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Conclusions

In this article, we have proposed a multilevel method which treats di�erently

the large and the small scales of homogeneous isotropic 
ows. Moreover,

we have derived mathematical estimates for all the parameters (cut-o� level,

time scales) involved in this dynamical procedure leading to a completely

self-adaptive procedure. Firstly, several computations have been conducted

in the context of DNS, i.e. the whole spectrum up to the dissipative scale was

simulated. In such case, the multi-level method is able to recover a velocity

�eld with the same spatial resolution than the Galerkin method, but with a

substantial speed-up of at least 2 in CPU time.

Secondly, in an approach similar to LES, we have decreased the number

of modes retained for the resolved scales and used the same algorithm to
modelize the interaction between the low and high frequencies. In such case,
we have seen that when the resolved scales are larger than the dissipative
ones, but of the same order of magnitude (1/12 as compared to 1/17), the
large eddies of the 
ow are captured correctly; this is not the case when the

pseudo-spectral Galerkin method is used with only 322 modes, i.e. with a
larger scale of the order of 1/16.

Although, we only presented computational for moderately large Reynolds

numbers, where the small scales are strongly dependent on the energy-
containing eddies, we think that these results are very promising. Indeed,
we can reasonably hope that the multilevel (nonlinear Galerkin) method can
be used e�ciently for Large Eddy Simulations. Results on this point will be
presented elsewhere, in the case of two and three dimensional homogeneous

isotropic 
ows.

Finally, we want to observe that, by opposition with LES methods, no as-

sumptions on the energy spectra or on the velocity correlations are made here.
Therefore the method can be applied to the simulation of non-homogeneous


ows. First attempts have been made in this direction, for the channel 
ow
problem. Our e�orts will be concentrated on this problem in the near future.
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Figure 50: Energy spectrum at t = 5; 20; 35; and 50:
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Figure 49: Comparison of the vorticity structures, between results obtained

with the classical method for N = 256 and N = 48, at time t = 50:
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Figure 48: Energy spectrum at t = 5; 20; 35; and 50:
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Figure 47: Comparison of the vorticity structures obtained with the classical

Galerkin method for N = 256 and N = 32, at time t = 50:
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Figure 46: Comparison of the vorticity structures at time t = 65:
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Figure 45: Comparison of the vorticity structures at time t = 60:
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Figure 43: Time evolution of the levels Ni1 and Ni2 .
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Figure 44: Time evolution of the characteristic length of cycles.
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Figure 42: Energy spectrum at t = 5; 20; 35; and 50:
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to describe the evolution of the 
ow.
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ter understanding of the e�ects of the multilevel procedure on these scales

must be done in order to improve the results presented here.

3.3.2 Comparison with a low resolution Galerkin simulation.

Finally, in order to show the e�ciency of the multilevel method on such sim-

ulations, we have performed an additional test with the classical method.

Indeed, we have �rst �xed the total number of modes to 32 and we have

integrated the system over 50; 000 time iterations, which corresponds to the
time interval [0; 50]: The solution obtained is di�erent than the one obtained
when a Direct Simulation is done, i.e. with 256 modes. Figure ?? shows
the vorticity structures obtained with this simulation at time t = 50: The

number of modes is not su�ciently large so that the large scales can not be
computed. The vorticity looks like a non{structured quantity. Figure ??
shows the energy spectrum at di�erent time of the interval [0; 50]: By �x-
ing the resolution to (32)2; it seems that we do not allow the appearance of
small scales and their dissipation mechanism occuring in the viscous range,

the dynamic of the 
ow is drastically modi�ed. We note that this simulation
is stable in the sense that no quantity grows arti�cially. A similar simulation
has been done with N = 48 instead of N = 32: The picture of the 
ow (see
Figures ??, ??) is more realistic than in the previous case. The large scales
of the 
ow are almost well captured. Nevertheless, the simulation performed

with the multilevel method with a lower level Ni1 = 24 gives a better quali-
tative result. The CPU time required by this simulation is 2730 seconds and
the di�erence with the DNS is of the order of 3:1 10�3 in L2 norm. Hence, the
accuracy recovered here is the same as the one obtained with the multilevel

level method when Ni1 = 24: The result obtained here con�rms the fact that,

in the previous computation, the level Ni2 can be decreased to 48 ; in such
a case, the CPU time required by the multilevel method will be at least two
times less than 2730 seconds.

To conclude, we have proved with these experiences that the multilevel

method allows to modelize the whole dissipation range and the end of the

inertial range without disturbing the large scales of motion. Moreover, we

have shown that if the small scales lying in the dissipation range can be
modelized, as well as their interaction with the large scales, they are essential
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Table 7

uGU1 (x1; x2) uGNL
1 (x1; x2) Di�erence

t = 10 0:8299845080 10�1 0:8355520907 10�1 5:56 10�4

t = 20 0:2091267106 0:2087057712 4:21 10�4

t = 30 0:3664263833 0:3652791132 1:14 10�3

t = 40 0:2926552919 10�1 0:2587214575 10�1 3:39 10�3

t = 50 0:2458823192 0:2432537325 2:63 10�3

t = 60 0:1573811778 0:1414418124 1:59 10�2

Table 8
uGU1 (x1; x2) uGNL

1 (x1; x2) Di�erence

t = 10 �0:7118241214 10�1 �0:7088992727 10�1 2:92 10�4

t = 20 0:1478691156 0:1470191181 8:49 10�4

t = 30 0:4236670791 0:4264640060 2:79 10�3

t = 40 0:4898684126 0:4800345247 9:83 10�3

t = 50 0:3592114126 0:3480702322 1:11 10�2

t = 60 0:5173406258 0:5179894219 6:48 10�4

structures are captured with the multilevel method.

The total CPU time required for this simulation is about 4796 seconds and
the di�erence in L2 (or energy) norm with the solution obtained with the
previous DNS is of the order of 3:6 10�3 at t = 50: The upper level Ni2 of
the multilevel procedure is approximatively equal to 128 during the whole

computation. The small scale energy on this level is less than 10�8 and then

much less than ": Hence, the level Ni2 can be decreased to at least 64 as we

can see on Figure ?? ; in that case, the CPU time will be reduced.

On tables 7 and 8, we have compared the solutions obtained here with

the one obtained by direct simulation. It appears that the di�erence between
the two solutions is of the order of 10�2 and hence, of the order of �: The
oscillations, appearing on Figures ??, ??,and ?? are probably due to the fact

that the intermediate scales, lying in the inertial range and corresponding to

wavenumbers larger than kNi1
; are not relaxed at each time iteration. A bet-
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3.3 Simulation of the whole dissipation range with

the multiscale method.

In this section, the example is the same as in the Section ??. Our purpose

is to study the e�ect of the cut{o� value Ni1 on the computed solution, so

that several numerical experiments have been conducted. We have decreased

Ni1 so that it is of the order of the dissipation wavenumber k� ; the whole

dissipation range is then modelized by the multiscale strategy described in

previous sections. In both simulations, we have noted that the multilevel

method allows to recover all the large structures of the 
ow. Finally, we have
made a similar test with the classical method, i.e. we have decreased N in
order to estimate the lower level required to recover the large scales.

3.3.1 Analysis of the numerical simulation.

In order to decrease the value of Ni1; the parameter " has been set to 10�2:
In this case, the level Ni1 adjusts itself, using the procedure described in Sec-

tion ??, to the value 24 which is smaller than N� = 34: Figure ?? shows the
evolution of the two characteristic levels Ni1 and Ni2; and Figure ?? shows
the evolution of the characteristic time �c: The level Ni1 is quasiconstant and
is equal to 24 while the levelNi2 is approximately equal to 128 ; Ni2 is chosen
to be far inside the dissipation range. On Figures ??, we have represented

the energy spectrum of the computed solution at di�erent intermediate times
of the interval [0; 65] on which is conducted the computation. There is no
energy pile{up at high wavenumbers and the dissipation of the enstrophy is
well preserved. By comparing the vorticities obtained with this simulation

and the Direct Numerical Simulation performed with the classical Galerkin

(pseudospectral) method with a spatial resolution equal to (256)2; we note
that all the large scale vortices are well described by the multilevel method.

At the times t = 60 and t = 65; we still have the fusion previously mentioned.
We also note that oscillations appear on the domain. They are due to the

approximation made on the small scales. They also point out the problem
of separation of scales related with a Fourier decomposition. Indeed, Fourier

waves oscillate over the whole domain and they can not be directly associ-
ated with a scale vorticity. This nonlocal property implies the oscillation

appearing on Figures ??. Nevertheless, it appears clearly that all the large
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Figure 40: Vorticity structures at time t = 30:

Figure 41: Vorticity structures at time t = 50:
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Figure 39: Time evolution of (resp.) � j �zN1
j2; j _zN1

j2, j QN
N1
B(yN1

;yN1
) j2

; and j QN
N1
Bint(yN1

; zN1
) j2 for N1 = 64; 128; 256 and N1 = 480:
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Figure 37: Time evolution of �N1
(�) = �

j _zN1
(t) j2 for N1 = 64; 128; 256 and

N1 = 480:
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Figure 38: Time evolution of � 00N1
(�) =

 
2�

j PN1
_B(yN1

; zN1
) j2

!1=2

for N1 =

64; 128; 256 and N1 = 480:
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Figure 35: Time evolution of ratio
j _zN1

j2
j _yN1

j2 for N1 = 64; 128; 256 and N1 =

480:
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Figure 36: Time evolution of the levels Ni1 and Ni2:
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Figure 33: Time evolution of the ratio
j zN1

j2
j yN1

j2 for N1 = 64; 128; 256 and

N1 = 480:

t

g(t)

Log. Scale

  0  10  20  30  40  50
0.107E-15

0.160E-12

0.238E-09

0.355E-06

0.529E-03

0.789E+00

Figure 34: Time evolution of ratio
j PN1

Bint(yN1
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) j2
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) j2 for N1 =

64; 128; 256 and N1 = 480:
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Figure 32: Energy spectrum at t = 0; 15; 30; 50:
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computation is below 60: Moreover, on Figure ?? we see that the slope of

the energy spectrum is smaller than �3; which is a faster decay of the energy
than for a fully develloped turbulent 
ow.

As in the previous computation, a time step equal to 10�3 is small enough to

insure the stability of the scheme and allows to compute all the scales with

enough accuracy.

3.2.2 Analysis of the computation.

We �rst want to make some remarks on the behavior of the multiscale
method. Figure ?? shows the time evolution of the two characteristic lev-
els Ni1 and Ni2; which de�ne the transition range. As it was expected, the
variations of Ni1 and Ni2 follow the variations of the ratios

j zN1
j2

j yN1
j2

and
j PN1

Bint(yN1
; zN1

) j2
j PN1

B(yN1
;yN1

) j2
for values of N1 larger than 256; as we can see on Figures ?? and ??. On
Figures ?? and ??, the variations of the characteristic times �N1

and � 00N1
are

plotted. We remind that �N1
is used to determine the lower level Ni1 and the

length of the period during which the smallest scales, i.e. for ` < `Ni2
; can be

frozen. From Figure ??, we note that the lower level of the transition range,

namely Ni1 ; has to be larger than 256: In fact, we �nd Ni1 of the order of
320; for its lowest value. Figure ?? con�rms that the time derivative of the
velocity has a decaying spectrum.
On Figures ??, we have plotted the time evolution of the di�erent terms
appearing in the equation of the small scale components zN1

: As we have

observed in the previous computations, the time derivative j _zN1
j2 is of

the order of the coupled nonlinear terms j QN
N1
Bint(yN1

; zN1
) j2; while the

dissipative norm � j �zN1
j2 is much smaller for lower values of N1: For

the scales lying far inside the dissipation range, we also note that all the
quantities are of the same order.

Figure ?? show the vorticity at di�erent time of the integration interval

[0; 50]: The unstructured initial �eld disappear completely after a �ew times

the eddy turnover time. After a short transient period, the 
ow evolves by

keeping the same global structures. Figure ?? represents three{dimensional
views of two{dimensional maps. Lighting technics have been used, so that
shadow e�ects allow to see the very �ne structures of the 
ow.
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3.2 A direct numerical simulation at higher Reynolds

number

We present here numerical results obtained in a numerical simulation, sim-

ilar to the previous one, but with a larger value of the Reynolds number.

The external force is kept the same and the viscosity is divided by 4: The

initial condition is still a random �eld computed from a given vorticity. The

computation is performed over 50; 000 iterations, so that, the 
ow is no more

dependant of its unstructured initial state. An a posteriori analysis of the

behavior of the adaptative multilevel procedure con�rms the previous as-
sumptions and proves that the multiscale method is well adapted to Direct
Numerical Simulations. This computation required about 50 CPU hours on
a CRAY2. This total computing time includes all post-treatments done by

the code, i.e. computations of di�erent norms of several quantities related to
the small and large scales. The CPU time spent to compute the velocity �eld
is 32 hours, which corresponds to 7 10�6 second per mode and per iteration.

3.2.1 Description of the initial condition.

As in (??), the initial �eld u0 is computed in the spectral space from the
coe�cients of a given vorticity

!N
0 =

X
k2Z

2
;jkj�N

!̂0(k)e
ik�x; (56)

and the coe�cients !0(k) are given by

!0(k) =

(
c19 j k j�

1

2 ei�k if j k j � k� = 60

0 otherwise
(57)

where c19 is such that j !N
0 jL1 = 2:0. As we can see on Figure ??, the

slope of the energy spectrum at the initial time is equal to �3.
The viscosity is set to 2:5 10�4; which gives a Reynolds number equal to
6; 328 and the integral scale L = 2:93: So, the dissipative wavenumber k� is

of the order of 28 which corresponds to N� = 56: As we want to perform a

Direct Numerical Simulation a total number of modes of 512 in each direction
provides a grid �ne enough to resolve the scales under the dissipative ones.

On Figure ??, we can see that the dissipative wavenumber obtained by the
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Figure 30: Vorticity structures at time t = 60:

Figure 31: Vorticity structures at time t = 100:
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Figure 28: Vorticity structures at time t = 0:

Figure 29: Vorticity structures at time t = 30:
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Figure 26: Time evolution of the levels Ni1(tj) and Ni2(tj):
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Figure 27: Time evolution of the characteristic time �c(tj):
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Figure 24: Time evolution of the CPU time for the classical method (full

line) and for the multilevel method (dashed line).
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Figure 25: Time evolution of the levels j uN(t) jL1:
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Figure 22: Time evolution of � (�) = �
j _zN1

(t) j2 for N1 = 32; 64; 128 and

N1 = 196.
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Figure 23: Time evolution of � (�) =

 
2�

j PN1
_B(yN1

; zN1
) j2

!1=2

for N1 =

32; 64; 128 and N1 = 196.
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Figure 20: Time evolution of the horizontal component of the velocity

uN(x;y; t) at point x = y = 2�
N

(N3 � 1):
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Figure 21: Time evolution of the horizontal component of the velocity

uN (x; y; t) at point x = y = 2�
N

(N6 � 1):
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Figure 18: Time evolution of j zN1
j2 for N1 = 32; 64; 128 and N1 = 196:
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Figure 19: Time evolution of j uN(t) j2.
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Figure 17: Energy spectrum at t = 0; 5; 30; 50; 85; 100.
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of �c are not always necessary, and, by optimising the evaluation of Ni1 and

Ni2, this time evolution can become smoother.

Finally, to achieve the comparison between the di�erent algorithms, we want

to note the non-negligible fact that the multiscale method requires twice

less CPU time than the classical pseudospectral method. On Figure ??, the

quantity :
TNLG � TG

TG

is plotted, where TNLG is the CPU time required by the nonlinear Galerkin

method (multiscale), and TG the CPU time required by the classical Galerkin
method.

Finally, we want to mention that these simulations required more than 75
hours of CPU on a Cray2, without counting all the preliminary tests needed
to the developments and improvements of the algorithm.
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Table 4 Galerkin Multiscale Di�erence

Version 2

t = 0 0:450144224510�1 0:000

t = 25 0:3879730195 0:3879729977 2:0 10�10

t = 50 0:2458823192 0:2458824078 < 1:0 10�10

t = 75 �0:3332440190 �0:3332451088 2:0 10�10

t = 100 0:3196664945 0:3196686370 < 1:0 10�10

3.1.3 Comparison with the improved version of the algorithm.

In Tables 3 and 4; we report results similar to those in Tables 1 and 2,
but now, the second column corresponds to the version of the multiscale
algorithm presented in Section ??. Here, the trajectories of the multiscale

method remain close to the trajectories obtained with the classical method.
The di�erence is less than �t3 = 10�9 over the whole time interval [0; 100].
Here, the levelNi1 is always larger than 128; so that the estimated limit value
of �c is greater than �t (see Figures ?? and ??). The levels Ni1 and Ni2

chosen by the new algorithm are higher than those obtained by the previous
version. This fact is due to the restrictions imposed by the new criteria on

�c. For some values of the time t, the level Ni1 decreases to a lower level
for a short time interval and then goes up to its last value. In such a case,
we have remarked that the restriction imposed on �c induces a restriction on
the level Ni1. Indeed, even if a level is acceptable on a few multigrid cycles,
variations of the smallest scales or of the transfers terms become too large,

so that Ni1 has to change to an upper level. Moreover, we want to mention
that, during the whole computation, neither the restriction due to the small
scales evolution �Ni2

, nor the restriction due to the transfer terms evolution
� 00Ni1

is dominant. Therefore, it is necessary that both criteria be retained.

Finally, we want to note that the algorithm can still be improved. Indeed, we

recall that the actual choice of levels Ni1 and Ni2 are determined according

two di�erent criteria. One is based on the estimate of ratios of the kinetic
energy (or enstrophy) of the small scales over the kinetic energy (or enstro-

phy) of the large ones, and the other one is based on the estimates of the
critical characteristic time �c. So, it follows that �c may have a relatively

large value, and then, the levels should be adjusted to a lower value in order

to have a more reasonable estimate of �c. This can be viewed on Figure ??,
where the time evolution of �c is plotted. In fact, the very strong oscillations
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Table 1 Galerkin Multiscale Di�erence

Version 1

t = 0 �0:9650082490 10�2 0:000

t = 25 0:2980770146 0:2980770543 3:88 10�8

t = 50 0:3592114126 0:3592114913 7:87 10�8

t = 75 0:3819454889 0:3819452151 2:738 10�7

t = 100 �0:1233746011 �0:1233715822 3:0189 10�6

Table 2 Galerkin Multiscale Di�erence

Version 1

t = 0 0:450144224510�1 0:000

t = 25 0:3879730195 0:3879729977 2:18 10�8

t = 50 0:2458823192 0:2458824078 9:114 10�7

t = 75 �0:3332440190 �0:3332451088 1:091 10�6

t = 100 0:3196664945 0:3196686370 2:142 10�6

Indeed, we recall that �Ni1
< �t means that, for the level Ni1 equal to

108, the scales smaller than `Ni1
can not be �xed even on one time iteration.

Also,� 00Ni1
< 10�t means that the coupled nonlinear terms PNi1

~B(yNi1
; zNi1

)
can not be frozen on a time interval longer than 10�t. Recalling now that
in this version of the multiscale algorithm, the characteristic length was es-

timated by (�k2Ni2
)�1, therefore the length of the frozen period oscillated

between 50 �t and 80 �t: The constraints on the levelsNi1 and Ni2 imposed
by the di�erent estimates derived in section (??) are violated in this compu-
tation and so, the expected accuracy can not be recovered by the multiscale
method.

Table 3 Galerkin Multiscale Di�erence

Version 2

t = 0 �0:9650082490 10�2 0:0000

t = 25 0:2980770146 0:2980770146 < 1:0 10�10

t = 50 0:3592114126 0:3592114126 < 1:0 10�10

t = 75 0:3819454889 0:3819454893 4:0 10�10

t = 100 �0:1233746011 �0:1233746004 7:0 10�10
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We have set �t to 10�3: Here, the smallest scales (Figure ??) are of the order

of 10�10. Hence a time step of 10�3 allows to recover most of the spectrum.

Indeed, the time di�erentiation scheme used here is a third order method,

then the accuracy is of the order of 10�9.

3.1.2 Comparison with a previous version of the algorithm.

In a �rst time, we present results obtained with a previous version of the

multiscale method. In this version of the algorithm, �c was set to (� k2Ni2
)�1

and the constants �1; �2 of procedures (??) and (??) were a priori cho-
sen (see [?]). This multiscale method is compared with the pseudo-spectral
Galerkin method.
To perform this analysis, we have retained two di�erent points of the compu-

tational domain, namely x1 = x2 =
2�
N

�
N
3 � 1

�
and x1 = x2 =

2�
N

�
N
6 � 1

�
,

and we have stored the value of the horizontal component of the velocity
u1(x1; x2; t) at these points during the time evolution. On Figures ?? and ??,
we have plotted the time history over the interval [0; 100] of those two char-
acteristic values of the 
ow. Results plotted here seem to be identical for

both methods, but the di�erences between the trajectories obtained with the
di�erent algorithms are too small to appear on such graphic representation.
So, we have listed below the exact values at di�erent intermediate times for
these trajectories.
In Tables 1 and 2, we have listed the values of the horizontal component

of the velocity at times t = 0; 25; 50; 75 and 100: These results correspond
to the Galerkin method for the �rst column. In the third column, we can
see the di�erence between both orbits. It appears that this quantity grows

as time evolves and becomes much larger than the accuracy which is of the
order of �t3 = 10�9 for this computation. On this computation, the current
level Ni(t) oscillates between 108 and 200: Looking backward to the results

presented in section ?? on the estimates of the characteristic length �c (see

Figures ??), we note that :(
�Ni1

< 10�3 = �t;

~� 00Ni1
< 10�2 = 10�t; for Ni1 = 108:

Hence, levels Ni1 used by the multiscale method are not appropriate.
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L is of the order of 1:72 and # is of the order of 0:45 (see Figure ??). It

follows that ReL = 784 and k� = 17; which corresponds to N� = 2 k� = 34

modes in each direction of space. In order to be sure to resolve all the scales

of motion, we have chosen N = 256. Figures ?? show the energy spectrum

E(k) :

E(k; t) =
X

jkj = k

j û(k; t) j2;

for various times. It seems that the dissipation wavenumber k� is of the

order of 20: Hence, the previous estimate based on the dimension of the at-

tractor matches well the computational results. We note also that, if the
phenomenological theory of turbulence of Kraichnan, predicts a decay of the

energy spectrum like k�3, results presented here seem to show a faster decay
closer to k�4. This results are in agreement with the ones obtained by Orszag
in [?] and by Brachet et al. in [?], which show that a k�3 energy spectrum
can only be obtained when the Reynolds number is larger than 25; 000:
We also remark, that if, at t = 0 the small scales corresponding to a wavenum-

ber larger than 60 are set to zero, a dissipation range appears very quickly,
as we can see at t = 5. The enstrophy transfer from the large scales to the
small ones acts on the smallest scales after a few iterations. Figure ?? indi-
cates that the transition period is very short. The small scales are damped
by viscous e�ect until an equilibrium between viscous and nonlinear terms

appears. After that, we can see that j zN1
j2 oscillates in time and seems to

become completely independent of its initial value. Figures ?? and ?? repre-
sent the isolines of the vorticity, at di�erent times in the interval [0; 100]: We
can see that the very small random structures of the 
ow at the initial time
disappear quickly. It appears that fusions of these very small structures lead

to larger ones. So, after a transient period, the 
ow is mainly constituted by
large structures.

The time step is chosen by considering the accuracy and the stability of
the computation. For the stability, �t must satisfy a CFL condition like

�t N j uN jL1 < � (< 1): (55)

From Figure ??, we can see that j uN jL1< 1:25 during all the computation,

so (??) implies the following restriction on the time step :

�t < 1:7 10�3 (� = 0:5):
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is like ck2��2. So, in the case presented here � = �0:5 and we have E0(k) �
k�3. On Figure ??, one can see the isovorticity lines of the initial velocity

�eld and Figure ?? shows the energy spectrum E(k):

The external force f is constant in time and has only a few non-zero

wavenumbers, namely :

f̂k = (f̂1;k; f̂2;k);

with (
j f̂i;k j = c18 if k 2 Z2= j k1 j + j k2 j = 3;

j f̂i;k j = 0 otherwise,

c18 is determined such that j f j2= 0:225: The Fourier coe�cients of f are
�nally obtained by

f̂i;k = j f̂i;k j ei�k;
where the phases �k 2 [0; 2�] are randomly generated.

In order to describe all the scales of motion, the number of modes N
in each dimension of the space must be chosen so that the associated grid
size 2�=N is smaller than the dissipative (Kraichnan) scales `� ; in term
of wavenumber, it means that kN > k�: We recall that under the dissipative
scales, the motion is damped by viscosity. In fact, the total number of degrees

of freedom needed to describe the motion, from the dissipative scales to the
large scales containing eddies, can be estimated by the ratio (k�=k0)

2 (see [?]
and [?]). Constantin, Foias, Manley and Temam, in [?], have related this
quantity to the dimension of the attrator of the Navier{Stokes equations

(k�=kL)
2 � ReL;

where ReL is the integral scale Reynolds number, which can be de�ned by

ReL =
#L

�
:

Here #2 = (2= j 
 j) e(u) and L = 1=kL is the integral length scale de�ned

as :

L =
�1=2

�1=3
; where � = (1=2) #2 and � = � j �u j22 = j 
 j (� = 10�3):
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3 Numerical results.

3.1 Comparison with the Galerkin method and with

a previous version of the multilevel method.

In this section, we report numerical results obtained by using the nonlinear

Galerkin method and a classical Galerkin projection. The 
ow of Kolmogorov

type is forced by a time independent external force f which acts, in the

spectral space, on only some low frequency components of the velocity �eld.

The initial condition is chosen so that its spectrum has a speci�ed shape but

the phases of its Fourier components are randomly chosen. So, the 
ow at
time t = 0 has no organized struture. We have let the 
ow evolve on over
105 time iterations, i.e. from t = 0 to t = 100 ; this is much longer than the
integral time scale, which is of the order of the unity. We have compared the
solutions obtained with both methods.

3.1.1 Description of the computation.

The initial condition here is computed from a given spectrum of the initial
vorticity !N

0 = r� uN
0 , where u

N
0 is the following expansion :

uN
0 (x) =

X
k2IN

û0;k(t)e
ik�x; (52)

with x = (x1; x2) 2 
: We choose !N
0 by setting

!̂0;k = j ŵ0;k j ei�k ; (53)

where �k 2 [0; 2�] is generated by a random function, and :

j !̂0;k j =

8>><>>:
c17

(k + (
p
�k)5)1=2

if k =j k j� k�;

0 otherwise ;

(54)

c17 is determined such that j !N
0 jL1= 2:0 ; k� is equal to 60: At this point,

we note that if j ŵ0;k j� ck�, then the energy spectrum of u0

E0(k) =
X

jkj = k

(j û0;k j2 + j v̂0;k j2)
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Figure 16: Time evolution of (�k2N1
)�1 j _zN1

j2 and j zN1
j2 for N1 =

32; 64; 128; and 196:
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Figure 14: Time evolution of � (�) = K�
j _zN1

(t) j2 N1 = 32; 64; 128 and N1 =

196.
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Figure 15: Time evolution of � 0(�) =

 
2K�

j PN1
_Bint(yN1

; zN1
) j2

!1=2

N1 =

32; 64; 128 and N1 = 196.
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Figure 13: Time evolution of
j PN1

Bint(yN1
; zN1

) j2
j PN1

B(yN1
;yN1

) j2 and
jj zN1

jj
jj yN1

jj for N1 =

32; 64; 128 and 196:
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Figure 12: Time evolution of j _zN1
j2, � j �zN1

j2, j QN
N1
B(yN1

;yN1
) j2 and

j QN
N1
Bint(yN1

; zN1
) j2 for N1 = 32; 64; 128 and 196.
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Figure 11: Time evolution of
j _zN1

j2
j zN1

j2 and
j PN1
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; zN1

) j2
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Figure 9: Time evolution of j _zN1
j2 for N1 = 32; 64; 128 and N1 = 196.
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Figure 10: Time evolution of j _yN1
j2, � j AyN1
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N1 = 32:
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Figure 8: Time evolution of �t j _zN1
j2 and j zN1

j2 for N1 = 32; 64; 128 and

196.
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Figure 6: Time evolution of j _zN1
j2 and � j �zN1

j2 for N1 = 128 and

N1 = 196.
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Figure 7: Time evolution of j _zN1
j2 and j QN

N1
Bint(yN1

; zN1
) j2; for N1 = 32

and N1 = 64.
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Figure 4: Time evolution of the ratio
j zN1

j2
j yN1

j2 for N1 = 32; 64; 128 and

N1 = 196.
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Figure 5: Time evolution of the ratio
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Indeed, as we have previously seen the parameter �2 is chosen so that e(zNi2
)

is of the order of "2: The constant �1; which provides an estimate of the ratio

jj zNi1
jj = jj yNi1

jj; can be evaluated at the initial state, i.e. t = 0; by

�1 '
"

�t jj yNi1
jjj yNi1

j2
:

Hence, we insure that :

�Ni1
= �t j _zNi1

j2� c�t j yNi1
j2jj zNi1

jj� ":

Then, the condition on �Ni1
(") is satis�ed i.e. �Ni1

(") � �t: Moreover, we

can implement a self{adaptative procedure allowing a dynamical reevaluation
of these constants during the time evolution. So, if �1 and �2 were previously
�xed in an empirical way in the algorithms, we have found now a more
e�cient way to evaluate these constants.
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of re�nement Ni1(tj) and Ni2(tj) according to the procedures (??) and (??).

Moreover, we impose that

�Ni1
(") =

K"

j _zNi1
j2

� �t:

With (??) and (??), we derive an a priori estimate of respectively �Ni2
(") and

� 00Ni1
(") ; we then obtain an evaluation of the length �c(tj) of the j

th cycle :

�c(tj) = min(�Ni2
("); � 00Ni1

(")): (51)

We note here that, with this de�nition, �c(tj) can be smaller than one V{
cycle, i.e. (2(i2�i1)+1)�t ; in such case, levelsNi1 and Ni2 are too small and
need to be reevaluated. With (??), we have an a priori estimate of the global
length of the whole cycle. Finally, we have computed the three characteristic
values :

Ni1(tj); Ni2(tj) and �c(tj):

As in ??, the integration is performed on the interval [tj; tj + �c(tj)] by a
succession of V{cycles. At the end of each V{cycle, i.e. at time tj+pV = tj +
(2p(i2�i1)+1)�t; we derive an a posteriori estimate of the quantities � 00Ni1

(")

and �Ni2
("): Hence, we take into account the evolution of the scales lying in

the transition range of the spectrum of the velocity (see Figure ??). At this
time, if (tj + �c(tj))� tj+pV is larger than one full V{cycle, i.e. 2(i2� i1) + 1
time iterations, we perform another V{cycle after reajdusting the value of
�c(tj) with the new values of � 00Ni1

(") and �Ni2
("): Now, in the other case, i.e.

if (tj + �c(tj)) � tj+pV is smaller than one V{cycle, we stop the whole cycle
by saying that

tj + �c(tj) = tj+1:

At tj + �c(tj), we compute the small scale components zNi2 of the spectrum
by projecting the solution on the Approximate Inertial Manifold (??).

Then, we readjust the two levels and restart a new cycle as it was done in

Section ??.

Before we conclude this section, we want to note that with this algorithm,
in opposition with the previous ones (see for instance [?], [?] or [?]), the

constants �1 and �2 of the procedures (??) and (??) can be �xed very easily.
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that N1 lies in the dissipation range and that j _z(t) j2 can be estimated by

j ��z j2; we obtain :

j �(z) j2 � c16 j z j2;
by using

j _zN1
j2 ' (�k2N1

) j zN1
j2 :

Hence, in that speci�c case, the error �(z) is of the order of z itself. Thus (??)

can be used in the quasi{static range of the spectrum where z is of the

order of the scheme accuracy. On Figure ??, we can see that the quantity

(�k2N1
)�1 j _z(t) j2 becomes larger than j z j2 itself when the cut{o� value N1

decreases. Hence, it seems that if (??) is an e�cient way to compute the
very �ne structures of the 
ow lying far inside the dissipation range, it is no
longer the case for the scales of the order of, and immediately larger than
the dissipation scale `�:

2.4 Description of the complete multilevel algorithm.

In this section, we summarize the complete multilevelmethod which includes
the time scales derived in Section ??. We still denote by " the accuracy of
the computation ; we recall that " is a given parameter in the following

algorithm.
As in subsection ??, we choose a sequence of levels Ni such that :

N1 < N2 < . . . < Ni < Ni+1 < . . . < N:

The whole time interval of the simulation, namely [t0; t0+T ]; is splitted into
several intervals of the form

[tj; tj + �c(tj)];

where tj = t0 +
j�1X
k=1

�c(tk): Futhermore, we assume that the �nal time t0 + T

satis�es

t0 + T = tm;

so that we havem intervals. Let us now assume that the approximate solution

uN (x; t) is known at time tj with j < m: As in ??, we compute two levels
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note that the error "(z) does not depend directly on the level Ni2 : there is

no restriction on the value of Ni2 : The Approximate Inertial Manifold (??)

can then be used to simulate the evolution of the �ne structures of the 
ow

even for wave{numbers lying inside the inertial range of the spectrum. In

the numerical simulations presented in the next subsection, (??) will be used.

Remark 2 : Let us now consider the Approximate Inertial Manifold intro-

duced in [?], namely :

� ��z+QB(y;y) = 0: (49)

We recall that (??) consists of an approximation of the full equation of the
small scale components z; where the time derivative _z as well as the coupled

nonlinear terms QBint(y; z) have been dropped. In the case considered here
of periodic boundary conditions, it is easy to invert the Stokes operator (��)
and then z can be evaluated as a function of y :

z = (���)�1QB(y;y): (50)

At this point, we note that for large values of �c; (??) and (??) are equivalent.
The order of magnitude of the dropped terms in the small scale equations
may induce a restriction on the use of (??) to evaluate z: In fact, we want
to �nd criteria telling in which range of the spectrum (??) can be applied.
The spatial error �(z) appearing when (??) is used is exactly given by the

di�erence between (??) and the z equation, i.e. :

�(z) = (��)�1( _z+QBint(y; z)):

We can then estimate

j �(z) j2 � (�k2N1
)�1 j _z+QBint(y; z) j2 :

In the numerical experiments that we have conducted, we have seen that the
right{hand side of the previous inequality is of the order of (�k2N1

)�1 j _z j2 ;
hence it follows that

j �(z) j2 � c15 (�k
2
N1
)�1 j _z(t) j2;

where c15 is a nondimensional constant of the order of unity. Then, the spatial
error introduced by (??) mainly depends on the size of j _z(t) j2 : Assuming
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(??) means that the small scales are slaved by the large ones. Also, from a

computational point of view, (??) provides an e�cient way to evaluate the

small scales. In comparison to a classical time scheme, (??) presents the

advantage that only one evaluation of the nonlinear terms is required. The

error occuring by using (??) instead of integrating the small scales equation

is constituted by two components, namely the time discretization on the

approximation of the integral and the dropped terms QBint(y; z) :

j "(z) j2 � j
Z t+�c

t
e��(��(t+�c))�QBint(y(�); z(�)) d� j2

+ j
Z t+�c

t
e��(��(t+�c))� (QB(y(�);y(�))�QB(y(t+ �c);y(t+ �c))) d� j2

� �c j QBint(y; z)t;�c j2 + 2 �c j QB(y;y)t;�c j2
(47)

where j QBint(y; z)t;�c j2 = max
�2[t;t+�c]

j QBint(y(�); z(�)) j2; and similarly for

j QB(y;y)t;�c j2 :
Considering the previous discussions,

j _z(t) j2 ' j QBint(y(t); z(t)) j2

' j QBint(y; z)t;�c j2

' j QB(y;y)t;�c j2 :

Then, we obtain an estimate of the error :

j "(z) j2 � c14 �c j _z(t) j2 : (48)

Recalling that �c is de�ned such that

�cj _z(t) j2 � K ";

we then have the following estimate :

j "(z) j2 � c14 K ":

Then, from the de�nition of the level Ni2 and �c; the error introduced by

using the approximate equation (??) is always smaller than ": We want to
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2.3 Approximate equation for the quasi{static scales

zN1
: projection on an Approximate Inertial Man-

ifold.

In this section, we intend to discuss the e�ciency of the Approximate Inertial

Manifolds (AIM) and show in which part of the spectrum they can be used.

We consider an approximation of the equation of the small scales (??) in

which we drop the coupled nonlinear terms :

dz

dt
� ��z+QB(y;y) = 0: (43)

We now introduce an operator e��t� de�ned by :

e��t�z =
X

k2INnIN1

e�jkj
2tû(k; t) wk:

Then by applying this operator to (??), we obtain :

d

dt

�
e��t�z

�
= �e��t�QB(y;y): (44)

We assume, in agreement with the method described in Section ??, that z
has been frozen on the time interval [tj; tj+�c(tj)] where �c(tj) is estimated as
in the previous section. For the sake of simplicity, we write here t instead of
tj and �c instead of �c(tj): We then integrate (??) over the interval [t; t+ �c];
which yields :

z(t+ �c) = e��c�z(t)�
Z t+�c

t
e��(��t��c)�QB(y(�);y(�)) d�:

Consider then the following approximation of the right{hand side :Z t+�c

t
e��(��(t+�c))�QB(y(�);y(�)) d�

' (���)�1(1� e��c�)QB(y(t+ �c);y(t+ �c)):

(45)

Finally, z(t+ �c) is computed by :

z(t+ �c) = e��c�z(t)

�(���)�1(1 � e��c�)QB(y(t+ �c);y(t+ �c))
(46)
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information ; nevertheless, the numerical experiments show a correlation

between
j P _Bint(y; z) j2
j PBint(y; z) j2

and
j _z(t) j2
j z(t) j2

as we can see on Figure ??. So, we deduce that

� 2

2
j P _Bint(y; z) j2 � c12

� 2

2
j PBint(y; z) j2

j _z(t) j2
j z(t) j2

;

where c is nondimensional constant of the order of the unity. Hence, it follows
that :

� �
 

2K"

c12 j _z(t) j2
j z(t) j2

j PBint(y; z) j2

!1=2

= � 00("): (41)

We then obtain with (??) an estimate of � as a function of j _z(t) j2 : From
a computational point of view, (??) is much more e�cient than (??). As
it was noted before, we have to derive an estimate on � 00Ni1

(") in order to
control the time variations of the transfer terms which depend on the scales
in the transition range. We now recall that the level Ni1 is de�ned by the

evaluation of the ratio :

�1(tj) =
jj zNi1

(tj) jj
jj yNi1

(tj) jj
:

Moreover, this ratio is equivalent to the ratio of the coupled nonlinear terms

of the large scales in the energy norm, namely

j PNi1
Bint(yNi1

; zNi1
) j2

j PNi1
B(yNi1

;yNi1
) j2

� c13
jj zNi1

(tj) jj
jj yNi1

(tj) jj
= c13 �1(tj);

where c is of the order of the unity. The estimates can then be written under

the new form :

� 00Ni1
(") �

 
2K"

�1(tj) j PNi1
B(yNi1

;yNi1
) j2

� j zNi1
(tj) j2

j _zNi1
(tj) j2

!1=2

: (42)

In (??), the time derivative of the small scale components _zNi1
(tj) can be

estimated as it was done previously. Finally, �Ni1
(") provides a constraint on

the choice of the level Ni1 ; while �Ni2
(") and � 00Ni1

(") provides two estimates
of the length of the whole cycle.
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In this form, it clearly appears that the transfer terms PBint(y; z) is a cor-

rection to the time derivative of the large scale components. As it was done

before for the small structures, we derive a Taylor expansion of y(t) :

y(t+ � ) = y(t) + � _y(t) +
� 2

2
�y(t) + o(� 3): (38)

We assume here that the terms of order larger than three are negligible.

From (??), we can derive :

�y(t) = _F (y)� P _Bint(y; z):

Reporting this expression into (??), we obtain :

y(t+ � ) = y(t) + � _y(t) +
� 2

2
_F (y)� � 2

2
P _Bint(y; z) + o(� 3):

As we tolerate an error of the order of " on y(t+ � ), the coupled nonlinear
terms PBint(y; z) can be frozen during a time �; if :

� 2

2
j P _Bint(y; z) j2 � K": (39)

Then, it follows an estimate on � :

� �
 

2K"

j P _Bint(y; z) j2

!1=2

= � 0("): (40)

We note that, if " is the accuracy of the scheme, condition (??) is necessary
to preserve the order of the time scheme. On Figure ??, we have plotted

the evolution of the ratio � 0(") for di�erent levels of re�nement Ni. As for
� ("), the quantity � 0(") decreases when Ni decreases, which is due to the

fact that P _Bint(y; z) has a decaying spectrum, like _z(t). So, for the levels

Ni lying in the transition range, i.e. between Ni1 and Ni2, the value of �
0(")

corresponding to the level Ni1 is the most restricted one. Hence, in order to

control the variations of PNi
Bint(yNi

; zNi
) on the di�erent levels, a su�cient

condition is to estimate � 0(") on the lower level Ni1 of the transition range.
We want to note that the mathematical estimates which can be derived on

the time derivative P _Bint(y; z) of the transfer terms do not provide e�cient
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where c11 is a constant of the order of unity. From the de�nition of the norm

j � j2 and of zNi2
, we can obtain :

� j �zNi2
(tj) j2 � � (kNi2

)2 j zNi2
(tj) j2 :

We then obtain the following estimate of �Ni2
(") :

�Ni2
(") � K"

c11� (kNi2
)2 j zNi2

(tj) j2
:

Moreover, we recall that, by de�nition :

j zNi2
(tj) j2 = �2(tj) j yNi2

(tj) j2 :

We �nally have an a priori estimate for �Ni2
:

�Ni2
(") � K"

� kNi2

2�2(tj) j yNi2
(tj) j2

: (36)

If " is the accuracy of the time scheme, we recall that K corresponds to a
high order derivative of uN versus time. Hence, we can reasonably assume
that K is at least of the order of j yNi2

(tj) j2 : This case occurs when a Direct
Numerical Simulation is performed.

Time scale estimate for the transfer terms.

Let us denote by y instead of yNi
the large scale component of the 
ow. We

recall that y is governed by the equation :

_y� ��y+ PB(y;y) + PBint(y; z) = Pg:

Here, P denotes PNi
and _y =

@y
@t

. Let us rewrite the previous equation under
the form :

_y = ��y+ Pg � PB(y;y)� PBint(y; z):

We introduce the function F de�ned by

F (y) = ��y+ Pg � PB(y;y);

so that :
_y = F (y)� PBint(y; z): (37)
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According to the de�nition of a V{cycle, on the lower level Ni1(tj); the char-

acteristic time scale has to satisfy :

�Ni1
(") � �t: (33)

We recall that (??) is motivated by the fact that the scales zNi1
will be

frozen over only one time iteration during a complete V{cycle ; (??) is then

a constraint that Ni1(tj) has to satisfy. As we have previously remarked, the

time derivative can be evaluated by the nonlinear terms, i.e. :

j _zNi1
j2 ' j QN

Ni1
B(uN ;uN ) j2 :

At time tj; Bint(yNi1
; zNi1

) is obtained by using the following relation :

Bint(yNi1
; zNi1

) = B(uN ;uN) �B(yNi1
;yNi1

):

Hence, B(uN ;uN ) will be computed at that time. Then, the computation of
the quantity

�Ni1
(") =

K"

j _zNi1
(tj) j2

' K"

j QN
Ni1

B(uN ;uN) j2
(34)

will not add extra cost. With (??), we are sure that on all levels Ni higher
than Ni1, the corresponding scales can be frozen during more than one time
iteration.

The characteristic time �Ni2
(") provides an estimate of the global time

length �c(tj) of the whole cycle [tj; tj + �c(tj)] ; �Ni2
(") can be evaluated as

in (??), i.e. :

�Ni2
(") ' K"

j QN
Ni2

B(uN ;uN ) j2
: (35)

Remark 1 : if Ni2 lies in the quasi{static range, another estimate can be

derived ; as we have seen before, we have :

j _zNi2
(tj) j2 ' � j �zNi2

(tj) j2 :

Then, we can write :

j _zNi2
(tj) j2 � c11� j �zNi2

(tj) j2;
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As we saw in Section ??, the quantity � _z(t) can be much smaller than z(t):

We can then assume that the higher order terms, in the Taylor expansion

are negligible by comparison with the �rst order ones.

As in the previous section, we denote by " the accuracy, i.e. the solution

is approximated with an error of the order of ": Let us assume that, on an

interval [t; t+ � ]; we tolerate an error of the order of " on the approximation

of the small scale components. From (??), we then derive an estimate on �;

namely :

� � K"

j _z(t) j2
: (32)

We denote � (") = K"=j _z(t) j2; where K is a nondimensional real constant of
the order of the unity. As the time derivative j _z(t) j2 has a decaying spec-
trum, the quantity � (") then decreases with decreasing values of the level
Ni: Estimate (??) then provides a restriction on the available level on which

the modes can be frozen, i.e. there exists a level Ni such that � (�) becomes
smaller than the time step �t: On Figure ??, we have plotted the ratio � (")
for di�erent values of Ni: These results are obtained from the computation
presented in Section ??. In this case, the accuracy is given by the temporal
discretization and is of the order of �t3: As the time step �t is of the order

of 10�3; we can estimate K" ' 10�8: So, for a �xed given value of the level
Ni; the corresponding time scale � (") presents very strong variations. In a
previous version of the algorithm, � was estimated by (�k2Ni2

)�1 and then was
constant in time ; this choice is obviously inappropriate. Deriving an esti-
mate on � (") is essential to insure the e�ciency of the algorithm. Indeed, we

can imagine a situation where the procedure (??) and (??) allows the choice
of a level Ni1 while the condition (??) is violated, i.e. that � is much smaller

than the time step. Hence, the constraint (??) provides an additional way

to determine Ni1 and Ni2:

In the transition range [Ni1(tj); Ni2(tj)]; we have a time estimate �Ni
(");

given by (??), for level Ni :

�Ni
(") =

K"

j _zNi
(t) j2

:

As we have noted above, the quantity �Ni
(") decreases when Ni decreases.
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We note that if k is large enough, û(k) is a component of the small scales.

For instance, we assume that :

j k j� Ni1(t):

Then, k lies either in the transition or quasi{static range. According to the

implementation of the multilevel method in (??), û(k; t) is replaced by an

approximation close to the actual value, as the perturbations are smaller

than the accuracy ": If k lies far enough in the dissipation range, then the

dissipative terms are quasi{dominent, namely :

j _zN1
j2 ' j ��zN1

j2 ' j QN
N1
Bint(yN1

; zN1
) j2;

as we can see on Figure ??. In that case, the errors introduced by the quasi{
static integration are quickly damped by the e�ects of the operator �� :
few corrected iterations are needed. If k is not as large, i.e. if it is closer to
the inertial range, then the coupled nonlinear terms become the most impor-
tant terms of equation (??). In that case, the error is convected by nonlinear

e�ects in the largest wavenumbers, and are �nally damped by viscous e�ects.

During the V{cycles, the modes closer to Ni1(t) are more often integrated
than the ones close to Ni2(t): The structure of the V{cycles is thus well{
adapted to the integration of the small scales. As we will see in Section ??,

devoted to the description of the numerical results, there is no accumulation
of errors in the intermediate scales and there is no energy pile{up in the high
wavenumbers of the Fourier decomposition. The enstrophy cascades are well
described by the V{cycle technic.

2.2 Time scale estimates for the small eddies and for

the nonlinear interaction terms.

Time scale estimates for zN1
:

From now on and for the sake of simplicity, we omit the subscripts N1 in the
notations. We then denote by z(t) the small scale components of the 
ow.

As the Navier{Stokes equations are analytic in time (see [?]), we can write a
Taylor expansion of z(t) :

z(t+ � ) = z(t) + � _z(t) + o(� 2): (31)
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Figure 3: The multilevel procedure.

Let us �rst recall the equation satis�ed by the kth coe�cient of the Fourier
decomposition of uN :

dû(k)
dt

+ � j k j2 û(k) +B̂k(yN1
;yN1

)

+B̂int;k(yN1
; zN1

) = 0:
(28)

We assume here that k is such that j k j� m0 and hence (see (??)) :

ĝ(k) = 0:

We can then write (??) in the following form

d

dt

�
e�jkj

2tû(k)
�

= �e�jkj2t
h
B̂k(yn1 ;yn1)� B̂int;k(yn1; zn1)

i
: (29)

Integration of (??) over a time interval [t; t+ � ] leads to :

û(k; t+ � ) = e��jkj
2� û(k; t)

�
Z t+�

t
e�jkj

2(��(t+�))
h
B̂k(yn1 ;yn1) + B̂int;k(yn1 ; zn1)

i
d�

(30)
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of the large ones. Moreover, a �rst order law only requires one evaluation of

the nonlinear terms, on the �ne grid (see Section ??).

Finally, at tj+1 = tj + �c(tj); i.e. at the end of a whole cycle, we have an

approximation of uN (tj+1) by :

uN (tj+1) = yNi2
(tj+1) + zNi2

(tj+1):

We start the full procedure again by computing two new levels Ni1(tj+1) and

Ni2(tj+1): Then, we perform new V-cycles on the time interval [tj+1; tj+1 +

�c(tj+1)]; and so on.

Basically, we can summarize this process by saying that the full time
interval [0; T ] of the whole computation is splitted into several small time
intervals [tj; tj + �c(tj)] and, on each of these intervals the velocity spectrum

is splitted into three fundamental regions :

� the dynamical range, corresponding to wavenumbers smaller than kNi1
:

It represents the large scale structures of the 
ow { i.e. the scales con-

taining most of the energy and the enstrophy of the 
ow. The modes
lying in this part of the spectrum are integrated at each time step of
the time interval [tj; tj + �c(tj)]:

� a transition range, corresponding to wavenumbers between kNi1
and

kNi2
: An up and down oscillation process is used, i.e. the current level

of discretization Ni(t) undergoes all the intermediate levels between
Ni1(t) and Ni2(t), while the time evolves.

� a quasi{static range, i.e. for wavenumbers larger than kNi2
: It repre-

sents the smallest scales, which are numerically negligible ; i.e. their
energy and their variations are smaller than the expected accuracy.

Figure ?? represents these three di�erent regions of the spectrum.

Now we want to make some remarks on the e�ect of the integration

procedure previously described on the smale scale components of the 
ow.

One of the crucial points concerns the technic used to update the small

structures zN1
(t) lying in the transition range.
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The �rst integral is computed by an explicit Runge{Kutta scheme of order

3 (see [?]). With this scheme the interval [t � �t; t] is splitted into three

sub{intervals of the form [ti; ti+1]; where t0 = t ��t and t3 = t: On each of

these sub{intervals, the second integral is approximated as follows :Z ti+1

ti

e��jkj
2(ti+1��)Bint;k(yNi

(�); zNi
(�)) d�

' �t e��jkj
2(ti+1�ti) Bint;k(yNi

(tj); zNi
(tj))

(26)

We note here that this approximation is an explicit Euler scheme on the
interval [ti; ti+1]; where the following approximation is performed

Bint;k(yNi
(ti); zNi

(ti)) � Bint;k(yNi
(tj); zNi

(tj)):

This integration requires the storage of PNi
Bint(yNi

(tj); zNi
(tj)); at the be-

ginning of the cycle, for each coarse grid Ni between Ni1 and Ni2 , i.e. for
(i2 � i1 + 1) levels.

As the time �c(tj) is adjusted to be a multiple of a complete V{cycle,
the current level at time tj + �c(tj) is equal to Ni2 , the highest coarse level.
Referring to the integration process described above, the large scales yNi2

are known at the end of the cycle, i.e. at time tj + �c(tj): The smallest scales
zNi2

are then updated by projecting the approximate solution uN (tj+ �c(tj))

on an approximate form of the small scales equation (??), for instance

zNi2
(tj + �c(tj)) = �(yNi2

(tj + �c(tj)); zNi2
(tj); �c(tj)): (27)

(??) is the equation of an Approximate Inertial Manifold. Such manifolds

were �rst derived in [?] ; (??) provides an interaction law between the small

and the large scale components of the 
ow, and expresses zNi2
as a function

of yNi2
: Further information on such law can be found in [?], [?], and [?].

Other kinds of approximate inertial manifolds are derived in [?] and [?] ; the
implementation of an Approximate Inertial Manifolds of �rst order will be

discussed in Section ??. In Section ??, we will discuss on the e�ciency of
these nonlinear forms and derive some estimates which explain in which range

of the spectrum they can be implemented. >From a strictly computational

point of view, an approximate inertial manifold is e�cient in the sense that
this equation allows us to estimate the small scales as an explicit function
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number of such cycles. Figure ?? summarizes this process.

Let t be an intermediate time on the interval [tj; tj + �c] ; according to

the previous procedure, the current level Ni(t) is given by :

Ni(t) =

8>>>>>><>>>>>>:

Ni2�r+1; if 1 � r � (i2 � i1);

Ni1+(r�(i2�i1+1))

if (i2 � i1 + 1) � r � 2(i2 � i1);

(24)

where r is given by :

t� tj = (2p (i2 � i1) + r) �t:

Knowing the size Ni of the coarse grid at time t, we decompose uN (t) into :

uN(t) = yNi
(t) + zNi

(t);

where yNi
(t) represents the scales larger than `Ni

, and zNi
(t) the scales

smaller than `Ni
and larger than `N . The computation of both components

yNi
(t) and zNi

(t) are performed as follows :

� computation of zNi
(t) :

zNi
(t) = zNi

(t��t);

i.e. zNi
(t) is frozen and set to its last value.

� computation of yNi
(t) : in order to evaluate yNi

(t), we integrate

equation (??) over the interval [t��t; t] ; then it follows that

û(k; t) = e��jkj
2�tû(k; t��t)

+
Z t

t��t
e��jkj

2(t��)Bk(yNi
(� );yNi

(� )) d�

+
Z t

t��t
e��jkj

2(t��)Bint;k(yNi
(� ); zNi

(� )) d�

(25)

for every k in INi
= [1�Ni=2; Ni=2] � [0; Ni=2]:
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� phase 1 : on the interval [tj; tj + (i2 � i1)�t], the current level Ni(t) is

de�ned by :

Ni(t) = Ni2�j ; for j = 0; :::; i2� i1;

hence Ni(t) decreases from Ni2(tj) to Ni1(tj).

� phase 2 : on the interval [tj + (i2 � i1)�t; tj + (2(i2 � i1) + 1)�t], the

current level Ni(t) is de�ned by :

Ni(t) = Ni1+(j�i2+i1�1); for j = i2 � i1 + 1; :::; 2(i2� i1) + 1;

hence Ni(t) increases from Ni1(tj) to Ni2(tj).

NLevel

Time t
t j t

j+1

N

N

N

i

i

1

2

N
i

t

i

Figure 2: Evolution of Ni(t):

Then, a V-cycle consists in [2(i2�i1)+1] time iterations. The quantity �c(tj)

is adjusted so that the time interval [tj; tj + �c] can be divided into a �xed
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where �1 and �2 are two given constants ; �2 is chosen so that e(zNi2
) is of the

order of the accuracy "2: In the previous versions of the algorithm, the pa-

rameter �1 was arbitrary �xed ; we will derive an estimate of �1 in section ??.

. In order to be sure that Ni1 < Ni2 ; we impose the additional condition that

(i2� i1) has to be larger than a given constant. This is motivated by the fact

that, as we described in the previous section, the intermediate region of the

spectrum between Ni1(tj) and Ni2(tj) is a transition zone between the large

scales and the static (frozen) small scales.

We now introduce the quantities

�1(tj) =

 
ens(zNi1

(tj))

ens(yNi1
(tj))

!1=2

(22)

and

�2(tj) =

 
e(zNi2

(tj))

e(yNi2
(tj))

!1=2

(23)

Let �c(tj) be the length of the time interval during which the scales smaller
than `Ni2

, i.e. zNi2
, can be frozen without loosing the order of approximation

on the larger scales ; estimates for the characteristic length �c(tj) will be
derived in Section ??. In previous works, see for instance [?], �c(tj) was

estimated by the characteristic relaxation time of the viscous term, namely :

�c(tj) = (�k2Ni2
)�1:

As we will see in Section ??, this estimate is not �ne enough and may induce

strong errors in the approximation of the velocity �eld. The available levels
of re�nement, lying between Ni1(tj) and Ni2(tj), are

Ni1 < Ni1+1 < . . . < Ni < . . . < Ni2�1 < Ni2;

which correspond to (i2 � i1 + 1) levels. For the sake of simplicity, we omit
here the dependence on tj for the levels Ni1 and Ni2:

As in classical multigrid methods, we use the concept of V-cycle to per-

form the integration of (??) on the interval [tj; tj+�c]: Let us de�ne a V-cycle
starting at time tj: Such a V-cycle is constituted of two phases described as

follows :
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2.1 The multilevel adaptive procedure

As in the preceeding Section ??, we choose an integer N larger than m0

(cf (??)), which represents the total number of modes retained in the trun-

cation and we denote by

uN =
X
k2IN

û(k; t) wk;

an approximation of u. We associate with N the largest wave number of

uN , namely kN = N=2: Hence, the smallest scale in the computation is

`N = 1=kN :

We are now given a sequence of levels Ni satisfying

N1 < N2 < . . . < Ni < Ni+1 < . . . < N: (19)

As we want to perform pseudo-spectral approximations of equations (??) on
these di�erent levels of re�nement, the elements Ni of these sequences have
to satisfy the restrictions imposed by the Fast Fourier Transforms (FFT) ;
namely, the Ni's must be of the form 2p 3q 5r, where p � 2 and q; r � 0: Such

an algorithm enables us to de�ne a suitable sequence of levels Ni: Examples
of sequences will be given in Section ??, where the numerical results will be
described. We note that an FFT allowing only decompositions in powers of
2 is not e�cient for this purpose.

Let us now assume that the approximation uN (x; t) is known at a time
tj: As it was suggested in the previous section, we de�ne two levels of dis-
cretization Ni1(tj) and Ni2(tj) by the following procedure :8>>>>><>>>>>:

i1 is de�ned by the condition that

for every i � i1;

ens(zNi
(tj))

ens(yNi
(tj))

< �1:

(20)

8>>>>><>>>>>:

i2 is de�ned by the condition that

for every i � i2;

e(zNi
(tj))

e(yNi
(tj))

< �2:

(21)
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remains smaller than a given constant. As the computation of the nonlinear

terms requires several calls to the FFT routines, the evaluation of the above

ratio is expensive and then prohibitive. So, we have looked for another form

of it. In the numerical results, we have noted that

j PN1
Bint(yN1

; zN1
) j2

j PN1
B(yN1

;yN1
) j2

' kzN1
k

kyN1
k =

 
ens(zN1

)

ens(yN1
)

!1=2

;

as we can see on Figures ??. Hence, we use the ratio of the enstrophy of the

small scales over the enstrophy of the large ones to evaluate the level N 0
1("):

As we have seen before, the notion of variation of the scales is intrinsic to the
de�nition of N 0

1("): More sophisticated criteria will be derived in Section ??.
Finally, we want to note that controlling the size of PN1

Bint(yN1
; zN1

) and its
time variation ensures that the interaction of the small scales over the large
ones is negligible, in the sense that this interaction can be locally neglected
from a numerical point of view.

2 Description of the multiscale method.

As it was shown in Section ??, the small scales of the 
ow as well as the terms
involving their nonlinear interactions can be �xed in time during a few time
steps. Nevertheless, their order of magnitude may change drastically over
a period of time ; so, the cut{o� value N1 de�ning the separation between

the small and the large eddies can not be let �xed in time. Hence, we
propose a multilevel adaptative procedure evaluating the appropriate level
of re�nement as time evolves. Using partly theoretical arguments, we show in

this section that we can derive estimates for the variations of the small scales
and of the transfer terms to the largest scales. We then deduce estimates

for the length of the frozen periods. Finally, we introduce these estimates in
the algorithm and we derive a dynamic procedure allowing an a priori and

an a posteriori control of the length of the quasi{static time intervals. In the
�rst subsection, we describe the multilevel adaptive procedure ; secondly, we

derive time scales estimates of the �ne structures and of the transfer terms.
In the third part, we give an explicit approximation law used to compute

the small scale components of the 
ow and we derive error estimates for this

Approximate Inertial Manifold. Finally, we describe the whole algorithm
including the modi�cations previously discussed.
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According to the estimate previously derived, �N1(") is much smaller than ":

From the previous estimates we can deduce that there exists several levels of

discretization N1 lower that N1("); for which �N1
is also smaller than ": Let

us denote by N 0
1(") the lowest level of re�nement satisfying �N 0

1
(") � ": The

above result means that the small scales can be integrated with a larger time

step, even if their time scales are smaller than the ones of the large eddies.

By de�nition and due to the behavior of j _zN1
j2; with respect to N1; the

quantity �N1
increases for decreasing values of N1: Hence, the appropriate

time step for `N1(") is larger than the appropriate one for `N 0

1
("): Moreover,

on Figure ??, we note that j _zN1
j2 presents strong variations during the

time evolution. Consequently, the levels N1(") and N 0
1(") are not constant

in time. To take into account this speci�c dynamics of the small scales, we
propose, as it was done in [?], [?] and [?], to use multigrid technics. The

integration of the intermediate scales `N1
; `N1(") < `N1

< `N 0

1
("); consists

in performing a succession of multigrid V{cycles during which some parts
of the spectrum are frozen during the time evolution. Hence, we use here
a property of the �rst order term of the evolution equation of the small scales.

On Figures ??, we can see that the variations of PN1
Bint(yN1

; zN1
) and of

zN1
are correlated. Therefore, we deduce that the variations of PN1

Bint(yN1
; zN1

)
over one time iteration is smaller than PN1

Bint(yN1
; zN1

) ; in fact, one can
show that :

�0
N1

= �t j PN1
_Bint(yN1

; zN1
) j2 � c10

 
kN1

kN

!
j PN1

Bint(yN1
; zN1

) j2 :

The nonlinear interaction term PN1
Bint(yN1

; zN1
) represents a small part of

the large scales time derivative _yN1
: Hence, its variation over one time itera-

tion can be neglected without a lost of the accuracy on the large scale approx-

imation. We use here a property of the time evolution of PN1
Bint(yN1

; zN1
)

which is a second order term of the large scale evolution. As the time scale of
zN1

is much smaller than the one of zN1
; the time derivative PN1

_Bint(yN1
; zN1

)

behaves as _zN1
and then is very oscilating with the time. From the previous

inequality, it appears that the quantity �0
N1

can be controlled by the term
PN1

Bint(yN1
; zN1

) ; hence, we estimate the level N 0
1(") by imposing that the

ratio
j PN 0

1
(")Bint(yN 0

1
("); zN 0

1
(")) j2

j PN 0

1
(")B(yN 0

1
(");yN 0

1
(")) j2

16



which can be estimated by (see [?], [?])

j B(zN1
;yN1

) j2 � c6 j zN1
j1=22 j �zN1

j1=22 kyN1
k :

In fact, the norm jj yN1
jj and the in�nity norm j yN1

jL1 are of the same

order. We then obtain

j B(zN1
;yN1

) j2 � c7 j zN1
j1=22 j �zN1

j1=22 j yN1
jL1 :

From the inequality (??), we deduce that

j QN
N1
B(zN1

;yN1
) j2 � c8 kN1

j yN1
jL1 j zN1

j2 :

A similar estimate can be derived for the third term QN
N1
B(zN1

; zN1
): We

�nally obtain

j QN
N1
Bint(yN1

; zN1
) j2 � c9 kN1

j uN jL1 j zN1
j2 :

Then,
�N1

� c9 kN1
�t j uN jL1j zN1

j2 :
As

�t � �

j uN jL1 N
=

�

j uN jL1
p
2 kN

;

we �nd

�N1
� c9

�p
2

 
kN1

kN

!
j zN1

j2;

which also implies that �N1
<j zN1

j2 in the inertial range as well. Fig-

ure ?? supports the theoretical estimates derived above. We want to note,

at this point, that these results will remain valid if energy is injected in the
small scales by a given external force, having a decaying spectrum ; i.e. if

ĝ(k) �j k ja e��jkj; for j k j larger than a given wavenumber.

Let us now introduce " the accuracy of the computations ; " represents

here an energy error. We assume that " is a given parameter, which can be
chosen under several considerations ; examples will be given in Section ??

devoted to the description of the numerical results. The accuracy " can be
associated with a small scale, i.e.

there exists a level N1(") (� N) such that

j zN1(") j2� ":
(18)
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We now try to derive a similar estimate when

`� � `N1
;

i.e. when `N1
is in the inertial range. In that case, we assume as shown

on Figure ??, that the time derivative _zN1
is of the order of the interaction

nonlinear terms

j _zN1
j2 � j QN

N1
Bint(yN1

; zN1
) j2 :

We recall that

j QN
N1
Bint(yN1

; zN1
) j2

= j QN
N1
B(yN1

; zN1
) +QN

N1
B(zN1

;yN1
) +QN

N1
B(zN1

; zN1
) j2

� j QN
N1
B(yN1

; zN1
) j2 + j QN

N1
B(zN1

;yN1
) j2

+ j QN
N1
B(zN1

; zN1
) j2 :

(17)

As QN
N1

is a projection operator, we have

j QN
N1
B(yN1

; zN1
) j2 � j B(yN1

; zN1
) j2 :

The bilinear form B can be estimated as follows (see for instance [?] and [?])

j B(yN1
; zN1

) j2 � c4 j yN1
jL1jj zN1

jj :

As j yN1
jL1'j uN jL1; for su�ciently large values of N1; we obtain

j B(yN1
; zN1

) j2 � c4 j uN jL1jj zN1
jj :

The decay of the velocity Fourier components implies that

kzN1
k � c5kN1

j zN1
j2; where c5 � 1;

so that

j QN
N1
B(yN1

; zN1
) j2 � c4 c5 kN1

j uN jL1j zN1
j2 :

We also have

j QN
N1
B(zN1

;yN1
) j2 � j B(zN1

;yN1
) j2;
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We recall that N is the total number of modes in each direction. We assume

that the smallest scale `N = 1=kN ; kN = N=2; is smaller than the Kraichnan

dissipation scale `� = 1=k�: Let us �rst consider the case where `N1
= 1=kN1

is

lying between `� and `N ; and `N ; `N1
; `� are of the same order of magnitude :

`N � `N1
� `�:

Let us assume, as shown in Figure ??, that the time derivative _zN1
is of the

order of the dissipation term (remember we are in the dissipation range),

j _zN1
j2 � � j �zN1

j2 :

Due to the exponential decay of the velocity spectrum in the dissipation
range, we can write

� j �zN1
j2 � c1 �k

2
N1
j zN1

j2; (15)

where c1 is a nondimensional constant of the order of unity. It follows by (??)
that :

�N1
= �t j _zN1

j2 � c2 ��t k
2
N1
j zN1

j2

� c2
�

N j uN jL1 �k2N1
j zN1

j2 :
(16)

Then, using the estimate of k� obtained in [?] namely

k� ' k0G
1=3 =

k0 j g j1=32

�2=3�
1=3
1

;

we obtain :

�N1
� c2

�k0 j g j1=32p
2�

1=3
1 j uN jL1

 
k2N1

kNk�

!
�1=3 j zN1

j2 :

As kN1
� kN ; we obtain :

�N1
� c3

j g j1=32

j uN jL1

 
kN1

k�

!
�1=3 j zN1

j2 :

Since kN1
� k�; then for su�ciently small values of the viscosity �; the vari-

ations of zN1
over one time iteration are much smaller than j zN1

j2 :
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classical (Galerkin) approximation of u based on the �rst N2
1 Fourier coef-

�cients consists in setting zN1
to zero in (??), so that PN1

Bint(yN1
; zN1

) is

neglected. If zN1
represents a small part of the kinetic energy, namely

e(zN1
) � e(yN1

);

then, we can expect that

j PN1
Bint(yN1

; zN1
) j2 � j PN1

B(yN1
;yN1

) j2 :
Therefore, the contribution of the interaction terms is much smaller than

the component of the nonlinear terms, involving only the large scales yN1
:

This argument can be justi�ed when comparing Figures ?? and ??. More
precisely, we have the following

j PN1
Bint(yN1

; zN1
) j2 � j PN1

B(yN1
;yN1

) j2

' '

� j �yN1
j2 j dyN1

dt
j2

However, the interactions terms can not be neglected in the �rst equation (??)
unless N1 is taken very large. Indeed, their e�ects on long time computations
can modify the behavior of the large scale components. Since the evaluation
of these terms at each time step is very expansive, we try to take their e�ects
into account in a simpli�ed manner. We will see that the time variations

of zN1
and PN1

Bint(yN1
; zN1

) are locally negligible, and this will allow us to
freeze them during some parts of the iterations.

1.2.2 Time variations of zN1
and PN1

Bint(yN1
; zN1

):

We now aim to derive an estimate of the variations of zN1
over one time

iteration. This quantity can be represented by

�N1
= �t j _zN1

j2;
where the dot represents the di�erentiation with respect to t: The time step

�t is given by the CFL stability condition :

�t N j uN jL1< �; with � < 1: (14)
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oped turbulent 
ow is expected to display a power{law inertial range and an

exponential decay for wavenumbers larger than the Kraichnan's dissipation

wavenumber (see Figure ??). So, the theoretical results mentioned above

are in agreement with this assumption in the sense that for su�ciently large

wavenumbers, the energy spectrum has a decaying behaviour. The exponen-

tial range is generally referred as the dissipation range.

k

E(k)

Inertial Range

Dissipation

Range

Figure 1: Energy Spectrum E(k).

Due to the bilinearity of B; we can split B(uN ;uN ) into

B(uN ;uN ) = B(yN1
+ zN1

;yN1
+ zN1

)

= B(yN1
;yN1

) +Bint(yN1
; zN1

);
(13)

where

Bint(yN1
; zN1

) = B(yN1
; zN1

) +B(zN1
;yN1

) +B(zN1
; zN1

):

It represents the interaction between the small and the large structures and

the interaction of the small structures among them. We now recall that a

11



and in the case considered here of periodic boundary conditions, the enstro-

phy, ens(u) is :

ens(u) =
1

2
jj u jj2 =

1

2
j ! j22 :

We now recall theoretical results, constituting the basis of this framework ;

they were established by Foias, Manley and Temam in [?] and [?]. In [?], the

authors proved that for su�ciently large values of N and N1; namely N and

N1 ' G2, where G designates the Grasho� number G =
j g j2
�2�1

(�1 ' 1=L2

where L is a characteristic length of the domain), and after a transient time,

depending only on the data, the small scale components zN1
(t) remain small

in both norms introduced above, while the large scales yN1
(t) are of the order

of u(t). We do not know how close to the inertial range the corresponding
cut{o� eigenvalue �N1

= cN2
1 can be, and it is one of our objectives in this

work to explore this point. In [?], the authors derived other estimates of the

ratios
j zN1

(t) j2
j yN1

(t) j2
and

jj zN1
(t) jj

jj yN1
(t) jj

in terms of the Grasho� number at appropriate powers of 1=(N1+1), when the
cut-o� value N1 is still of the order of G

2. Moreover, by using the analyticity

in time of the solutions of the Navier{Stokes equations and invoking the

Cauchy formula, one can show that j @zN1

@t
j2, as well as jj @zN1

@t
jj, are

respectively of the order of j zN1
j2 and jj zN1

jj; for N1 su�ciently large,

corresponding to a wavenumber in the dissipation range. Even if these results
do not provide �ne estimates on the norms of the time derivative of the small{
scale components, they show that the time derivatives of the velocity �eld u
have also a decaying spectrum, which is not the case of course in the inertial

range.

This behavior of the small-scale zN1
is very important and is one of the

keys of the numerical implementation of the multilevel method, as we will

see in the following sections. Although, these results were proved theoreti-
cally only when N1 is of the order of G2; and �N1

is far in the dissipation

range, numerical results show that zN1
is small compared to yN1

for much

smaller values of N1, and the same is true for their time derivative. >From
the phenomenological theory of two-dimensional turbulence point of view,

due in part to Kraichman (cf [?] and [?]), the energy spectrum of a devel-
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and

zN1
= QN

N1
uN =

X
k2IN

N1
=IN nIN1

û(k; t)wk: (11)

We note that, in the decomposition (??), yN1
represents the large{scale struc-

tures of the 
ow, and zN1
corresponds to the small{scale components, or in

other words, the �ne structures of the 
ow. Since, the operators PN1
and

QN
N1

commute with the di�erentiation operators, we have :

PN1
(�uN) = �(PN1

uN ) = �yN1
;

and
QN

N1
(�uN) = �(QN

N1
uN ) = �zN1

:

By projecting (??) with respect to PN1
and QN

N1
, we obtain the following

coupled system of ordinary di�erential equations (ODE) :8>>><>>>:
@yN1

@t
� ��yN1

+ PN1
B(yN1

+ zN1
;yN1

+ zN1
) = PN1

g;

@zN1

@t
� ��zN1

+QN
N1
B(yN1

+ zN1
;yN1

+ zN1
) = 0:

(12)

The initial conditions associated with (??) are PN1
u0 and QN

N1
u0. In (??),

as well as in the following, we will only use the projection operator PN1
with

N1 larger than m0:

We now introduce two norms :

j ' j2 =
�Z



j '(x; t) j2 dx

�1=2
;

and

jj ' jj =
�Z



jr'(x; t) j2 dx

�1=2
;

for any given �eld '(x; t) = ('1(x; t); '2(x; t)):We note that these norms are

related to well{known physical quantities. Indeed, with the above de�nitions,
the kinetic energy e(u) of the velocity �eld u is related to j � j2 by

e(u) =
1

2
j u j22;

9



where g = Pdivf and B(u;u) is a bilinear form de�ned by :

B(u;u) = Pdiv(! � u)

=
X
k2Z

2

 
( d! � u)k �

k

j k j2
(k � ( d! � u)k)

!
wk (x)

(6)

As we shall see later, the numerical procedures are directly applied to this

last form of the Navier{Stokes equations.

1.2 Separation of scales.

1.2.1 Small and large scales equations.

Let us choose an integer N: We introduce PN the orthogonal projector onto
the space spanned by the �rst N2 Fourier modes. A pseudo{spectral Galerkin
approximation uN of the velocity �eld u is given by

uN (x; t) =
X
k2IN

û(k; t)wk(x);

where IN = [1 �N=2; N=2]�[0; N=2] ; and uN satis�es the following equation

duN

dt
� ��uN + PNB(uN ;uN) = PNg: (7)

Here we only consider external force with no high wavenumber coe�cients,
namely :

ĝ(k) = 0; for k 2 INnIm0
; for some m0: (8)

Instead of (??), we can also assume that the spectrum of the external force
has an exponential decay for wavenumbers larger than a given one.

We now introduce the decomposition

uN = yN1
+ zN1

; with m0 � N1 � N; (9)

where

yN1
= PN1

uN =
X
k2IN

û(k; t)wk (10)

8



where P = p + 1
2 j u j2 : This choice is motivated by two facts. First, it

is important to note that a pseudo{spectral evaluation of (! � u) requires

three Fast Fourier Transforms (FFT ) fewer than the usual form (u �r)u.

Also, this form of the equations semi-conserves the kinetic energy for inviscid


ows, when a collocation or pseudo-spectral discretization is used (see [?])

and ensures numerical stability, while the original form does not.

Since the unknowns u and p are space periodic functions, they can be

expanded in Fourier series :

u(x; t) =
X
k2Z

2

û(k; t) wk(x);

p(x; t) =
X
k2Z

2

p̂(k; t) wk(x);

(3)

where wk(x) = e2i�kL�x, kL = (k1=L1; k2=L2) and kL�x = (k1x1=L1 + k2x2=L2) :
The Fourier coe�cients û(k; t) = (û1(k1; t); û2(k2; t)) (resp. p̂(k; t)) are com-

plex numbers and we recall that :

ûi(�k; t) = �̂ui(k; t); i = 1 or 2;

p̂(�k; t) = �̂p(k; t);
(4)

where �c denotes the complex conjugate of c: This property is very important
in practice ; it allows to store twice fewer coe�cients in the second direction
of the spectral space, when we look for a �nite approximation of u(x; t) and
p(x; t); i.e. by storing û(k; t) for k such that k2 � 0; (??) allows us to recover

the Fourier coe�cients û(k; t) for k2 < 0:

Let us now introduce Pdiv the projection operator onto the divergence

free space ; Pdiv can be easily expressed as :

Pdiv'(x) =
X
k2Z

2

 
'̂k �

k

j k j2
(k � '̂k)

!
wk(x):

Assuming that u and p lie in the proper Hilbert spaces (see for instance [?], [?])

and applying Pdiv to the Navier-Stokes equations, we obtain

@u

@t
� ��u+B(u;u) = g; (5)

7



1 Motivations.

1.1 Preliminary.

We consider here two{dimensional viscous incompressible 
ows driven by an

external volume force f , and governed by the Navier-Stokes equations :8>>>>>><>>>>>>:

@u
@t

� ��u+ (u �r)u+rp = f ;

r � u = 0;

u(x; t = 0) = u0(x);

(1)

where u(x; t) = (u1(x; t); u2(x; t)) is the velocity �eld, p(x; t) the pressure
(x = (x1; x2)), � is the kinetic viscosity and the density is set to unity.
Equation (??) is supplemented with boundary conditions, namely u and p

are periodic of period L1 (resp. L2) in the direction x1 (resp. x2): We denote

by 
 = (0; L1) � (0; L2) the period and we assume that the average of the
external force over the period 
 vanishes, i.e. :

1

j 
 j
Z


f(x; t) dx = 0; 8t:

Taking the average over the whole domain 
 of the momentum equation
in (??) and using the periodicity of u and p, we obtain :

d

dt

 
1

j 
 j
Z


u(x; t) dx

!
= 0:

Assuming now that the average of the initial condition is also zero, we con-

clude that the average of the velocity �eld vanishes :

1

j 
 j
Z


u(x; t) dx = 0; 8t:

We now denote by ! = r � u the vorticity and as usual we rewrite the

conservation of momentum equation in (??) as :

@u

@t
� ��u+ (! � u) +rP = f ; (2)

6



the order of the dissipation one, does not provide a su�cient resolution : the

large scales of motion are not recovered in that case. Hence, the multiscale

method provides an e�cient way to simulate the enstrophy dissipation and

the energy dissipation ranges. In order to describe the e�ect of the multiscale

procedure inside the power range, simulations with larger Reynolds number

have to be performed. Such study will be presented elsewhere.

5



namely ": At the end of each frozen period, the velocity �eld is projected

on an Approximate Inertial Manifold (AIM), which provides a simple and

e�cient way to directly compute the high frequencies. We analyze here the

perturbation introduced by using �rst order Approximate Inertial Manifolds

and we deduce in which range of the spectrum the manifold can be used to

compute the small scales.

The last section is devoted to the description and the analysis of several

numerical simulations performed with the multiscale (Nonlinear Galerkin)

method. The integral scale Reynolds number ReL was successively set to
784 and to 6; 328 for spatial resolutions of respectively (256)2 and (512)2:
In these cases, a full dissipation range is resolved as the larger wavenumber
is at least 6 times larger than the dissipation wavenumber. The Reynolds

numbers are not su�ciently large for the solutions to have a k�3 energy
spectrum power range ; indeed, the computed velocities have an intermedi-
ate energy spectrum between k�4 and k�3: Nevertheless, the di�erent scale
components are strongly time dependent, and they provide interesting tests
for the multilevel adaptative procedure. More physically relevant situations,

eg simulations with larger Reynolds number, will be treated and presented
elsewhere. For each simulation, the code has run during more than 50; 000
time iterations, which represents 10s of unit hours on a Cray-2.
In this last section, we �rst compare the results obtained with a previous
version of the algorithm with those obtained with the multiscale procedure

described in subsection ??. For this comparison a Direct Numerical Simu-
lation performed with a standard pseudo{spectral Galerkin approximation
is used as a reference. In the previous versions of the algorithm ( [?], [?]),
there was no control of the variations of the small eddies. Hence, the cut{o�

wavelengths as well as the length of the period during which the variations

of the small scales are frozen were not properly evaluated. This led to an
accumulation of perturbations and a loss of the accuracy ; this is no more

the case.
Finally, in order to study the e�ect of the cut{o� wavelength on the numeri-

cal results, we perform several simulations with decreasing cut{o� values. In
fact, we show that the separation wavenumber can be taken of the order of

the dissipation wavenumber k� ; as k� is of the order of 20; in our computa-
tion, the cut{o� value can not reasonably take smaller value. Nevertheless,

the standard Galerkin pseudo{spectral method, with a larger wavelength of

4



position of the unknowns, and provides two grids in the physical space. In

previous theoretical works (see for instance [?] and [?]), the authors have

rigorously proved that, for a su�ciently large wavenumber, the large scale

components contain most of the energy of the 
ow. The small scale struc-

tures represent then small quantities, which have to be taken into account in

order to correctly compute the large scales of motion. After recalling these

results and comparing them with numerical simulations, we show, based on

both theoretical and numerical investigations, that the time variation of the

small eddies over one time step can be smaller than the energy carried by

these scales themselves, when the cut{o� value is chosen su�ciently large. A
similar result is also proved for the nonlinear interaction terms expressing the
action of the small eddies over the large ones. Then, introducing the expected
accuracy of the computation " as a parameter, we deduce that there exists

a level such that the one{step time variation of the small scale components
is smaller than ": We note here that this result is not in contradiction with
the fact that the small eddies evolve faster than the large ones. In fact, their
time scales are smaller but their order of magnitude also decreases for large
wavenumbers.

Hence, the time variations of part of the spectrum can be locally neglected.
We have also proved that the interaction terms enjoy the same property.
These two fundamental results are one of the keys of the numerical algo-
rithm proposed in the following sections.

Based on these results, we have implemented a spatial and temporal mul-
tilevel adaptative method ; i.e. the level of re�nement, which de�ne the
separation of the 
ow into low and high frequencies, evolves in time under-

going successive multilevel V{cycles ; moreover, it follows the dynamic of the
small and the large scales of the motion. Moreover, some part of the spec-

trum are frozen, as well as the interaction terms, during short time periods.
After a complete description of this multilevel procedure, we derive several

estimates of characteristic time scales for the small structures and for the
terms involving their interactions with the large scale components. These

estimates provide an e�cient way to evaluate the length of the time interval
during which the small scales, corresponding to several levels of re�nement,

as well as the corresponding interaction terms are allowed to be frozen with-

out introducing an error larger than the accuracy ": Hence, we obtain a
completely self{adaptative procedure which depend on only one parameter,

3



quency components of the 
ow ; the small eddies are in fact expressed as

a nonlinear function of the large ones, they are slaved by the large ones.

Moreover, these manifolds enjoy the property that they attract all the orbits

exponentially fast in time and that they contain the attractor in a thin neigh-

borhood. In that sense, they provide a good way to approximate the solutions

of the Navier{Stokes equations. The nonlinear Galerkin method, proposed

by Marion and Temam [?], consists in looking for a solution lying on these

speci�c subsets of the phase space. Several implementations of this scheme

have previously been done by Jauberteau, Rosier and Temam ([?] and [?]),

and Dubois, Jauberteau and Temam ([?]). Results presented in these papers
were mainly feasibility tests involving exact solutions (analytical), where the
authors tried to recover known velocity and pressure �elds. These tests pro-
vided good indications on computational feasibility and performances, but

had no physical relevance. In the present article we intend to develop further
the study of the numerical implementation of the nonlinear Galerkin method
for 
ow problems. We have several objectives which we describe hereafter
in some details. Firstly, we would like to compute physically more relevant

ows, namely here Kolmogorov type 
ows. Secondly, the e�ective implemen-

tation of the nonlinear Galerkin method involves several parameters (such
as the cut{o� wavelength between low and high frequencies, and the time
during which the high frequencies are allowed to be frozen) ; and another
of our aims is to conduct a parametric study of the method, and to develop
simple self{adaptive methods for the determination of these parameters.

Here, we consider two{dimensional periodic 
ows governed by the incom-
pressible Navier{Stokes equations. Of course, such 
ows correspond more to

an idealized situation rather than a physical one. Nevertheless, this model
contains several di�culties which occur when simulating turbulent 
ows, and

then it provides a good test to implement a numerical algorithm. More phys-
ically relevant situations, such as three{dimensional 
ows, will be presented

elsewhere. In a parallel e�ort, we are also treating the case of a 
ow driven
by a constant pressure gradient between two in�nite parallel plates, namely

the channel 
ow ( see for instance [?]).
In the �rst section of the paper, we introduce the equations and several no-

tations. Then, we de�ne the decomposition of the velocity �eld into large

scale components and small scale structures. This decomposition depends
on a cut{o� value, corresponding to a wave{number of the Fourier decom-
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Introduction

A turbulent 
ow can be characterized by a spatial and temporal chaotic be-

haviour. Indeed, strong gradients may appear and, in the physical space,

several structures with various sizes are generated by the external force and

by the 
ow itself. The structures are convected by the mean 
ow. In the case

of viscous incompressible 
ows in dimension two, thin and elongated sheets of

vorticity appear. These structures are characteristic of incompressible 
ows.

The phenomenological theory of turbulence, introduced by Kolmogorov in
dimension three and Kraichnan in dimension two, predicts that the size of

the smallest scales of a 
ow decreases while the nondimensional Reynolds
number grows. So, the number of degrees of freedom required to describe
the motion can be estimated in terms of the Reynolds number (� cRe in
space dimension two).
Hence, a Direct Numerical Simulation, i.e. the resolution of all physically

relevant scales, can not be achieved when the Reynolds number becomes too
high and then, when the turbulence is fully developed. A model is then used
in many simulations ; i.e. the small scales are not exactly integrated but
their interaction with the large ones are taken into account in a simpli�ed
way. Basically, the aim of these models is to recover the large eddies of the


ow (or their statistic) without explicitly computing all the scales of motion.

In relation with recent developments in the theory of dynamical systems
and its application to turbulence phenomena, new objects have been in-

troduced (exact or approximate inertial manifolds, see Foias, Manley and

Temam [?]) and new numerical methods have been proposed (the nonlinear
Galerkin methods, see Marion and Temam [?] and [?], the incremental un-
known method, see Temam [?]). These objects and methods are based on a

decomposition of the unknown, such as the velocity �eld, into its small scale

component and its large scale one, and essential in the nonlinear Galerkin
method is a systematically di�erentiated treatment of the small and large

scales.

These approximate inertial manifolds are subsets of the phase space and
consist in an approximate form of the small scale equations. They provide

an adiabatic law modeling the interaction between the low and the high fre-
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ABSTRACT

Using results of DNS in the case of two-dimensional homogeneous isotropic


ows, we �rst analyze in detail the behavior of the small and large scales of
Kolmogorov like 
ows at moderate Reynolds numbers. We derive several
estimates on the time variations of the small eddies and the nonlinear in-
teraction terms; those terms play the role of the Reynolds stress tensor in
the case of LES. Since the time step of a numerical scheme is determined as

a function of the energy-containing eddies of the 
ow, the variations of the
small scales and of the nonlinear interaction terms over one iteration can be-
come negligible by comparison with the accuracy of the computation. Based
on this remark, we propose a multilevel scheme which treats di�erently the
small and the large eddies. Using mathematical developments, we derive esti-

mates of all the parameters involved in the algorithm, which then becomes a

completely self-adaptive procedure. Finally, we perform realistic simulations

of (Kolmorov like) 
ows over several eddy-turnover times. The results are
analyzed in detail and a parametric study of the nonlinear Galerkin method

is performed.
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