would be impossible to use a conservative scheme

since no conservation law exists to satisfy. The integration in time is made by explicit time
stepping. The scheme is �rst-order accurate.

At the throat of the nozzle, u� a = 0 and � = 0; hence, the �rst row of eq.(24) reduces
to

�Wt

�t
+PT @p

@U
(p� p�) = 0

The eigenvalue u � a has been shown to vanish at the throat. For a grid point in the

neighborhood of the throat, this singularity can lead to unbounded grows for Lambda,

depending on the nature of the source term in the above equation. Because the other two

9



D =

0B@ u� a 0 0

0 u 0

0 0 u+ a

1CA
At the shock wave, the characteristic that corresponds to the eigenvalue u�a undergoes

a jump in speed of the kind described in the example. If this point is considered inside

the domain of calculation, then some condition is needed to update the solution in time.

A boundary condition is needed at this point to continue the calculation to the left of the

shock wave. We cannot try to derive some boundary conditions for this point, as explained

for the inlet and the outlet. No speculation about the perturbation fU at the shock is

possible because a perturbation that is solely dependent on the shape coe�cients �i and

the 
ow equations would be chosen arbitrarily. No other constrains exist. For example,

the application of the Rankine-Hugoniot jumps to fU on each side of the shock would be
equivalent to assuming that the shock does not change position regardless of the value off�i: The integrals in eq.(7) are split in two, and the integration is carried between [0; xsh[

and ]xsh; l] as
�L = �L1 + �L2;

where

�L1 = [�TAfU]xsh0 +
Z xsh

0

fUT [�AT�x + S
T� +

@p

@U
(p � p�)]dx

+
X
i

e�i

Z xsh

0

ci�
TSU

�
dx (21)

and

�L2 = [�TAfU]lxsh +
Z l

xsh

fUT (�AT�x + S
T�+

@p

@U
(p� p�))dx

+
X
i

e�i

Z l

xsh

ci�
TSU

�
dx (22)

A suitable choice for the Lagrange multiplier is to take � = 0 on both sides of the shock

such that � is continuous. This selection frees us from imposing a condition on fU; because

the addendum [�TAfU] in eqs.(21) and (22) drops anyway at the shock. At the shock, we
will have three characteristics that deliver the information � = 0 to the left domain, and
one that delivers it to the right.

We have examined also another possible interpretation of eqs.(21) and (22). Assume

that for some perturbation of the shape coe�cients �i, the shock properties do not change,
i.e., the jump in total pressure across it, is essentially constant, which will be the case

for a weak shock. If we assume that the total enthalpy is constant, then the �eld to
pa:formulationthe right of the shock can be regarded as a subsonic nozzle governed by

eq.(17) with boundary conditions (10) and (11). To the left of the shock, the 
ow behaves

8



and its boundary conditions, is � = 0, then the solution with a nonhomogeneous source

term is unique, since eq.(14) is linear. Let us consider a subsonic case, with det A 6= 0

everywhere in the domain. A general solution of eq.(19) can be written as

� = �0e
R
l

0
(AT )�1ST dx

and, together with boundary conditions (10) and (11), this implies � = 0 on the domain.

In the transonic case, since detA = 0 at x = xth; we split the problem into two domains,

such that in the subsets [0; xth[ and ]xth; l], detA 6= 0. The solution will be

�sub = �
0

0e
R
x
th

0
(AT )�1ST dx for x 2 [0; xth[

and

�super = �
00

0e

R
l

xth

(AT )�1ST dx
for x 2]xth; l]:

Again, if we account for the inlet boundary conditions (10), the jump conditions from
eq.(18), and the outlet boundary conditions (12), then the solution is � = 0:

In summary, we have derived an analytic formulation for the gradient of the Lagrangian

in eq.(6) with respect to the geometry. Furthermore, we have shown that this representation
is unique in the sense discussed above.

4 Costate Equations for a Shock Case

Until now, we have limited our investigation to shockless nozzles to avoid certain di�culties
that we will discuss here. One problem is that eq.(1) and, therefore, eq.(16) are not de�ned
at the shock. This problem is overcome by extending the solution space of U(x) to a set of
generalized functions, such that eq.(1) will reduce to the Rankine-Hugoniot jumps at the
shock. A more subtle shortcoming is better understood with the aid the following example.

Consider a simple equation of the kind �t+(H(x)�1=2)�x = 0 that is de�ned, for example,
on 
 = [�1; 1]: The characteristics pattern (�g.2), shows the necessity of some boundary
conditions on both sides of the the discontinuity to ensure the existence of a steady-state

solution, regardless of the boundary conditions at the ends of the domain 
:
Now, eq.(17) can be rewritten to re
ect its characteristics pattern

PT�t �DP
T�x +P

TST�+PT @p

@U
(p � p�) = 0 (20)

where

P =

0B@ 1 1 1

u� a u u+ a

(e+ p)� ua 1
2
u2 (e+ p) + ua

1CA
is the matrix of the right eigenvectors of A(U); and
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The matrixAT has the familiar eigenvalues u�a, u and u+a. At the boundaries, if we

choose the positive sign in eq.(16), for each boundary condition there will be an incoming

characteristic, such that the problem is well posed. Another motivation for this choice

is that if we add to eq.(1) the di�usive term, when integrated by parts twice, it would

append to eq.(14) a second derivative term in x with the same sign this term had in the


ow equations. Therefore, if the negative sign in eq.(16) is adopted, then an ill-posed heat

equation would result. In conclusion, note that the costate equation

�t �A
T�x + S

T�+
@p

@U
(p� p�) = 0 (17)

has an upside-down characteristic pattern with respect to the time-dependent 
ow equation.

If we consider a transonic nozzle, in the throat area, the eigenvalue u�a goes continuously

through zero; the 
ow undergoes an expansion through a transonic fan. On the other hand,

the behavior of the same family of characteristics for eq.(17) shows a shocklike pattern. The
two characteristic patterns are illustrated in �gs.1(a) and 1(b).

For a reason that will be clear later, some ambiguous jump conditions for this shock
will be derived. First consider a simple equation of the kind �t�x�x = 0; with � = �(x);
x 2 [�1; 1]; and boundary conditions �(�1) = �l; �(1) = �r: The characteristics at the
boundaries show that this problem is well posed and independent of the initial conditions,
for a large t, the solution will be a step function �(x) = �l for x 2 [�1; 0[ and �(x) = �r

for x 2]0; 1]. Note that the jump at zero is solely determined by the boundary conditions
and that the steady solution will be reached for t ! 1 because of the nearly vertical
characteristics next to x = 0:

The structure of the solution to this equation is similar to that underlying eq.(17) for
which the analysis hides somehow this behavior. A solution to eq.(14) can be written in

the form
�(x) = C(x) + [�]H(x� xth)

where C(x) 2 C1, [�] is the jump at the shock, H(x�xth) is the Heaviside function, and xth

is the location of the shock for � (i.e., the throat of the nozzle). If we substitute in eq.(14),
because �(x) (which is the Dirac measure of x) is the derivative of H(x) with respect to x;

we obtain at x = xth

AT [�]�(x� xth) = 0

in which all the negligible terms have been dropped. Note that the presence of source terms

in eq.(14) does not a�ect the derivation of the jump conditions.
Finally, because at x = xth det A = 0, we obtain a nontrivial solution for the system

AT [�] = 0 (18)

which yields only two jump conditions; the third jump condition depends on the boundary

conditions. In this sense this problem has ambiguous jump conditions.

If the only solution of the homogeneous problem associated with eq.(14), i.e.

�AT�x + S
T� = 0 (19)
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which leads to

�1 + 2u�2 +

"

p

(
 � 1)�
+
3

2
u2
#
�3 = 0

u�2 +

"

p

(
 � 1)�
+ u2

#
�3 = 0 (11)

If the out
ow is supersonic, then no boundary conditions are required for fU; therefore,
� = 0 (12)

identically at the outlet.

If we take boundary conditions (10) and (11) and eq.(9) into account, eq.(7) can be

rewritten as

�L =
Z l

0

fUT [�AT�x + S
T�+

@p

@U
(p� p�)]dx+

X
i

e�i

Z l

0

ci�
TSU

�
dx (13)

where @p=@U = 
�1
2
(u2;�2u; 2). If we select � such that

�AT�x + S
T�+

@p

@U
(p� p�) = 0 (14)

eq.(13) becomes

�L =
X
i

@L

@�i

e�i =
X
i

e�i

Z l

0

ci�
TSU

�
dx

in which we recognize
@L

@�i

=
Z l

0

ci�
TSU

�
dx (15)

Suppose that the 
ow �eld is known, such that all the variables, dependent upon U; are
�xed. If we solve eq.(14) with the appropriate boundary conditions for � and substitute

the results in eq.(15), then we obtain a formulation for the gradient of the Lagrangian. The

problem then is reduced to �nding the solution of a linear system of equations in � with
homogeneous boundary conditions. Note that � = 0 is a solution if p = p�, which is a
su�cient condition for �L = 0. If at the minimum p 6= p� although the integral in eq.(15) is

0, then in general � 6= 0. The discussion thus far leads to some basic questions about the

well posedness of the eq.(14) with the boundary conditions given by eqs.(10), (11) or (12)
and about the existence and uniqueness of the solution. To actually determine a solution

of this system, examine eq.(14), embedded in time as

��t �A
T�x + S

T�+
@p

@U
(p � p�) = 0 (16)

in which we must choose for the proper sign for the time derivative.
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(5), we obtain also F(x) ) F(x) + "A(U)fU(x) and Q(x) ) Q(x) + "S(U)fU(x): If we
substitute these relations into eq.(6) and retain only the �rst-order terms, we obtain

�L =
Z l

0
ep(p � p�)dx+

Z l

0
�T

f[A(U)fU]x + S(U)fUgdx+ Z l

0

e��TS(U)U

�
dx (7)

In the above equation, e� = (ehxh �
ehhx)=h

2: With the notation ci(x) = (hfix � hxfi)=h
2,

the last integral of eq.(7) can be written as

X
i

e�i

Z l

0

ci�
TS(U)U

�
dx (8)

in which the substitution e� =
P

i e�ici is made.

Let us integrate by parts the second integral in eq.(7), with A = A(U) and S = S(U)

we obtain Z l

0
�T [(AfU)x + SfU]dx = [�TAfU]l0 � Z l

0
�T

xA
fUdx+

Z l

0
�TSfUdx (9)

The �rst term on the right-hand side of the above equation drops for a suitable choice of

� at the boundaries. The boundary conditions for fU are complementary to those for �,
in the sense that �TAfU = 0 yields a homogeneous linear system in � whose rank depends
on the number of boundary conditions for fU:

For this test case, at the inlet we have

poin = Constant

which implies that ep = ��ueu
If the entropy is �xed, then the speci�c total enthalpy is also constant; therefore,


p

(
 � 1)�
+
1

2
u2 = Constant

We conclude that

[AfU]0 = [f�u; uf�u; ( 
p

(
 � 1)�
+
1

2
u2)f�u]T

Hence, the suitable choice at the inlet for � is

�1 + u�2 +

"

p

(
 � 1)�
+
1

2
u2
#
�3 = 0 (10)

At the outlet for a subsonic case with a given pout, we obtain

[AfU]l = ff�u; 2uf�u� u2e�; " 
p

(
 � 1)�
+
3

2
u2
# f�u� u

"

p

(
 � 1)�
+ u2

# e�gT
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� = hx=h; and p = ��(2e � u2): In the following derivation, we use the homogeneity

property

F = A(U)U (2)

where
@F

@U
= A(U) (3)

and

A(U) =

0B@ 0 1 0
1
2
(
 � 3)u2 (3 � 
)u 2�

2�u3 � 
ue=p 
e=p � 3�u2 
u

1CA
The source term Q can be written to display its dependence on U; in fact, the multi-

plication can be carried out to show that

Q = S(U)U (4)

where

S(U) =
@Q

@U
= �

0B@ 0 1 0
�u2 2u 0

2�u3 � 
ue=p 
e=p� 3�u2 
u

1CA (5)

The �rst and the third row of A(U) are proportional to the �rst and third row of S(U);
respectively . Furthermore because d(�u2) = �u2 �d�+2u �d(�u) and �u2 = �u2 ��+2u ��u,
it follows that S(U) = @Q=@U:

We refer to the solution of the above equations as the analysis problem. The bound-
ary conditions for this problem must be chosen such that the problem is well posed. In

particular, we will consider the inlet 
ow with a constant total pressure and entropy, i.e.,
poin = pin(1 + �M2

in)

=
�1 = Constant, pin=�



in = Constant. At the outlet, if the 
ow is

subsonic, the static pressure is �xed as pout = Constant.

3 Adjoint Formulation for a Shockless Case

The design problem can be thought of as a search for a minimum of a functional under
constrains. Let

L(�i) = E +
Z


�T (Fx +Q)dx (6)

where �T is an arbitrary vector with components (�1(x); �2(x); �3(x)), 
 is the domain

[0; l], and �i are shape coe�cients that de�ne the geometry of the nozzle, for example by
h(�i; x) =

P
i �ifi(x) with fi(x) a generic function of x. Since in the steady state the

Euler equations must be satis�ed everywhere in the domain, the functionals E and L are

identical. If we increase the shape coe�cients by "f�i, then the latter functional will change

by an amount, say, "�L. The other quantities will change in the same way: � ) � + " e�,
p ) p + "ep; and U(x) ) U(x) + "fU(x); where fU = (e�; f�u;f�e)T : By using eqs.(3) and

3



2 Problem Statement

We investigate a new method for aerodynamic design and optimization based on the Eu-

ler equations. In order to demonstrate the ideas of the method, a very simple problem

is considered: the design of a Laval nozzle assuming inviscid, quasi-one-dimensional 
ow.

The optimization problem consists of �nding a set of design variables (in this case shape

parameters) that minimize some cost function, e.g., a desired pressure or velocity distribu-

tion along the centerline and possibly requiring that some side constraints be satis�ed. We

attack the optimization problem with the adjoint method. The adjoint method introduces

a new set of equations and unknowns that are solved together with the 
ow-�eld equations.

To better understand how to obtain a solution of the adjoint equations, the properties of

these equations are discussed.

Let the extension of the Laval nozzle in physical space be 
 = [0; l]: An energylike

functional denoted by E; is the cost function we want to satisfy. An optimal shape of the
nozzle is reached when we meet the necessary conditions for a minimum of E: Let

E =
1

2

Z l

0
(p� p�)2dx

where p� is a target pressure distribution along the abscissa x and p is the pressure �eld
for the present geometry. The choice of the functional does not a�ect the generality of the
method once the dependence of E with respect to the 
ow-�eld variables is determined.

Nevertheless, the choice of the functional itself (e.g., jp�p�j instead of (p�p�)2) can a�ect
the performance of the optimization algorithm by changing the curvature of the energylike
surface.

In the case of a quasi-one-dimensional 
ow, if we denote

� = density

u = velocity

e = speci�c total energy

p = pressure

a = speed of sound

h = height of the channel


 = speci�c heat ratio

� =

 � 1

2

then the Euler equations for unsteady 
ows reduce to

Ut + Fx +Q = 0 (1)

where

U =

0B@ �

�u

�e

1CA F =

0B@ �u

p+ �u2

u(�e+ p)

1CA Q =

0B@ �u�

�u2�

u(�e+ p)�

1CA
2



1 Introduction

The physical structure of the complex 
ows that occur in aerodynamic design can be

predicted by reliable numerical simulations. On the other hand, the increasing capability

of computers to perform even larger calculations radically changes the aerodynamic design

process. Indeed, for engineering purposes, if one can predict performance, it is fundamental

to know which modi�cation of an aerodynamic con�guration improves performance.

This question has, of course, been addressed long before the advent of computers which

has led to a broad category of methods known as inverse design. An exhaustive account

of the historical development of these approaches is given in [1]. Here it is su�ce to say

that these methods, pioneered by Lighthill [6], require knowledge of a desirable pressure

or velocity distribution. The adequacy of the distribution chosen is dependent on the

experience of the designer; the resulting shape strongly depends on this choice. An original

example of such an approach is found in [3]
The numerical approach that we will use in this paper, lift the dependence on heuristic

choices of the desirable distribution, allowing the imposition of constrains to be satis�ed

by the solution found. The numerical simulation of the 
ow and a numerical optimization
code are coupled. The optimization code calculates the best perturbation to the geometry
to decrease a cost function. The geometry itself is described by a set of shape coe�cients.

The optimization code can be devised in one of several ways. A common approach is
to perturb one shape coe�cient at a time and compute the derivative of the cost function

with respect to this coe�cient as a �nite di�erence. Although such codes are simple to
devise, the procedure is costly and can introduce large errors. In a further evolution of this
approach, an equation is �rst calculated for the derivative of the cost function with respect
to the shape coe�cient and then solved numerically. An equation must be solved for each
shape coe�cient. A recent application of this method to a two-dimensional supersonic

problem is found in [2].
The approach presented in this paper is a classical optimal control method. We will

introduce costate variables (Lagrange multiplier) to achieve a minimum. This method has
been successfully applied in the design of an airfoil in a subsonic potential 
ow [10].

Here, we consider a 
ow with embedded shocks where the governing equations are the
Euler equations. We show how to derive an analytical expression of the cost function

derivatives with respect to the shape coe�cients. For this purpose, we solve only one set

of costate equations. In [9], some di�culties are outlined, and a method to avoid them
is proposed. In the present approach an optimal shape can be found for problems with

embedded shocks, without additional complications. A careful examination of the structure
of the costate equations suggests a method for integrating them with a robust algorithm

developed for 
uid dynamics purposes.

A comparison of optimization-based approaches for aerodynamics design problems is
given in [7], although some results for 
ows with embedded shocks have been questioned
recently in [9].

1
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ABSTRACT

In this paper we discuss a numerical approach for the treatment of optimal shape
problems governed by the Euler equations. In particular, we focus on 
ows with embedded
shocks. We consider a very simple problem: the design of a quasi-one-dimensional Laval
nozzle. We introduce a cost function and a set of Lagrange multipliers to achieve the
minimum. The nature of the resulting costate equations is discussed. A theoretical di�culty
that arises for cases with embedded shocks is pointed out and solved. Finally, some results

are given to illustrate the e�ectiveness of the method.
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