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are known. Let ĝ�� (l), 0 � l � m be the Gegenbauer expansion coe�cients, based on the sub-

interval [a; b], of the spectral partial sum fN (x) in (3.4) or f
�
N (x) in (4.2). These Gegenbauer

coe�cients are de�ned in (3.7) for the Fourier case and in (4.5) for the Chebyshev or Legendre

case. Then for � = m = ��N where � < 2�e

27
(Fourier case) or � � 2

27e
(Chebyshev or

Legendre case), we have

max
�1���1

�����f(�� + �)�
mX
l=0

ĝ�� (l)C
�
l (�)

����� � A
�
q�NT + q�NR

�
(6:2)

where

qT =

 
27�

2�e

!�

< 1; qR =

 
27�

32�

!�

< 1

for the Fourier case and

qT = e�� < 1; qR =

 
27�

32�

!�

< 1

for the Chebyshev or Legendre case, and A is at most a fourth order polynomial in N .

Proof:

Just combine the results of Theorems 3.2, 4.6 and 5.2.

2

We �nally give two remarks:

Remark 6.2

It can be seen from (6.2) that the truncation error gets bigger when the interval half-

length � decreases, because the parameters m and � must decrease with �. This in turn also

a�ects the regularization error, although there is a factor � in qR which o�sets this e�ect.

2

Remark 6.3

No attempt has been made in this paper to optimize the parameters.

2
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where q is given by

q =
�(1 + 2
)1+2


�21+2


(1 + 
)1+

(5:6)

which is always less than 1. In particular, if 
 = 1 and m = �N where � is a positive

constant, then

RE(�N; �N; �) � AqN (5:7)

with

q =

 
27�

32�

!�

(5:8)

Proof:

The proof follows in exactly in the same fashion as in [5], Lemma 4.2, Theorems 4.3 and

4.4, with proper accounting for the transformation x(�) = �� + �.

2

6 Concluding Remarks

In this Section, we combine the estimates for truncation errors and regularization errors in

previous sections, to obtain the main theorem of this paper:

Theorem 6.1: Removal of the Gibbs Phenomenon for the sub-interval case

Consider an L2 function f(x) on [�1; 1], which is analytic in a sub-interval [a; b] � [�1; 1]

and satis�es

max
a�x�b

�����d
kf

dxk
(x)

����� � C(�)
k!

�k
; � � 1 (6:1)

Assume that either the �rst 2N + 1 Fourier coe�cients

f̂(k) =
1

2

Z 1

�1
f(x)e�ik�xdx; �N � k � N

or the �rst N + 1 Chebyshev or Legendre coe�cients

f̂�(k) =
1

h�k

Z 1

�1
(1 � x2)��

1

2f(x)C�
k (x)dx; � = 0 or � =

1

2
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established exponentially small truncation errors if � and m are both growing linearly with

N , in this section we will consider the case of � � m.

We will assume that f(x) is an analytic function on [a; b] satisfying

Assumption 5.1

There exists constants � � 1 and C(�) such that, for every k � 0,

max
a�x�b

�����d
kf

dxk
(x)

����� � C(�)
k!

�k
(5:1)

2

This is a standard assumption for analytic functions. � is the distance from [a; b] to the

nearest singularity of f(x) in the complex plane (see, for example, [8]). This assumption and

the following proof can be modi�ed to allow for an arbitrary ellipse region around [a; b] for

the analyticity of f(x) (H. Vandeven, private communication).

Let us consider the Gegenbauer partial sum of the �rst m terms for the function f(��+�):

f�;�m (�) =
mX
l=0

f̂�� (l)C
�
l (�) (5:2)

with �, � and � de�ned by (3.2) and (3.3), and the Gegenbauer coe�cients based on [a,b]

de�ned by

f̂�� (l) =
1

h�l

Z 1

�1
(1 � �2)��

1

2f(�� + �)C�
l (�)d� (5:3)

We want to estimate the regularization error in the maximum norm:

RE(�;m; �) = max
�1���1

�����f(�� + �)�
mX
l=0

f̂�� (l)C
�
l (�)

����� (5:4)

We have the following result for the estimation of the regularization error, when � � m:

Theorem 5.2:

Assume � = 
m where 
 is a positive constant. If f(x) is analytic in [a; b] � [�1; 1]

satisfying the Assumption 5.1, then the regularization error de�ned in (5.4) can be bounded

by

RE(
m;m; �) � Aqm (5:5)
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we still use (4.16), (4.17) and the bound jJl+�(x)j � 1. However, for the estimate on jaqkj,

we use (2.16), (2.17):

jaqkj � A

 
e�k

2q

!q

(4:19)

and the fact q > N > � to get

F
(1)

q;l;� � A

kqX
k=1

 
e�k

2q

!q  
27�

2e�k�

!�

� Akq

 
e�kq

2q

!q  
27�

2e�kq�

!�

(4:20)

and, upon substituting for kq =
h
q

�e

i
and � = 2

27e
�N :

F
(1)

q;l;� � Akq

�
1

2

�q
e��

 
N

q

!�

� Ae��
 
N

q

!�

(4:21)

Combining (4.18) and (4.21) we obtain (4.14).

2

We are now ready for the main theorem of this section:

Theorem 4.6:

Let the truncation error be de�ned in (4.6). Let � = 2�

27e
N and m � �, then

TE(�;m;N; �) � Ae�� (4:22)

where A grows at most as a fourth order polynomial in N .

Proof:

The theorem follows from (4.7), the Assumption 4.1, and (4.14).

2

5 Regularization Error for a Sub-interval

In this section we study the second part of the error, which is caused by using a �nite

Gegenbauer expansion based on a sub-interval [a; b] � [�1; 1], to approximate a function

f(x) which is assumed analytic in this sub-interval [a; b]. Since in previous sections we have
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2

We are ready now to estimate directly Fq;l;� de�ned in (4.10).

Lemma 4.5:

Consider Fq;l;� de�ned in (4.10). Let � = 2

27e
�N and l = 
� where 
 < 1. Then for every

q > N we have

Fq;l;� � Ae��
 
N

q

!�

: (4:14)

where A grows at most quadratically with N .

Proof:

Let kq =
h
q

�e

i
be the integer part of q

�e
. We split the sum on the right hand side of (4.11)

into

Fq;l;� � A

0
@ kqX
k=1

+
1X

k=kq+1

1
A"C�

l (1)�(�)

�
2

k��

��
jJl+�(k��)j jaqkj

#
= A

�
F

(1)

q;l;� + F
(2)

q;l;�

�
(4:15)

We �rst use (2.3) and (2.7) to obtain:

C�
l (1) � A

 
(
 + 2)
+2

4



!�

� A

�
27

4

��
(4:16)

and

�(�) � A��e�� (4:17)

We start with an estimation of the second sum

F
(2)

q;l;� =
1X

k=kq+1

C�
l (1)�(�)

�
2

k��

��
jJl+�(k��)j jaqkj

We use (4.16), (4.17), the fact that jJl+�(x)j � 1 and jaqkj � 1, and k > kq =
h
q

�e

i
and

� = 2

27e
�N to get

F
(2)

q;l;� � A

 
27�

2�q

!�

� Ae��
 
N

q

!�

: (4:18)

where A grows at most linearly with N , the growth coming from the summation. For the

�rst sum

F
(1)

q;l;� =
kqX
k=1

C�
l (1)�(�)

�
2

k��

��
jJl+�(k��)j jaqkj ;
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Proof:

From (4.4) and (4.5) we have

���f̂�� (l)� ĝ�� (l)
��� = 1

h�l

����
Z 1

�1
(1� �2)��

1

2 (f(�� + �)� f
�
N(�� + �))C�

l (�)d�

���� (4:8)

Substituting (4.8) into (4.6), recalling (2.4) and

f(�� + �)� f
�
N (�� + �) =

1X
q=N+1

f̂�(q)C�
q (�� + �) (4:9)

we obtain (4.7).

2

For simplicity of notations we denote:

Fq;l;� =

�����C
�
l (1)

h�l

Z 1

�1
(1� �2)��

1

2C�
q (�� + �)C�

l (�)d�

����� ; q > N (4:10)

In order to estimate this term, we consider the Fourier series approximation of C�
q (��+�)

from (2.12) and (2.13) to get

Lemma 4.4:

Fq;l;� � AC�
l (1)�(�)

1X
k=1

�
2

k��

��
jJl+�(k��)j jaqkj (4:11)

where aqk is given either by (2.14) or by (2.15), and A grows at most as fast as a linear

polynomial in � and l.

Proof:

We expand C�
q (x) using (2.12) or (2.13):

C�
q (x) =

1X
k=�1

a
q;�
k eik�x =

1X
k=�1

a
q;�
k eik���eik�� (4:12)

where a
q; 1

2

k = a
q
k is given by (2.14) and a

q;0
k = 2

q
b
q
k is given by (2.15).

We now use (2.11) to get����� 1h�l
Z 1

�1
(1 � �2)��

1

2 eik���eik��C�
l (�)d�

����� = �(�)

 
2

jkj��

!�

(l + �) jJl+�(k��)j (4:13)

Substituting (4.12) and (4.13) into (4.10) gives us (4.11).
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Note that f
�
N(x) does not converge fast to f(x) if there exist discontinuities inside the domain.

The function f(x) has also a Gegenbauer expansion in a sub-interval [a; b]. With �, � and

� de�ned in (3.2)-(3.3), we have

f(�� + �) =
1X
l=0

f̂�� (l)C
�
l (�) (4:3)

where the Gegenbauer coe�cients f̂�� (l) are de�ned by

f̂�� (l) =
1

h�l

Z 1

�1
(1 � �2)��

1

2f(�� + �)C�
l (�)d� (4:4)

As before, we do not have f̂�� (l) at our disposal, but only an approximation based on the

partial Chebyshev or Legendre sum f
�
N(x), thus we have

ĝ�� (l) =
1

h�l

Z 1

�1
(1� �2)��

1

2f
�
N (�� + �)C�

l (�)d� (4:5)

How well do ĝ�� (l) approximate f̂�� (l)? To answer this question we de�ne

De�nition 4.2:

The truncation error is de�ned by

TE(�;m;N; �) = max
�1���1

j
mX
l=0

(f̂�� (l)� ĝ�� (l))C
�
l (�)j (4:6)

where f̂�� (l) are de�ned by (4.4) and ĝ�� (l) are de�ned by (4.5).

2

The truncation error is the measure of the distance between the true Gegenbauer expan-

sion in the interval [a; b] and its approximation based on the Chebyshev or Legendre partial

sum in [�1; 1].

We �rst have the following lemma:

Lemma 4.3:

TE(�;m;N; �) �
1X

q=N+1

jf̂�(q)j
mX
l=0

�����C
�
l (1)

h�l

Z 1

�1
(1� �2)��

1

2C�
q (�� + �)C�

l (�)d�

����� (4:7)
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The proof follows exactly the one in [5], Theorem 3.1 and 3.3, with proper accounting

for the interval length �.

2

4 Truncation Error in a Sub-interval|Chebyshev and

Legendre Methods

In this section we assume that we have the �rst N + 1 Chebyshev or Legendre coe�cients

in the expansion of an L2 function f(x) based on the interval �1 � x � 1. We show how

to get its Gegenbauer expansion based on a sub-interval [a; b] � [�1; 1] with exponential

accuracy in N . The proof makes use of Lemma 2.7, which states that the low modes of the

Fourier expansion of the Chebyshev or Legendre polynomial of degree N decay exponentially

with N . Thus only the high modes count, and those are shown in Section 2 to have small

Gegenbauer coe�cients.

For simplicity of notation we will deal with C
1

2

k (x), which is the Legendre polynomial

Pk(x) (see (2.9)), and C0
k(x), which is 2

k
times the Chebyshev polynomial Tk(x) (see (2.10)).

The Chebyshev or Legendre expansion coe�cients of f(x) are given by

f̂�(k) =
1

h
�
k

Z 1

�1
(1� x2)��

1

2f(x)C�
k (x)dx (4:1)

for � = 0 or � = 1

2
.

In this section we consider functions f(x) satisfying

Assumption 4.1:

jf̂�(k)j � A for all k.

2

We remark that if f(x) is an L2 function the assumption is ful�lled.

We assume that we know the �rst N + 1 Chebyshev or Legendre coe�cients, f̂�(k) for

0 � k � N , and de�ne

f�N(x) =
NX
k=0

f̂�(k)C�
k (x) (4:2)

9



where

f̂�� (l) =
1

h�l

Z 1

�1
(1� �2)��

1

2f(x(�))C�
l (�)d� (3:6)

Of course we do not have f̂�� (l) at our disposal but only an approximation based on the

Fourier partial sum fN (x), thus we have

ĝ�� (l) =
1

h�l

Z 1

�1
(1� �2)��

1

2 fN(x(�))C
�
l (�)d� (3:7)

The Truncation Error is the measure of deviation of the approximate Gegenbauer expan-

sion from the true expansion:

TE(�;m;N; �) = max
�1���1

j
mX
l=0

(f̂�� (l)� ĝ�� (l))C
�
l (�)j (3:8)

We can show that the truncation error is exponentially small:

Theorem 3.2:

Let f(x) be an L2 function whose �rst 2N+1 Fourier coe�cients f̂(k) de�ned in (3.1) are

known. Let ĝ�� (l) be the Gegenbauer coe�cients, based on the sub-interval [a; b] expansion

of the Fourier partial sum fN (x) de�ned in (3.7), and f̂�(l) be those of f(x) de�ned in (3.6).

Assume that

� = ��N m = ��N (3:9)

Where � is the half length of the sub-interval [a; b] de�ned in (3.3). Then the truncation

error is bounded by

TE(��N; ��N;N; �) � Aq�N ; (3:10)

where

q =
(� + 2�)�+2�

(2�e)�����
(3:11)

and A grows at most quadratically with N . In particular, if � = � � 1

4
, then

q � 0:8

Proof:

8



3 Truncation Error in a Sub-interval|Fourier Method

Consider an arbitrary L2 function f(x) de�ned in [�1; 1]. Suppose that the �rst 2N + 1

Fourier coe�cients of this function are given

f̂(k) =
1

2

Z 1

�1
f(x)e�ik�xdx jkj � N (3:1)

In [5] we showed that we can recover (with exponential accuracy) the �rst m � N terms

in the Gegenbauer expansion of f(x) based on the interval [�1; 1].

Here we are interested to �nd the Gegenbauer expansion of f(x) based on a sub-interval

[a; b] � [�1; 1]. This will allow us to handle multiple discontinuities and discontinuities of

unknown locations. We will show that in this case too, we can get exponential accuracy. We

start by introducing the local variable �:

De�nition 3.1

The local variable � is de�ned by

x = x(�) = �� + � (3:2)

where

� =
b� a

2
; � =

b+ a

2
(3:3)

Thus when a � x � b, �1 � � � 1.

2

Denote now the Fourier partial sum by fN (x), namely

fN(x) =
NX

k=�N

f̂(k)eik�x (3:4)

As mentioned before, we are trying to recover the Gegenbauer expansion coe�cients

based on the sub-interval [a; b], i.e. we would like to �nd the �rst m � N coe�cients f̂�� (l)

in the expansion

f(x(�)) =
1X
l=0

f̂�� (l)C
�
l (�) (3:5)

7



Let aNk and bNk be the Fourier coe�cients of the Legendre polynomial PN (x) and the

Chebyshev polynomial TN(x) respectively, given in (2.12)-(2.15). Then

jaNk j � Amin

 
1; (

e�k

2N
)N
!

(2:16)

jbNk j � Amin

 
1; (

e�k

2N
)N
!

(2:17)

where A is a constant independent of k or N .

Proof:

We start with the following estimate for the Bessel function Jn(nz) (see [1], page 362):

jJn(nz)j �
0
@ ze

p
1�z2

1 +
p
1 � z2

1
A
n

; 0 � z � 1 (2:18)

From (2.18) we can deduce trivially that

jJn(nz)j � (
ez

2
)n 0 � z � 1 (2:19)

We also have the uniform bound on Bessel functions

jJn(z)j � 1 (2:20)

Using (2.19) and (2.20) in (2.14) and (2.15), with z = �k

N
and n = N , we obtain (2.16)

and (2.17).

2

Lemma 2.7 provides the answer why PN (x) and TN(x) (for large N) can be considered

as small scale functions. Basically only the terms that are greater than N appear in their

Fourier expansions (2.12) and (2.13). The lower terms decay exponentially with N .

6



2

Lemma 2.5 gives us the Gegenbauer expansion coe�cients of the Fourier functions. How-

ever, what we really want are the Fourier coe�cients of the Gegenbauer polynomials. We

have those coe�cients, luckily, for the Legendre and Chebyshev polynomials.

Lemma 2.6

Let aNk be the Fourier coe�cients of the Legendre polynomial PN (x) de�ned in (2.9) and

bNk be the Fourier coe�cients of the Chebyshev polynomial TN(x) de�ned in (2.10), i.e.

PN (x) =
1X

k=�1

aNk e
ik�x (2:12)

and

TN(x) =
1X

k=�1

bNk e
ik�x (2:13)

Then

aNk =
iNp
2k

JN+ 1

2

(�k) (2:14)

and

bNk =
(�i)N�

2
JN(�k) (2:15)

2

Equation (2.14) follows from (2.11) upon substituting � = 1

2
and using (2.6) and (2.3).

Equation (2.15) can be found in [7], page 836.

2

Lemma 2.6 provides us with a better understanding of the terms \small scales" and

\large scales". The question is the following: it is clear that eiN�x is small scale for large N ,

intuitively TN (x) and PN (x) are also small scale functions, however the expansions (2.12)

and (2.13) contain all the scales. So, in what sense are TN(x) and PN (x) small scales?

The answer is given in the following Lemma:

Lemma 2.7

5



2

We will need to use heavily the asymptotics of the Gegenbauer polynomials for large n

and �. For this we need

Lemma 2.3 (Stirling)

For any number x such that x � 1 we have

(2�)
1

2xx+
1

2 e�x � �(x + 1) � (2�)
1

2xx+
1

2 e�xe
1

12x (2:7)

2

Lemma 2.4

There exists a constant A independent of � and n such that

A�1
�

1

2

(n + �)
C�
n(1) � h�n � A

�
1

2

(n+ �)
C�
n(1) (2:8)

The proof follows from (2.6) and Stirling's formula (2.7).

2

In the analysis we will extensively use the relationship between the Fourier functions

eik�x and the Gegenbauer polynomials C�
n(x). In particular, we will focus our attention on

the Legendre polynomials

Pn(x) = C
1

2

n (x) (2:9)

and the Chebyshev polynomials

Tn(x) =
n

2
C0
n(x) (2:10)

Our basic formula is taken from [2], page 213:

Lemma 2.5

1

h�l

Z 1

�1
(1 � x2)��

1

2 ein�xC�
l (x)dx = �(�)

�
2

�n

��
il(l + �)Jl+�(�n) (2:11)

where J�(x) is the Bessel function.

4



In particular, if f(x) is piecewise analytic, then an exponentially convergent approxima-

tion in the maximum norm can be recovered from its partial spectral expansion.

2 Preliminaries

This section is devoted to a collection of results about the Gegenbauer polynomials. Though

the results are classical, they are not widely known and certainly not in our context. We

rely heavily on the standardization in Bateman [2].

We start by de�ning the Gegenbauer polynomials C�
n (x) in the following

De�nition 2.1

The Gegenbauer polynomial C�
n(x) is de�ned by

(1 � x2)��
1

2C�
n(x) =

(�1)n
2nn!

G(�; n)
dn

dxn

h
(1 � x2)n+��

1

2

i
(2:1)

where G(�; n) is given by

G(�; n) =
�(� + 1

2
)�(n+ 2�)

�(2�)�(n + � + 1

2
)

(2:2)

2

Under this de�nition we have

C�
n(1) =

�(n + 2�)

n!�(2�)
(2:3)

and

jC�
n(x)j � C�

n(1); �1 � x � 1 (2:4)

The Gegenbauer polynomials are orthogonal under their weight function, in fact we have

Lemma 2.2

The Gegenbauer polynomials satisfy the following orthogonality condition:

Z 1

�1
(1 � x2)��

1

2C�
k (x)C

�
n(x)dx = �k;nh

�
n (2:5)

where

h�n = �
1

2C�
n(1)

�(� + 1

2
)

�(�)(n + �)
(2:6)

3



proportional to the number of terms retained in the expansion. The error at this

stage is labelled the regularization error.

Thus we have shown how to overcome the Gibbs phenomenon for an analytic but non-

periodic function. By a simple shift this procedure covers the case of any analytic function

with one discontinuity.

In this paper we treat a broader class of problems. Here we assume that f(x) is an L2

function on [�1; 1] and analytic in a subinterval [a; b] � [�1; 1]. We assume that the spectral

partial sum (based on either the Fourier or Chebyshev or Legendre expansion) of a function

over the full interval [�1; 1] is known, and try to recover exponentially accurate point values

over a subinterval [a; b].

We will follow the same path as in [5]. Basically we will show that the �rst N Fourier

(or Chebyshev or Legendre) expansion coe�cients contain enough information such that a

rapidly converging Gegenbauer expansion in the subinterval [a; b] can be constructed. As

before, we will separate the analysis of the error into two parts: truncation error and reg-

ularization error. Truncation error measures the di�erence between the exact Gegenbauer

coe�cients and those obtained by using the spectral partial sum. These will be investigated

in Section 3 for the Fourier case and in Section 4 for the Chebyshev and Legendre cases.

Regularization error then measures the di�erence between the Gegenbauer expansion using

the �rst few Gegenbauer coe�cients and the function itself in a sub-interval [a; b], in which

the function is assumed analytic. The estimation of the regularization error is in Section 5.

In Section 2 we will provide some useful properties of Gegenbauer polynomials to be used

later. Section 6 contains a summary theorem and some remarks.

Throughout this paper, we will useA to denote a generic constant or at most a polynomial

in the growing parameters. It may not be the same at di�erent locations.

The message of this paper is that the knowledge of the partial spectral sum of an L2

function in [�1; 1] furnishes enough information so that an exponentially convergent approx-

imation can be constructed in any subinterval in which f(x) is analytic.
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1 Introduction

In this paper we continue our investigation of overcoming Gibbs phenomenon, i.e., recovering

pointwise exponential accuracy at all points including at the discontinuities themselves, from

the knowledge of a spectral partial sum of a discontinuous but piecewise analytic function,

which we started in [5] and [6].

Spectral approximations based upon trigonometric polynomials (Fourier, for periodic

problems) or polynomials (Chebyshev or Legendre, for non-periodic problems) are expo-

nentially accurate for analytic functions [4], [3]. However, for discontinuous but piecewise

analytic functions, the spectral partial sum approximates the function poorly throughout

the domain. Away from the discontinuity only �rst order accuracy is achieved. Near the

discontinuity there are O(1) oscillations which do not decrease with N , the number of terms

retained in the spectral sum. This is known as Gibbs phenomenon.

In [5] and [6] we treated a representative problem :

� Let f(x) be an analytic but nonperiodic function. Suppose that we are given its �rst

�N � k � N Fourier coe�cients. Can one obtain exponentially convergent pointwise

approximations in the maximum norm?

To solve this problem we used the Gegenbauer polynomials C�
n(x), which are orthogonal

in [�1; 1] with the weight function (1 � x2)��
1

2 .

The procedure of overcoming the Gibbs phenomenon consists of two steps:

1. Given the Fourier partial sum of the �rst N terms, we �rst recover the �rst

m � N Gegenbauer expansion coe�cients with exponential accuracy. This can

be achieved for any L2 function, as long as we choose � in the weight function

of Gegenbauer polynomials to be proportional to N . The error incurred at this

stage is called the truncation error.

2. The next step is to prove, for an analytic function, the exponential convergence

of its Gegenbauer expansion, when the parameter � in the weight function is
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ABSTRACT

We continue the investigation of overcoming Gibbs phenomenon, i.e., obtaining exponen-

tial accuracy at all points including at the discontinuities themselves, from the knowledge of

a spectral partial sum of a discontinuous but piecewise analytic function.

We show that if we are given the �rst N expansion coe�cients of an L2 function f(x) in

terms of either the trigonometrical polynomials or the Chebyshev or Legendre polynomials,

we can construct an exponentially convergent approximation to the point values of

f(x) in any sub-interval in which it is analytic.
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