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Abstract

A new iterative algorithm, the multi-level algorithm, for
the numerical solution of steady state Markov chains is
presented. The method utilizes a set of recursively coarsened
representations of the original system to achieve accelerated
convergence. It is motivated by multigrid methods, which
are widely used for fast solution of partial di�erential
equations. Initial results of numerical experiments are
reported, showing signi�cant reductions in computation
time, often an order of magnitude or more, relative to the
Gauss-Seidel and optimal SOR algorithms for a variety of
test problems. It is shown how the well-known iterative
aggregation-disaggregation algorithm of Takahashi can be
interpreted as a special case of the new method.
1. Introduction

Markov systems generated by computer modeling tools
such as queueing networks, Petri nets, or reliability modeling
packages may contain hundreds of thousands of states.
The resulting sparse linear systems of equations have a
correspondingly large number of unknowns and must, in
general, be solved numerically using an iterative scheme.
Typical methods are the Power, Gauss-Seidel, and SOR
methods. All of these methods have the drawback that they
may require many iterations to reach a solution, particularly
if the system is large, or a if high degree of accuracy is
required. This can lead to unacceptably long computation
times.
A similar situation is found when solving partial di�eren-

tial equations, where systems of many hundreds of thousands
of unknowns are not uncommon. Here, however, a relatively
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new algorithm - the multigrid method - has met with con-
siderable success, achieving, under appropriate conditions,
substantially improved solution speeds compared to tradi-
tional methods such as Gauss-Seidel and SOR. One should
more accurately consider multigrid to be a class of methods,
as the basic framework allows a wide variety of choices for
each of the constituent components. The method to be pre-
sented in this paper is in many respects related to this class
of algorithms: the Markov system is recursively coarsened
and values obtained from these smaller systems are used to
achieve faster convergence.

In this paper we present a new solution algorithm, the
Multi-Level algorithm, for Markov chains. Our initial
experiments indicate the multi-level algorithm does not
require the Markov chain to have any special structure in
order to achieve excellent performance, although if such
structure does exist it may be possible to exploit that
structure to achieve even better results. We can o�er no
proof of convergence, but in all experiments we have run
so far the method always converged. The convergence
theory for multigrid methods is relatively limited, applying
largely to equations of elliptic type. However the methods
are widely used on all classes of linear and non-linear
PDEs. We present experimental results for the Gauss-
Seidel, SOR, and Multi-Level algorithms when applied
to Markov chains generated from birth-death processes,
�nite population tandem queueing networks, blocking (�nite
capacity) tandem queueing networks, and a canonical
stochastic Petri-net model.

For purposes of brevity we will refer to the Gauss-
Seidel algorithm as the GS algorithm, and the Multi-Level
algorithm as the ML algorithm. Note that the phrase "multi-
level algorithm" is also used to denote a class of methods
related to multigrid. These bear a structural resemblance
to the scheme presented here in that they make use of
coarser subproblems to achieve accelerated solution; they
are, however, otherwise unrelated. The remainder of the
paper is structured as follows. In the following section,
after some preliminary remarks, the multi-level method
is described. In section 3 we describe related work and
compare and contrast the multi-level algorithm with existing
algorithms. In section 4 results of experiments are presented
comparing the performance of the method to GS and SOR
using a variety of test problems. In section 5 we discuss
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the practical aspects of implementation of the multi-level
method and provide a list of possible directions for future
research. In the �nal section we summarize the paper.

2. Multi-Level Solution Algorithm

In this section we present our new ML solution algorithm.
We �rst summarize classical multigrid techniques in section
2.1. We then review classical Markov chain aggregation
techniques in section 2.2. In section 2.3 we give a detailed
description of our ML algorithm.
2.1 Multigrid Methods

Multigrid algorithms are a recent development in the �eld
of iterative solvers for large systems of equations [1]. They
were originally applied to the systems of equations that arise
from the discretization of elliptic boundary value problems,
and it is for these equations that most multigrid theory
has been developed. For this class of problems multigrid
algorithms are among the fastest known solvers, being of
optimal complexity, i.e. having computation times that are
linear in the size of the input. An introduction to multigrid
algorithms may be found in [2], [7] or [18].
Multigrid algorithms begin by de�ning a set of increas-

ingly coarse representations (grid levels) of the original prob-
lem, each of which has only a fraction of the number of de-
grees of freedom as its predecessor. The algorithm uses a
standard iterative procedure such as GS at each grid level
to quickly reduce error components that are high frequency
w.r.t. that level (smoothing). A smoothing sweep through
all grid levels e�ciently reduces errors across the entire fre-
quency spectrum.
Multigrid algorithms work most e�ciently on regularly

structured elliptic problems, whose coe�cients vary smoothly
between neighboring unknowns. In such cases they can
achieve an error reduction of an order of magnitude per it-
eration. Conversely, multigrid algorithms for problems that
are non-elliptic, unstructured or have rapidly varying co-
e�cients do not in general perform as well and currently
represent an active �eld of research. Markov chains can pos-
sess one or more of the above characteristics. The branch
of multigrid research which attempts to deal with general
sparse systems is known as algebraic multigrid, see [12].
Given an appropriate choice of smoother, multigrid algo-

rithms can be parallelized with a high degree of e�ciency,
see [9] for a recent survey. This is, of course, an added advan-
tage in the context of modern supercomputer architectures
and networked workstations.
The algorithm to be presented in section 2.3 may be

viewed as a multigrid-like algorithm. However, owing to the
absence of a grid structure and because of the di�erence in
approach to multigrid schemes, we will refer to the algorithm
more abstractly as a multi-level algorithm. Because of the
similarities between the algorithms, we nevertheless expect
that many of the established multigrid ideas can be applied
to the Markov chain solver, and this indeed proves to be the
case.

2.2 Aggregation of Markov Chains

Consider a steady state continuous time Markov chain
consisting of n states s1 . . . sn. Denote the unknown vector

A

B

C

Figure 1: Aggregation of Markov Chains

by p, where pi is the probability of being in state si.
We then have to solve the system of equations

Pp = 0 (1)

with the additional condition

i=nX

i=1

pi = 1 (2)

Equation (1) is simply a reformulation of the classic
continuous time Markov chain equation:

�Q = 0 (3)

where P is the transpose of the generator matrix Q, and p

is the transpose of the steady state probability row vector
�. Note that we will use the symbol Q di�erently in this
paper. Equations (1) and (2) form a sparse linear system
which is typically solved numerically using the GS or SOR
algorithm. These schemes su�er the drawback of needing a
large number of iterations when n is large or when a high
degree of accuracy is required.
A coarser representation of the Markov chain described

by matrix P may be obtained by aggregation. This means
creating a new Markov chain described by a matrix Q

with the vector of state probabilities q, each of whose N

states S1 . . .SN is derived from a small number of states
of the original system. Figure 1 illustrates the situation
for an eight-state birth/death chain (A), where states are
aggregated in pairs to form a four-state coarser level system
(B), which in turn is pairwise aggregated to form the coarsest
level two-state system (C).
In the following we will use the terms �ne level and coarse

level to refer to Markov chains where the latter is obtained by
aggregation from the former. The relation sk 2 Si signi�es
that the �ne level state sk is mapped by the aggregation
operation to the coarse level state Si.
The matrix Q of the aggregated system may be chosen as

follows :

Qji =

P
sk2Si

pk
P

sl2Sj

Plk

P
sk2Si

pk
(4)

This is the classical aggregation equation. Note that the
matrix Q is a function not only of the �ne level matrix P ,
but also of the �ne level solution vector p.
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This yields the aggregated equations in the unknown q:

Qq = 0 ; (5)

NX

i=1

qi = 1 : (6)

It can then be shown that

qi =
X

sk2Si

pk ; (7)

i.e. the solution q of the aggregated system truly represents a
coarser version of the solution p of the original problem. The
probability of being in state qi is the sum of the probabilities
of being in any of its constituent �ne-level states.
The idea behind the ML algorithm is to aggregate

slowly, typically setting N = n=2 or N = n=4, and to
proceed recursively to obtain further coarsenings, arriving
eventually at some coarsest system which may consist of only
two states. Approximations obtained on coarser systems
are used to obtain a correction to the �ne-level solution
vector. One iteration of the ML algorithm will proceed
in the multigrid manner from the original, �nest system
down to the coarsest, setting up coarse level equations and
performing GS smoothing, and then back up to the �nest
level, computing and applying corrections. Note, however,
that other orderings of processing the various levels are
possible.
2.3 Description of the Algorithm

We adopt the following abbreviations for vectors a; b; c 2
<
m:

a = b � c � ai = bi � ci; 1 � i � m

a = b=c � ai = bi=ci; 1 � i � m

We enter the (i+1)th iteration of the ML algorithm with

the current approximation to the solution p(i) obtained as a

result of the (i)th iteration, whereby p(0) denotes the initial
guess, and begin by performing one or more sweeps of the
GS algorithm, obtaining the vector ~p:

~p = GS(p(i)) : (8)

We assume throughout that application of GS includes a
subsequent normalisation step to enforce (2). The vector ~p
will not, in general be the solution p of (1), but we may write

~p � p� = p ; (9)

where p� is the elementwise multiplicative correction neces-
sary to ~p. Knowledge of p� would immediately enable us to
compute the solution p. We may write (1) as

P (~p � p�) = 0 : (10)

Since ~p has been smoothed by application of the GS
algorithm, we assume that it no longer contains any high
frequency error components, and thus that p� is smooth.
Therefore we may compute an approximation to p� on
a coarsened system, since the dimension of the latter is

smaller, and thus the computation will be cheaper. We write
a coarsened version of (10) as

~Q(~q � q�) = 0 ; (11)

where ~Q is the matrix of the aggregated system and q�

and ~q represent aggregated representations of p� and ~p,
respectively.

The coarse system matrix ~Q is chosen to be an approxi-
mation to the the matrix Q from (4), replacing p by ~p, since
p is not available until the algorithm has converged:

~Qji =

P
sk2Si

~pk
P

sl2Sj

Plk

P
sk2Si

~pk
: (12)

In the case of a converged solution, we will, however, have

~p = p and therefore the correct coarse matrix ~Q = Q.
In order to obtain ~q in (11) we require an operator that

maps a �ne level vector to the coarser, aggregated vector.
This operator will be denoted by R (from the multigrid
restriction operation), and we write

~q = R(~p) : (13)

We choose summation for R, in accordance with (7):

~q = R(~p) � ~qi =
X

sk2Si

~pk : (14)

This choice for R has the property

q = R(p) ;

i.e. the exact �ne level solution is mapped by R to the
exact coarse level solution. It is clear that this property is
necessary, since at convergence, both (1) and (5) must be
satis�ed.
We proceed by de�ning

�q = ~q � q� ; (15)

thus obtaining the coarse level equations to be solved:

~Q�q = 0 ;

NX

i=1

�qi = 1 : (16)

Solving (16) for �q will therefore enable us to compute q�, the
coarse approximation to the correction via (15): q� = �q=~q.
We compute the �ne-level correction from its coarse

approximation using the operator I (interpolation):

p
� = I(q�) : (17)

We choose the following operation for I:

p
� = I(q�) � p

�

k = q
�

i sk 2 Si : (18)

The multiplicative correction is equivalent to a scaling: a
coarse level node value �qi represents the probability of being
in any state sk 2 Si and therefore q� represents the scaling
factor necessary to achieve this for the values pk ; sk 2 Si. In
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this respect the ML algorithm di�ers from multigrid, where
an additive correction is performed.

We then compute the new iterate p(i+1) using

p
(i+1) = �p = C(~p; p�) � ~p � p� : (19)

If the algorithm converges, we hope that p(i+1) will be a

better approximation to p than p(i). Meanwhile, however, we

have p(i+1) 6= p, since the correction p� was computed only
approximately on a coarse grid, using an incorrect matrix
~Q 6= Q.
By analogy with the SOR scheme, which computes

an over-corrected iterate compared to the underlying GS
algorithm, we may consider using an overcorrection for the
ML scheme:

p
� = I(q�) � p

�

k = q
�

i (!+ (1�!)q�i ) sk 2 Si ; (20)

where we set 0 � ! � 1. For ! < 1 such an operation will
overdo the correction, since values q�i < 1 will be decreased
and values of q�i > 1 will be enlarged. The parameter !
thus plays an analogous role to that of the over-relaxation
parameter in the SOR scheme. It is to be hoped that, as is
the case for the SOR scheme, certain choices of ! may lead
to improved solution e�ciency. We will consider the utility
of over-correction in section 4.2.
After the iteration has converged, we have

q
� = 1

N
; p

� = 1
n

;

where 1 denotes the vector (1; 1; . . . ; 1)T , i.e. no further

correction takes place. We then also have ~Q = Q and
therefore �q = q.
Note that the question of assigning �ne nodes to their

coarse counterparts is still open. This we will call the
coarsening strategy or aggregation strategy. The aggregation
strategy can have a signi�cant e�ect on the performance
of the ML algorithm. In cases where we have some
knowledge of the structure of the Markov chain, for example
when queueing networks are to be modelled, then we may
utilize this information in the construction of the aggregated
system. In other cases, mapping strongly coupled �ne
states to the same aggregated state seems to be an e�cient
strategy.
Note that the composite coarse grid correction operator

C(~p; I(q�)) preserves the relative probabilities of all �ne level
states mapped to the same coarse level state by aggregation:

�p = C(~p; I(q�)))
�pk1
�pk2

=
~pk1
~pk2

sk1 ; sk2 2 Si; 1 � i � N :

The two-level version of the ML iteration is given by the
sequence of steps (8), (13), (16), (17), (19). The multi-
level algorithm is obtained by recursive application of the
two-level algorithm to obtain a solution to the aggregated
equation (16) and is described in algorithmic form in Figure
2. We use the subscript l to denote level of representation
(l = lmax �nest level, l = 0 coarsest level). The coarse level
l�1 and �ne level l between which the operators I and Rmap
are identi�ed by appropriate indices. Note that, because of

procedure mss(l)

if (l = 0)
solve Pl�pl = 0

else

~pl = GS
�
(�pl)

~pl�1 = Rl�1;l(~pl)
mss(l� 1)
p�l�1 = �pl�1=~pl�1
p�l = Il�1;l(p

�

l�1)
�pl = C(~pl; p

�

l )
return

Figure 2: Multi-Level Algorithm

the recursive nature of the algorithm, the unknowns q�, �q
and ~q are represented by the variables p�l�1, �pl�1 and ~pl�1,
respectively.
The Multi-Level algorithm is non-linear, owing to the use

of the coarsened system obtained via (12), although the
original problem (1) is linear. It seems therefore unlikely
that theoretical results can be obtained for estimates of the
convergence speed of the algorithm for general problems.
We allow in general the possibility of applying GS � times

at each level with � � 1, denoted by GS
� . We also consider

the possibility of a more complex cycle form (in particular
F- and W-cycles, see the multigrid literature), obtained by
multiple recursive calls to procedure mss.

3. Related Work

Currently most performance tools requiring the solution
of Markov chains use either the power, GS, or SOR
algorithms. In a paper by Stewart and Goyal [16] the various
techniques are compared and SOR with dynamic tuning of
the relaxation parameter emerges as the method of choice.
Initial results of the ML algorithm show that it generally
outperforms optimal SOR, often by on order of magnitude
or more, without any parameters to tune.
Our work is related to a large body of work on aggregation-

disaggregation techniques. Most previous work using aggre-
gation makes the assumption that the number of aggregate
states, N , is much less than the number of states, n, i.e.
N � n. In our algorithm we generally assume N = n

2
.

In addition, much of the related work assumes that
the Markov chains being solved are generalized birth-death
processes [17, 15], or that the Markov chains are nearly
completely decomposable systems [5, 6] In the latter case
the solution is usually an approximation often accompanied
by bounds on the error. We refer the reader to [13] for
descriptions of these special Markov chain structures and for
a more comprehensive list of references. Our work di�ers in
that it does not require any special structure in the Markov
chain, and the result is exact, not an approximation.
The work that most strongly resemble ours is the

algorithm of Takahashi [17] and its variants [13]. We
subsequently use the terminology derived in the previous
section. The Takahashi algorithm starts with an initial
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iterate for the �ne level chain. The �ne level chain of n
states is then aggregated into a coarse Markov chain of N
states, where N � n using equation (12). The coarse chain
is then solved (equation (16)), and the correction obtained
from the coarse chain is applied to the previous iterate in
the �ne level. A new iterate at the �ne level is obtained as
follows. The �ne level states are grouped together into N

sets of states where the members of each set correspond to
each aggregate state in the coarse level. The set of linear
equations corresponding to each of these sets of states is
solved independently of the other �ne level states by treating
the values for the other states as constants. The new iterate
at the �ne level is the result of solving the equations for each
set of states. The algorithm iterates between the two levels
until su�cient accuracy is obtained.
We may view the Takahashi algorithm as a special case of

ML, obtained by the following choices, compared to the ML
scheme we prefer:

1. Use of only two levels of representation of the system,
rather than multiply coarsened problems.

2. N � n, as opposed to N = n

c
for a small c (typically 2

or 4).

3. Use of Block Gauss-Seidel or Block Jacobi on the �ner
level, as opposed to a small number of steps of a
pointwise Gauss-Seidel scheme.

Although the fundamental motivation for the Takahashi
and the ML algorithms is similar: computation of local
probability distribution on the �ne level and achieving global
probability redistribution using the coarsened equation, it is
our claim that 1, 2 and 3 above are not the best choices.
Point 1 above leads to a system of equations on the coarse
level of size N , and point 3 generates N subsystems of size
n=N , all of which have to be solved at each iteration, which
can become prohibitively expensive. Point 2 above implies
that each new coarse node value has to serve as a correction
for a large number of �ne states. By contrast, the ML
algorithm never requires the solution of medium or large
equations and provides corrections with a high ratio of coarse
to �ne values.
We restate that our motivation for the ML algorithm

was not to modify current aggregation-disaggregation algo-
rithms, but rather to devise a algorithm similar to multi-grid
algorithms which have shown exceptional merit in solving el-
liptic PDEs. We �nd it helpful to not view our algorithm
as a Markov chain aggregation-disaggregation variant, but
instead view it as a multigrid-like scheme.

4. Experimental Results

In this section we present experimental results to show
how our new algorithm compares with GS and SOR.
All experiments presented assume continuous time Markov
chains. We have also solved discrete time Markov chains
with similar improvements in performance relative to SOR
and GS. In section 4.1 we �rst compare ML to GS and
SOR for a variety of test problems using an unsophisticated
implementation of the ML algorithm. In section 4.2 we
demonstrate the potential of improving ML performance

via techniques including intelligent aggregation, varying the
number of smoothing steps at each level and over-correction.

4.1 Generic Multi-Level Results

In this section we present our generic ML results. By
generic we mean that the ML algorithm used is the simplest
one possible, a V cycle (each iteration goes from the �nest
level down to the coarsest level and back up to the �nest
level), no overcorrection, only applying one iteration of
the smoother (GS) at each level, and a simple aggregation
strategy. In particular, we assume states of the Markov chain
are ordered 0 . . .n� 1, and that the aggregation policy is by

pairing neighboring states by index: si 2 SI , I =
�
i

2

�
.

If a level has an odd number of states then the last state is
included in the last coarse level state. Unlike SOR, this
ML algorithm has no parameters to tune. In all of our
experiments we give the bene�t of the doubt to SOR and
assume we can �nd the optimal relaxation parameter !.

We �nd ! to the nearest 1
1000

th
by using a binary search

between 1.0 and 2.0. This results in over-optimistic metrics
for the SOR algorithm since in practice ! must be found via
dynamic tuning, thus resulting in additional iterations. By
presenting best case results for SOR and worst case results
for ML, we strengthen our argument that ML may be a more
promising solution algorithm than SOR. In all experiments
we set the initial iterate to the vector ( 1

n
; . . . ; 1

n
)T and the

systems are solved with with all methods to an accuracy of

kPp(i)k2 � 10�6. The ML algorithm recursively coarsens
the set of equations until the coarsest sytem has only two
states.

Possible metrics for comparing the algorithms are the
number of iterations, the process time, the number of

oating point operations (
ops), and the geometric mean
of the convergence rate. The number of 
ops was computed
by inserting a counter into all three programs. The process
time is obtained from the unix system call times() and
is the CPU time used while executing instructions in the
user space of the programs. In all cases we have found
the process time to be a more conservative measure than

ops, i.e. the comparison of ML to GS and SOR is less
favorable when using process times than when using 
ops.
Hence to strengthen our arguments of the utility of the ML
algorithm we chose process time as our primary metric. Note
that the process time also includes time for generation of
the additional ML data structures, whereas the 
ops metric
would miss this factor. In addition, the 
ops metric does
not capture the additional pointer operations needed by
ML for accessing elements in the coarse levels. We also
consider the number of iterations necessary for convergence.
In general, ML requires far fewer iterations than the other
two algorithms, but consumes more time per iteration since
each iteration requires application of the smoother at each

level and the construction of the coarse level matrices ~Q.

We �rst consider a birth-death Markov chain with a birth
rate of 1 and a death rate of 2 and a varying the number of
states. The results are presented in �gure 3. The number
of iterations increases linearly with the number of states for
the GS and SOR algorithms, whereas it remains �xed at
21 iterations for the ML algorithm. Intuitively, probability
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mass only moves slowly through the system in the GS and
SOR algorithms, whereas one iteration of the ML algorithm
can move mass from one end of the chain to the other via
the coarse level problems.
The process time of SOR and GS increases quadratically

for SOR and GS with the number of states, whereas it
increases only linearly for ML. Thus ML is an optimal
method for this particular problem. The GS (SOR)
algorithm requires 257 (128) times more processing time
than ML for a birth-death chain of 10,000 states. The ratios
increase with system size. Even for small birth death chains,
such as 1,000 states, the ML algorithm is more than an order
of magnitude faster than GS and SOR.
One possible reason that the GS and SOR algorithms

require more time as the number of states is increased is
that they must move probability mass a longer distance in
the solution vector. To determine whether it is this distance
or the overall number of states we conduct the following
experiment. We assume a birth death chain with each state
having two additional exiting transitions beyond the birth
and death. State si has a transition to state si+m and
a transition to state si�m. If (i + m) > n � 1 then the
transition is to state n � 1. Similarly, if (i �m) < 0 then
the transition is to state s0. We initially set the number of
states equal to 500 and m equal to 2. We then successively
double the number of states and the distance m. We de�ne
the diameter of a Markov chain to be the maximum distance
(or number of transitions) between any two states. Hence,
in this experiment, regardless of the number of states, the
diameter is �xed at 250. We assume all transitions in the
birth direction proceed at rate 1, and all transitions in the
death direction are at rate 2.
The results from this experiment are presented in �gure

4. It appears that both the size and diameter of the
Markov chain in
uence convergence speed of GS and SOR.
The number of iterations for the ML algorithm varies only
between 19 and 25. Thus the diameter of the chain does not
appear to have much e�ect on the solution speed (measured
in iterations) of the ML algorithm.
We next investigate the sensitivity of the relative perfor-

mance of the algorithms to the ratio of birth rate to death
rate. We �x the birth rate at 1 and vary the death rate from
0.001 to 1000. The number of states is equal to 10,000. The
results are presented in �gure 5. Note that both axes are
scaled logarithmically.
The performance of the GS algorithm is always worse than

that of the ML algorithm. The SOR algorithm performs
better than ML when the death rate is less than the birth
rate, but one to two orders of magnitude worse when the
roles are reversed. In the best case observed (for SOR),

SOR requires 1
4

of the process time of ML. Note that
the computation times for GS and SOR could be made
symmetric by exchanging the birth and death rates or by
reordering the states. The ML algorithm does not require
any such special techniques to achieve good performance,
and hence is more resilient to changes in transition rates.
The excellent performance of SOR when the death rate

is less than the birth rate is surprising. In fact, it is not
realistic. For a ratio of 2

3
or less SOR converges in less

than 30 iterations. We were able to achieve this excellent
performance by �rst determining the optimal ! to the

nearest 1
1000

th
by applying SOR many times with ! values

chosen in a binary search. In practical situations the optimal
value of ! is not known a priori and the solution will be
calculated only once. Hence ! must be obtained via some
dynamic procedure. It is impractical to assume that an SOR
algorithm including dynamic tuning of ! can converge in
only 30 iterations. In fact, in a recent paper proposing a
dynamic method for determining !, [3] , 30 iterations are
executed before tuning of ! even begins. The paper notes
that often thousands of iterations were necessary to �nd the
optimal !. Thus, the excellent performance of SOR in �gure
5 could never be achieved in practice.

We next explore Markov chains generated from simple
queueing models. We �rst assume a closed system tandem
queue model. The queueing system is shown in �gure 6.
We assume a �nite population where jobs think for an
exponentially distributed period of time with rate � (i.e. the
jobs visit an in�nite server and are served at rate �). Jobs
are served in queues 1 and 2 at rates �1 and �2 respectively.
The states of the Markov chain are generated from an initial
state of all jobs in the think state, and then by constructing
the chain in a breadth-�rst fashion. States are numbered
0 through n � 1 as they are created in the breadth �rst
search. The aggregation policy used in the ML algorithm is
to pair adjacent-numbered states. Hence, the performance
of the ML algorithm is almost certainly sub-optimal, since
no intelligent aggregation techniques are being used. In all
experiments reported we �x the think rate to 1.0.

In the �rst experiment we set �1 to 1.0 and �2 to 2.0
and vary the population from 25 to 250. This results in
a range of 351 to 31,626 states in the underlying Markov
chain. The results of the experiment are plotted in �gure
7. The ML algorithm requires far less computation time
for the solution than the other algorithms, especially as the
population increases.

We next consider the e�ect of the relative values of �1
and �2 on the performance of the algorithms. We �x the
think rate to 1.0 and the population to 100 (resulting in
5151 states in the underlying Markov chain), set �1 to 1.0,
and vary �2 from 0.001 to 1000. The results are plotted in
�gure 8 using a logarithmic scaling of both axes. The ML
policy results in lower computation times than the other
algorithms across the entire parameter space, and when
�1 > �2 the solution time is an order of magnitude faster.
Experiments with larger populations demonstrate a more
pronounced di�erence in the performance of ML relative to
GS and SOR.

We now consider the application of the three algorithms
to the solution of the underlying Markov chain of a canonical
stochastic Petri net. Figure 10 shows the complexities,
measured in KFLOPs and plotted logarithmically, of the
GS, SOR and ML algorithms applied to the underlying
Markov chain of the stochastic Petri net of Molloy [10],
depicted in Figure 9. In this experiment the number of
tokens ranged from 10 to 60, resulting in Markov chains
with 506 to 77531 states. The Markov chains for this
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1�D 2�D

� 1 2 3 1 2 3
MFLOPs 12:7 9:3 8:2 5:4 5:2 4:9

Table 1: E�ect of � and aggregation strategy on the ML

algorithm.

problem were generated using the SPNP (stochastic Petri

net package) tool of Ciardo et al [4]. ML is superior to
GS for all cases tested, the improvement being a factor
of approximately 3.3 for the smallest and approximately
42.7 for the largest case considered. Against SOR with an
optimally chosen !, ML performs slightly worse only for the
smallest problem considered. A comparison of computation
times shows similar, but slightly less good results, owing to
an increased number of page faults caused by ML's greater
memory requirements. The aggregation strategy used was
the simplest possible, using only pairwise aggregation by
index. Initial experiments with more a sophisticated scheme
indicate that further improvements are possible.

4.2 Multi-Level Acceleration Techniques

In this section we consider a few techniques, some of
which are borrowed from the multigrid literature, that
can be applied to the ML algorithm to further accelerate
convergence speed. The over-correction idea is directly
analogous to over-relaxation in SOR.

We �rst consider how more intelligent aggregation of
the Markov chain can a�ect the performance of the ML
algorithm. We consider the same tandem queueing network
in section 4.1, �gure 6, except that we assume �nite capacity
(blocking) queues with a capacity of 63. We assume
the queues are �nite capacity to facilitate the ease of an
intelligent aggregation technique. Figure 11 shows on the
left the Markov chain generated by this modi�ed tandem
queue. The states of the Markov chain may be written as a
two-dimensional lattice of size (64) � (64). The transitions
then form a regular pattern, somewhat analogous to the grid
of a discretized PDE. We assume the states to be numbered
lexicographically from top left to bottom right. The simple
aggregation strategy used would successively pair states that
are adjacent horizontally until no longer possible and then
pairwise vertically, as illustrated on the upper right. An
alternative strategy more appropriate to the structure of the
problem is shown on the lower right, where �ne level states
are grouped into 2� 2 units.

Table 1 shows the number of 
oating point operations
needed by ML applied to the Markov chain of Figure 11. We
compare the one-dimensional, pairwise aggregation strategy
(1-D) with the two-dimensional case (2-D). We consider from
one to three smoothing steps (� = 1; 2; 3). For comparison,
GS requires 30.1 MFLOPs and optimal SOR requires 14.1
MFLOPs. It can be clearly seen that the two-dimensional
aggregation strategy is signi�cantly faster than the 1-D
method. The former can be also be improved (by about
33%) by performing additional relaxation steps, whereas the
latter algorithm, which is already superior, improves to a

! 1:0 0:8 0:6 0:4 0:2 0:0
MFLOPs 5:38 4:67 3:78 3:25 3:07 3:07

Table 2: E�ect of overcorrection on operation count.

lesser extent. In this experiment the best-case ML scheme
achieves a speedup of 6.1 over GS and 2.9 over SOR.

Table 2 shows the e�ect of the "overcorrection" according
to (20) on the operation count of the ML scheme applied
to the same problem, where ! ranges from 1.0 to 0.0.
A signi�cant improvement is found to be achievable, the
optimal value of ! giving rise to an improvement of
approximately 53% over the unmodi�ed correction. The
ML scheme with the optimal overcorrection and adapted
aggregation strategy thus requires less than 1/10 (1/5) of
the 
oating point operations of the GS (SOR) algorithm.

5. Discussion of the algorithm and the results

Memory requirements. The implementation of the
ML algorithm requires one additional variable at each state
compared to the SOR scheme in order to store the temporary
values ~p. In addition, the overall number of states needed
is higher than for SOR because of the additional recursively
aggregated systems. If the number of states of the original
problem is n and this number is reduced by a factor of
f = N=n during each aggregation step, then the overall
number of states s needed by the ML algorithm is bounded
by s < n=(1�f). Thus in the examples considered in section
4 we have f = 1=2 and therefore s < 2n. We therefore pay
the price of circa three times the memory requirements of GS
in order to achieve performance improvements of an order
of magnitude or more.

Implementation e�ort. The ML algorithm is evidently
more complex than the SOR scheme, additional coding being
required for the the treatment of the coarse level equations.
The implementations used in section 4 required however,
only 329 and 576 lines of C for the SOR and the ML
algorithms respectively. Thus we consider implementation
overhead not to be signi�cant.
Parallelization. The Multi-Level algorithm will paral-

lelize well, given an appropriate choice of smoother. There
are di�culties involved with the parallel execution of the
GS and SOR algorithms, owing to their recursive struc-
ture. However, it has been shown that the "multi-color"
style of GS can allow e�cient parallelization without com-
promising convergence speed [9]. Parallelization of ML is
done by data partitioning within each level. With a multi-
color smoother, all the operations of the ML method at a
given level can be performed concurrently. Communication
will be required between processors for the smoothing step
and collect/broadcast operations for the convergence test
and enforcement of (2). Although coarser levels will run
less e�ciently, as less computation is performed there, the
coarse granularity of the �ner levels, where most computa-
tional work is located, will ensure overall good parallel per-
formance. Thus we conclude that the ML algorithm, too,
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will perform well on a multiprocessor system or workstation
cluster.
Cycle types. There are other alternatives to processing

the levels of aggregation in the downward-upward sweep
used in the present scheme. These can be obtained by
modifying the number of recursive calls to procedure mss in
Figure 2. Thus coarser levels may be visited more than once
during one iteration. Such techniques can, in the multigrid
context, lead to improved e�ciencies, as the coarse level
equations are then more accurately solved. Experiments
reported in [8] have shown that this can also be the case for
ML. One may furthermore consider dynamic cycling after
Brandt [1] or adaptive cycling according to R�ude [11].
Choice of coarsening strategy. Convergence charac-

teristics may be improved by a judicious choice of aggre-
gation strategy. In particular, Markov chains derived from
queueing networks can possess a regular structure which may
be exploited. Experiments have shown this to be the case
for the tandem queue example of section 3. Our main pri-
ority for future work is therefore to develop an aggregation
strategy which obtains appropriate coarse systems at a rea-
sonable cost. Finding optimal aggregations is a notoriously
complex problem, but we believe that sub-optimal solutions
are su�cient for the ML algorithm.

6. Summary and Outlook

The ML algorithm presented in this paper has been
shown to require signi�cantly less computation time than
the SOR scheme for a number of test problems. The
di�erence between the two algorithms increases with the
number of states of the Markov chain. In addition to
being signi�cantly faster, based on our experience to date
it appears that the ML algorithm is much more resilient to
variations in transition rates. Another nice property of the
ML algorithm is that excellent performance can be obtained
without the necessity of tuning a parameter, such as the
over-relaxation parameter in SOR. The ML method settles
quickly into a constant rate of convergence, implying that
the computational work increases linearly with the accuracy
requiremnts.
Examination of a larger sample of cases, including Markov

chains from real applications have yet to be made. However,
we feel that the algorithm shows enough promise to justify
further investigation into ML schemes for solving Markov
chains.
Further work will also include the implementation and

testing of the techniques mentioned in the previous section.
In particular, attention will be paid to choosing an aggrega-
tion strategy for general Markov chains, where no a priori

knowledge of the topology is available. Several of these tech-
niques have already proven to provide improved e�ciency in
preliminary experiments. We hope to be able to report on
this in the near future.
An experimental comparison with the Takahashi algo-

rithm is also planned.
A parallel version of the ML algorithm is also in prepara-

tion, and we hope to be able to present results obtained on
a MIMD supercomputer in the near future.
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