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Abstract

This paper describes an algorithm for recovering a collection of linear cracks in a homo-

geneous electrical conductor from boundary measurements of voltages induced by speci�ed

current 
uxes. The technique is a variation of Newton's method and is based on taking

weighted averages of the boundary data. We also describe an apparatus that was con-

structed speci�cally for generating laboratory data on which to test the algorithm. We

apply the algorithm to a number of di�erent test cases and discuss the results.
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1 Introduction

The purpose of this presentation is to demonstrate the viability of using Electrical Impedance

Tomography (EIT) for the reconstruction of multiple macroscopic cracks. Through the use

of EIT one seeks to determine the interior conductivity properties of a specimen from mea-

surements of electrostatic potentials and currents on the boundary. There are obvious appli-

cations of this technology to many problems, for instance in medical tomography [5],[8] or

nondestructive testing of mechanical components [10]. There are two very separate classes of

practical reconstruction techniques: 1) general imaging techniques, and 2) techniques that

use prior information or assumptions. The �rst approach produces a somewhat blurry image

of the conductivity distribution inside the specimen (somewhat akin to an ultrasound-scan)

from which an \educated" user may then draw conclusions of a more speci�c nature (cf.

[5],[8],[10], [18]). The second approach uses a restricted model for the interior conductivity

distribution and seeks to determine more speci�c features within this model which are con-

sistent with the measured data (cf. [13],[15], [16]). This may be done probabilistically, in

a way reminiscent of methods for image reconstruction known as \maximum entropy meth-

ods" or deterministically by seeking to �t a relatively small number of parameters. In this

presentation we shall concentrate on a very speci�c method of this last category. It seeks

to determine a �nite number of linear cracks consistent with the boundary measurements.

In particular we shall test this algorithm on data which has been collected from laboratory

experiments.

The mathematical results which insure that a �nite number of cracks can be reconstructed

from a �nite set of boundary voltages and boundary currents are found in [6] and [11]. In

these papers it is proven that n C2 cracks inside a two dimensional domain may be determined

from n + 1 pairs of boundary voltages and boundary currents. These results have recently

been extended to show that measurement of two pairs of boundary voltages and boundary

currents su�ce to determine any number of cracks [2],[9]. It is very easy to see that one

measurement will not su�ce to determine even a single crack [11].

The computational algorithm we shall employ has largely been developed in [7]. It is the

natural extension of an algorithm which was developed in [17] for the case of a single crack.
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We have modi�ed the algorithm from [7] in one important respect, by making the selection of

the initial guess automatic. For this purpose we have implemented some formulae which were

suggested in [4] and which directly reconstruct the line on which a single linear crack must

lie in order to be consistent with a single pair of boundary voltages and boundary currents.

These formulae may occasionally be degenerate, but the use of additional measurement pairs

can eliminate this degeneracy.

An outline of this presentation is as follows. In section 2 we introduce the mathematical

model used for simulating cracks and we give a brief discussion of our computational recon-

struction method. In section 3 we present the formulae derived by Andrieux and Ben Abda

and we brie
y describe the selection of the initial crack. Section 4 contains a description of

the experimental equipment used to collect the actual data for our reconstructions, and in

particular we describe the few modi�cations that were made when compared to the equip-

ment used earlier to collect data for the reconstruction of a single crack [17]. In the �fth and

�nal section we provide a number of examples of reconstructions of multiple cracks based on

the collected experimental data.

2 The Mathematical Model and the Reconstruction

Algorithm

A single crack inside a two dimensional conductor is commonly modeled as a perfectly

insulating curve �. With a background conductivity 0 < 
0 � 
(x) � 
1 and a �nite

collection of cracks � = [n
k=1�k, the steady state conductance equations thus read

r � (
rv) = 0 in 
 n �; (2.1)



@v

@�
= 0 on �;

with appropriate boundary conditions on @
, e.g.,

v = � on @
: (2:2)

The �eld � is normal to �. The function v represents the potential induced in 
. We assume

that 
 � IR2 is simply connected, i.e., has no holes, and so the entire boundary @
 is
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accessible from the \outside". The domain 
 corresponding to our experimental data is a

disk. Let u denote the \
-harmonic" conjugate to v. It is related to v by the formula

(ru)? = 
rv in 
 n �; (2:3)

where ? indicates counterclockwise rotation by �=2. Note that the set 
 n � is not simply

connected; the existence of a \
-harmonic" conjugate u owes not only to the fact that

r � (
rv) = 0 in 
 n �, but also to the fact that 
 @v
@�

= 0 on �. For a particular set of

constants ck; k = 1; ::: ; n, the function u solves the problem

r � (
�1ru) = 0 in 
 n�; (2.4)

u = ck on �k; k = 1; ::: ; n

with


�1
@u

@�
=  =

@�

@s
on @
: (2:5)

Here s denotes the counterclockwise tangent direction on @
 and � denotes the outward

normal on @
. For these particular constants, �nding a solution to (2.4)-(2.5) is thus equiv-

alent to �nding a solution to (2.1)-(2.2) . The constants ck may (up to a common additive

constant) be characterized in several equivalent ways (see [7]). The characterization we shall

use here takes the form of the system of n equations

Z
�k

[
�1
@u

@�
] ds = 0; 1 � k � n. (2:6)

Here [
�1 @u
@�
] = 
�1 @u

@�+
� 
�1 @u

@�
�

denotes the jump in the normal 
ux across the curve �k.
2

The system (2.6) should be viewed as a supplement to the boundary value problem (2.4)-

(2.5). The solution u has a physical interpretation in its own right { it is the potential

generated by the boundary current  for a medium with background conductivity 
�1 and a

set of perfectly conducting cracks �k, k = 1; ::: ; n. As follows immediately from the relation

(2.3), one passes between the boundary data corresponding to v and that corresponding to

u by di�erentiating the Dirichlet-data along the boundary, integrating the Neumann-data

along the boundary and interchanging the roles of the two. Except when we explicitly say so

2The expression @u

@�+
denotes the limit of the derivative (in the direction �) as one approaches �k from

the side to which � points. @u

@�
�

denotes the limit as one approaches �k from the opposite side.
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we shall always work with cracks that are perfectly conducting in the sense described above.

Let P1; ::: ; PM and Q1; ::: ; QM be 2M points on @
. For the crack reconstruction we utilize

solutions corresponding to the two-electrode currents  j = �Pj
� �Qj

, j = 1; . . . ;M ,

r � (
�1ruj) = 0 in 
 n �; (2.7)

uj = c
(j)
k on �k; k = 1; ::: ; n;

with


�1
@uj

@�
= �Pj

� �Qj
on @
; (2:8)

the constants c
(j)
k being determined through the additional equations (2.6 ). The reconstruc-

tion problem may now be stated explicitly as follows:

We seek to reconstruct the collection of cracks � = [n
k=1�k from knowledge of the boundary

voltage data fujj@
g
M
j=1 corresponding to the prescribed two-electrode currents 


�1 @uj
@�

= �Pj
� �Qj

,

j = 1; ::: ;M .

It was shown in [6] that if we take M = n + 1, Q1 = Q2 . . . = Qn+1 = P0 and we take

Pj , 1 � j � n+1 to be mutually di�erent and di�erent from P0, then the boundary voltage

measurements corresponding to the resulting n+ 1 �xed two-electrode currents �Pj
� �P0,

1 � j � n+ 1 su�ce to uniquely identify a collection of n (or fewer) cracks. By a clever

extension of this analysis it has recently been shown that two �xed two-electrode currents

su�ce to uniquely identify any number of cracks, [2],[9]. It is very easy to see (cf. [11]) that

measurements corresponding to a single boundary current do not su�ce to determine even

a single crack. In the papers [6],[11] it was required that the reference conductivity 
 be real

analytic. This requirement has recently been considerably relaxed; the identi�ability result

holds even if 
 is only H�older continuous [9].

A certain amount of knowledge is available concerning continuous dependence. In the

case in which the background conductivity is constant and there is only one crack present

it has been shown (cf. [1]) that if the boundary voltage data (on some open subset of @
)

deviate by �, then the crack locations di�er by at most C[log(j log �j)]�1=4. If the single

crack is linear it has been shown that the crack location depends Lipschitz continuously on

the boundary data, [3]. This last result signi�cantly extends a calculation found in [11],

showing that transverse translations and rotations of a single linear crack depend Lipschitz
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continuously on the measured data.

As mentioned before, we shall in the present reconstructions always try to �t the data

by means of linear cracks. We shall also assume that the background conductivity may be

modeled by a constant, e.g., 
 � 1. As was the case in [17], we base the reconstruction of

the cracks on the values of a relatively small number of functionals (as opposed to all the

boundary measurements). In [17] we used 4 functionals for the reconstruction of a single

linear crack, here we use 4n functionals for the reconstruction of n cracks. We now give a

brief description of these functionals. For more details we refer the reader to [7],[17].

Let F denote the vector-valued function

F(�;  ;w) = (F (�;  ;w(1)); F (�;  ;w(2)); F (�;  ;w(3)); F (�;  ;w(4)))t;

where F (�;  ;w) is given by

F (�;  ;w) =
Z
@

u(�;  )

@w

@�
ds: (2:9)

The functions w(i), 1 � i � 4, will be taken as particular solutions of

4w = 0 in IR2 n�:

The function u = u(�;  ) is the solution to (2.4)-(2.5) with 
 � 1. In order to make u unique

we may for instance impose the requirement

Z
@

u ds = 0 : (2:10)

The appropriate selection of boundary currents  and test functionsw = (w(1); w(2); w(3); w(4))t

is very important and was discussed in detail in [7]. For our reconstruction algorithm we

always choose  in the form of a two-electrode current. We take one  and one w corre-

sponding to each crack �k; whenever we want to emphasize this correspondence we use the

notation

 �k and w�k = (w(1)
�k
; w(2)

�k
; w(3)

�k
; w(4)

�k
)t:

We shall always take w so that

Z
@


@w(i)

@�
ds = 0; and

Z
�

"
@w(i)

@�

#
ds = 0 8� 2 �: (2:11)
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Because of the �rst identity in (2.11) the function F is unchanged by the addition of a

constant to u, and we can therefore work with any other normalization in place of (2.10).

The data for our reconstruction consist of measured boundary potentials. In practice we can

of course only measure the values of these potentials at a �nite (fairly moderate) number of

points. We denote by g( ) the voltage data corresponding to the boundary current  , and

we de�ne a corresponding vector-valued function

f ( ;w) = (f( ;w(1)); f( ;w(2)); f( ;w(3)); f( ;w(4)))t;

where f( ;w) is given by

f( ;w) =
Z
@

g( )

@w

@�
ds; (2:12)

and where w(i) are the same functions as before. Our algorithm seeks a solution � = f�kg
n
k=1

to the 4n equations

F(�;  �k ;w�k ) = f ( �k;w�k); 1 � k � n: (2:13)

We do not use information about the full set of measured boundary voltages for the recon-

struction; we only use information about the values of these particular functionals. This is

in contrast to the reconstructions from experimental data which we presented in [13], and

where we used all the measured boundary voltages and a least squares approach. Based

on extensive experimentation it is our experience that almost all the relevant information is

contained in these functionals. Admission of the extra data, e.g. after convergence of the

algorithm based on the functionals, does not generally seem to improve the reconstructions.

In several examples in which we tried the least squares approach from the start it actually

impeded the convergence process, which we think is due to the presence of local minima.

The construction of the test functions w(i) is quite simple to describe. If we consider a

single linear crack, and use a coordinate system so that the crack lies on the x-axis (the line

of reals) then the functions w(1) and w(2) are given by

w(1) = Im[z]; w(2) = Im[z2] :

The functions w(3) and w(4) have square-root singularities at the endpoints of the crack; if
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the crack lies between the origin and the point (�; 0) they have the form

w(3) =

8>>><
>>>:
Re[(z � �)

q
z(z � �)]; Re(z) > �

2

�Re[(z � �)
q
z(z � �)]; Re(z) < �

2
,

(2:14)

w(4) =

8>>><
>>>:
Re[

q
z(z � �)]; Re(z) > �

2

�Re[
q
z(z � �)]; Re(z) < �

2
.

(2:15)

Intuitively w(1) and w(2) detect transverse translations and rotations of the crack, whereas

w(3) and w(4) detect translations along the direction of the crack and variations in length.

It is interesting to note that in the limit as � approaches zero the information extracted by

these four functions approach the �rst four nontrivial Fourier modes of the boundary data.

We refer the reader to [7] for more details.

The selection of the applied currents is also fairly simple to describe: for a single crack

we select the location of the two electrodes in a way which maximizes the sensitivity of the

four functionals with respect to rotations and transverse translations of the crack. We use

an iterative approach to solve (2.13), in this case for the single crack �. At each step new

electrode locations are found by maximizing two of the diagonal elements of the Jacobian

of D�F with respect to the boundary electrode locations (taking the �xed test functions

described above). Measured data corresponding to these electrode locations are then used

to �nd an updated crack. The selection procedure is described in detail in [7],[17]. When the

domain is a disk, and the crack is of moderate size and sits away from the boundary, then

the most sensitive electrode locations de�ned above turn out (very nearly) to be the points

that arise as the intersection of the line on which the crack lies and the domain boundary

(remember, the crack is perfectly conducting). Our selection of electrodes does require the

solution of an auxiliary boundary value problem. However, as explained later, this is done

very e�ciently through an integral equation formulation. For the reconstruction of more

than one crack we select a boundary current corresponding to each crack, as if the other

cracks were not present. This process is described in detail in [7].

The 4n� 4n system (2.13) is solved by means of a Newton method. As explained above,

the test functions and the applied currents change with each step of the iteration. The
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update for each step of the Newton method is constrained, along the lines of the classical

Levenberg-Marquardt approach [14].

The boundary value problems which must necessarily be solved in order to evaluate F

(and �nd the \optimally sensitive" electrode locations) are formulated in terms of boundary

integral equations. The system of boundary integral equations is a mixture of �rst and

second kind equations. There is a �rst kind contribution corresponding to the functions

that describe the normal derivative \jumps" on each crack. However, by working with the

boundary condition u =constant on each crack, we avoid the problem associated with non-

integrable kernels. We discretize the integral equations by Nystr�om's method, as completely

described in [7]. The kernels of the �rst kind contributions are singular enough that we

did not �nd it necessary to regularize the equations. Also, we note that we do not really

numerically compute the uj@
 necessary to evaluate F , rather we compute (u�u0)j@
, where

u0 is the potential generated by the exact same electrode locations and currents as u, but

without any cracks present. The computation of the smooth function (u� u0)j@
 is a much

better posed problem than the computation of uj@
. Because the domain 
 is a disk, the

function u0 has a very simple explicit expression. Whenever necessary we add its values to

the computed di�erences.

3 Apparatus and Data Collection

In this section we give a brief description of the apparatus with which we collected the

experimental data used to test the crack reconstruction algorithm. Most of these details can

also be found in [13]; nonetheless, for the convenience of the reader we will recount them

here.

The reconstruction algorithm is designed for a two dimensional region with a constant

background conductivity. An experimental equivalent is given by the tank illustrated in

Figure 1. The tank is cylindrical and constructed of 0.25 inch thick plexiglass, with an inside

diameter of 10.5 inches and a height of 23.5 inches. The tank is �lled with distilled water

to which a small amount of ordinary tap water is added, which gives the solution a modest

electrical conductivity. Twelve evenly spaced copper electrodes run vertically along the full
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Binding post

23.5 in

10.5 in

.25 in wide electrode

.25 in plexiglass

Figure 1: Tank used for data collection.

height of the tank. The copper electrodes are 0.25 inches wide. Since the entire apparatus is

uniform in the vertical direction, and since the electrodes are essentially perfectly conducting

(in relation to the interior solution), the tank provides a reasonable approximation to a two-

dimensional electrical conduction problem. To introduce perfectly conducting \cracks" we

insert strips of sheet metal with widths ranging from 2 to 6 inches vertically into the tank,

again preserving the uniformity of the conduction problem in the vertical direction. A grid

is placed under the tank (which has a plexiglass bottom) so that the location of the cracks

can be easily recorded.

The overall structure of the data collection apparatus is as follows. To each electrode

is attached a binding post on the top rim of the tank. These binding posts are connected,

through a bank of relay cards, to a voltage source and a pair of digital multimeters. One

multimeter serves to measure the electrical current supplied to the tank when a speci�ed pair

of electrodes is active. The other multimeter measures the induced voltage drop between any
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given pair of electrodes. By altering the electrical connections via the relay cards, any pair

of electrodes can act as the source and sink for the electrical current and the voltmeter can

measure the resulting potential across any two electrodes. The entire apparatus is connected

to a table-top computer (PC) which controls the relay cards, allowing software switching of

the active electrodes and voltage measurements. The PC and software also communicate

with the multimeters, collect the resulting current and voltage information, and present it

in a convenient format. A simple schematic of the entire apparatus is given in Figure 2.

1

2

12

3

Current source
and ammeter

DVM

Computer

Switching
Network

Figure 2: Schematic of data collection system.

As mentioned in [13], while the problem is modeled as a steady-state or DC conduction

problem, in practice one uses an AC current. This is to avoid any electrochemical plating

of the electrodes with the impurities present in the water, which might alter the behavior of

the electrodes, particularly the contact resistance between the electrodes and water. We use

a sinusoidal source with a frequency of 10 kHz, which should be low enough to be considered

steady-state so that no phase changing capacitance or inductance e�ects will be signi�cant.

In actuality, a few experiments were conducted with frequencies from 10 Hz to 1 kHz without

any cracks in the tank, and in this range no frequency dependent e�ects were observed.

The data collection software is written in BASIC. As discussed in the previous section,

at the heart of the crack recovery algorithm is the idea of iteratively adapting the active

electrode locations for greater sensitivity as the algorithm progresses and more precise infor-
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mation about the actual crack location(s) becomes available. However, since the reconstruc-

tion algorithm could not immediately be ported to the PC which collects the data, it was

necessary to collect all possible data a priori. When the reconstruction algorithm was later

run using this data set (on a separate computer), it simply extracted the required voltage

data corresponding to the desired active electrode locations. One can easily check that for

a tank with 12 electrodes there are only 11 di�erent linearly independent combinations of

input and output electrodes; the solution corresponding to any other current pattern can

be represented as a linear combination of the solutions corresponding to these basic cur-

rent patterns. In its dipole current pattern mode the software collects data for the current

patterns  j = �j+1 � �j, j = 1; . . . ; 11, that is, a current is introduced at electrode j + 1

and withdrawn at electrode j. Whenever the recovery algorithm needs a di�erent current

pattern during its execution it simply takes an appropriate linear combination of the data

corresponding to these 11 basic patterns.

For the data sets which will be presented, typical values for the input current were 4 to

7 mA (rms). Typical voltage drops between electrodes range from zero to 7 volts rms, with

the largest drops between the active input and output electrode. The previous version of

the software, used to collect the data in [13], recorded the input current to only 2 signi�cant

�gures. In the course of taking measurements for this paper it was observed that even the

third signi�cant �gure for the current was quite consistent and stable from measurement

to measurement. The software was thus modi�ed to record three signi�cant �gures for

the input current. As before, voltages are recorded to four �gures. An application of the

crack reconstruction algorithm to both types of data (two versus three signi�cant �gures for

current measurement) indicate that the latter is considerably more accurate. It appears that

for this experimental setup, the crack manifests much information concerning its presence

and location in this third signi�cant digit, particularly for multiple crack problems.

Before proceeding with the reconstruction algorithm one must also know k, the back-

ground conductivity of the tank. To obtain this information we applied the current patterns

 1; . . . ;  11 described above to the tank with no cracks and measured the corresponding in-

duced voltages. We then used the same current patterns in our computational model and

computed the corresponding theoretical voltage. These voltages scale linearly with 1
k
, and so
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one can easily compute that value for k which gives the best �t of the computational model

to the measured voltages, in the sense of mean square error. Doing this yielded an average

resistivity of 456.6 ohms, or a conductivity of 0.00219 mhos. This value varied by only 1

percent over the course of the tests (approximately 30 di�erent crack con�gurations over 2

days). This is the value of k which was used in all crack reconstructions. In practice we

scaled the measured data by k so that it formally corresponds to a background conductivity

of one. All our subsequent computations were then done with a conductivity of 1.

One �nal remark is in order. The electrodes on the actual tank have a necessarily non-zero

width, while the simple theoretical model we use assumes point electrodes. This assumption

leads to logarithmic singularities in the theoretical voltage at the current input and output

electrodes. Moreover, in the actual experimental data any contact resistance between the

electrode surface and the water leads to inaccuracies in the voltage measurements at the

active electrodes, since Ohm's law implies that if a current is 
owing through the electrode

and a resistance is present, there must be a voltage drop across the electrode. Thus the

voltage on the tank side of the active electrode (the voltage required by the algorithm) may

di�er from the voltage measured by the multimeterwhich is on the other \side" of the contact

resistance. This is not a problem for voltage measurements at non-active electrodes; these

electrodes have essentially no current 
owing (the multimeter presents an input impedance

of > 109 ohms), hence no voltage drop. We thus omit from consideration the voltages at

active electrodes for both the experimental and computational data. One merely adjusts

the numerical integration rule for computing the functionals F (�;  ;w(i)) and f( ;w(i)) to

account for the gap.

While a more accurate model incorporating a non-zero width electrode could certainly

be derived and the algorithm adapted to deal with such a model, the agreement between

the measured data and theoretical computations was so good that there seemed little to be

gained by re�ning the model, at least for cracks which are not extremely close to an active

electrode.
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4 A Simple Formula for the Line of a Single Crack

In [4] two very simple formulae are given for reconstructing the line on which a single linear,

perfectly insulating crack lies. These formulae are in terms of a single voltage/current pair

measured on the boundary of 
. The formulae are restricted to the reconstruction of a

single line. As has already been observed, a single crack (even a linear one) is not uniquely

identi�able from a single measurement. As far as these explicit formulae are concerned this

expresses itself in terms of the possibility of the vanishing of a certain denominator (more

about this later). The formulae do not require the solution of any boundary value problems,

but only the evaluation of certain weighted integrals of the voltage and current data on the

boundary of the region. These formulae merely locate the line on which the crack lies, they

do not tell us where on the line the crack is. It is possible to determine the exact location of

the crack by evaluating an in�nite number of similar integrals and reconstructing the support

of a function from its Fourier series (see [4]). We have not implemented this latter step as

part of our algorithm, but we have incorporated the simple formulae for the reconstruction

of a single line as part of the initialization step of our crack reconstruction algorithm. Once

the line is found, the initial guess is chosen to be centered on that segment of the line which

lies inside the domain (a disk). In the reconstructions we present later the initial guess is,

rather arbitrarily, taken to be of length 0:1� the radius of the disk.

We now brie
y review the formulae from [4]. Suppose that � is a perfectly insulating

linear crack in 
 and v(x) is a function on 
 n � � IR2 which satis�es

4v = 0 in 
 n �

@v

@�
= 0 on � ;

where � is a unit normal vector �eld on �. Note that this �eld is constant (� = �0) since

� is linear. Based on the boundary values of v and @v
@�

on @
 we can then recover the line

�0 � x = c on which the crack � lies as follows. Let �i(x) denote any of the two coordinate

functions �i(x) = xi. Note that �i are both harmonic. De�ne the quantities Ii, i = 1; 2, by

Ii =
Z
@


 
v
@�i

@�
� �i

@v

@�

!
ds; �i(x) = xi: (4:1)

These quantities depend only on boundary values of v and its normal derivative, and can
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be easily computed from the known data, e.g., when @v
@�

is speci�ed (a current applied) and

v is measured on @
, or vice-versa. Let [v] denote the jump in u across �; [v] is de�ned as

v+ � v
�
, where v+ denotes the values of v as one approaches � from the side to which the

normal vector �0 points, and v� denotes the values as one approaches from the opposite side.

A simple application of the divergence theorem shows that

Ii =
Z
�
[v]
@�i

@�
ds ;

since @v
@�

vanishes on �. Now note that @�i
@�

� �0;i on �, since �i = xi. Thus

Ii = �0;i

Z
�
[v] ds : (4:2)

If we assume
R
�[v] ds 6= 0 it then follows that

�Z
�
[v] ds

�2
= I21 + I22 ;

and

�0;i = �Ii=
q
I21 + I22 :

This gives us a normal vector to the line on which � lies. To be precise let us choose �0

corresponding to the + sign, i.e.,

�0;i = Ii=
q
I21 + I22 : (4:3)

From (4.2) it follows that Z
�
[v] ds > 0

for this choice of �0, and therefore

Z
�
[v] ds =

q
I21 + I22 :

We now recover the constant c, of the equation �0 � x = c for the line on which � lies. Let us

rotate our coordinate system so that the normal vector �0 to � has coordinates (0; 1). Since

we know �0 this rotation is known; the line on which � lies is still �0 �x = c, or simply x2 = c.

Let �(x) = 1

2
(x22 � x21) in this new coordinate system. The function �(x) is again harmonic.

De�ne I� by

I� =
Z
@


 
v
@�

@�
� �

@v

@�

!
ds : (4:4)
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Application of the divergence theorem shows that

I� =
Z
�
[v]
@�

@�
ds :

Since r� = (�x1; x2) and since �0 = (0; 1), this becomes

I� =
Z
�
[v]x2 ds ;

or

I� = c

Z
�
[v] ds ;

so that

c = I�=(
Z
�
[v] ds) = I�=

q
I21 + I22 ;

again assuming that the denominator does not vanish. This formula in combination with

the formulae (4.1) and (4.3) gives a simple way of determining the line on which a single

linear, perfectly insulating crack lies.

We cannot generally take for granted that
R
�[v] ds is non-zero, given a single �xed bound-

ary current @v
@�

on @
. This is certainly the generic case, but it is not di�cult to see that a

single applied boundary current can not guarantee that this is true for all �. This is consis-

tent with the general result that one needs two applied currents and corresponding voltage

measurements even to �nd a single crack. If the applied currents are all two-electrode cur-

rents it is very easy to see that a �nite number will su�ce in order to obtain I21 + I22 6= 0

for any interior crack for at least one of these currents. By a more detailed analysis it is

apparently possible to show that any two di�erent two-electrode currents always su�ce [2].

We note that the choices for the three auxiliary functions used for reconstructing the line

on which the crack lies are harmonic polynomials of degree � 2, quite similar to the weight

functions used in our crack reconstruction algorithm. In the limit (as crack length goes to

zero) our four weight functions !(1) through !(4) span the space of harmonic polynomials of

degree � 2, modulo constants. This is also the reason why in the case of a disk the limiting

information contained in the functionals is equivalent to the �rst 4 nontrivial Fourier modes,

as noted earlier.

Finally let us note that it is very easy to write the quantities Ii and I� in terms of

data corresponding to the harmonic conjugate to v, i.e., in terms of data corresponding to a
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perfectly conducting �. Given a smooth function f on @
 which satis�es
R
@
 fds = 0, let

R s f
denote a counterclockwise integral of f along @
, i.e., a function whose counterclockwise

tangential derivative equals f . From the relation (2.3) with 
 = 1 we now immediately

obtain

I� =
Z
@


 
v
@�

@�
� �

@v

@�

!
ds =

Z
@


 
�
@u

@�
(
Z s @�

@�
)�

@�

@�
u

!
ds

where @
@�

denotes the counterclockwise tangential derivative on @
. Similar formulae for Ii

are obtained by replacing � with �i. We use these formulae directly instead of making any

transformations to our measured boundary data.

5 Reconstruction Experiments

We have performed numerous experiments with the equipment described in section 3 followed

by reconstructions using the algorithm described in section 2. In this section we discuss the

results in three di�erent scenarios, that we �nd to be representative. In the �rst scenario

two sheet metal strips were inserted in the tank to simulate perfectly conducting cracks. We

varied the locations of the two metal strips inside the tank in order to give some idea of

how the information content of the measured data deteriorate as the cracks lie deeper and

deeper inside the domain. In the second scenario three sheet metal strips were inserted to

demonstrate that the data do indeed permit one to distinguish more than one or two cracks.

We have not at the moment experimented with a number of cracks larger than three, partially

because of the practical di�culties associated with the accurate insertion of a large number

of cracks, but also because we feel it is likely that the currently available accuracy of the data

(and the mathematical model) will make such reconstructions extremely crude. In the third

scenario we used a single metal strip, but this time bent so that its cross section forms an

L-shape. This experiment demonstrates that the collected data have su�cient information

content to distinguish a shape which di�ers from a line segment, and it also demonstrates the


exibility of the reconstruction algorithm to approximate such a shape. In our opinion the

results presented here clearly demonstrate the viability of impedance imaging as a method

to reconstruct a moderate number of macroscopic cracks from experimental data.
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Let us give a brief description of the �gures. Each �gure depicts two disks to illustrate

one iteration of the reconstruction algorithm. The location of the reconstructed crack(s) are

indicated by solid lines. Those in the disk to the left are the locations prior to the particular

iteration, and those in the disk on the right are the locations after the iteration is complete.

The dashed lines in the disk to the right indicate the locations of the \true" cracks as read

o� from the mesh at the bottom of the tank. The \optimally sensitive" electrode locations

that were used for this iteration are indicated on the boundary of the disk to the left. We

select one pair of \optimally sensitive" electrodes corresponding to each crack, according to

the strategy brie
y described earlier in section 2; n cracks will thus in general correspond to

2n active electrode locations. We do permit some of the active electrode locations to coincide

{ though we always insist that the n prescribed two- electrode boundary currents be linearly

independent (so there must be at least n + 1 distinct active electrodes). This strategy is

di�erent from that of [7], where we also selected one pair of electrodes corresponding to

each crack but �xed one electrode location to be shared by all the electrode pairs; in those

reconstructions n cracks corresponded to exactly n+1 active electrode locations. We found

that in the presence of the \noisy" experimental data the reconstructions were improved

by not forcing one common electrode. Although we have not indicated on the �gures which

electrode pair corresponds to which crack, it is almost evident, given the observation we made

earlier concerning a single perfectly conducting crack. The optimally sensitive electrodes are

located near the intersection of the boundary and the line on which the crack lies. Figure

3a shows the �rst iteration using experimental data corresponding to two cracks, but in this

case the algorithm seeks to reconstruct only a single crack. The initial guess shown in the

disk to the left lies on the line generated by the formulae of Andrieux and Ben Abda. We

have chosen the initial guess to be of length 0:1�the radius of the disk, and to be centered on

that segment of the line which lies inside the disk. Figure 3b shows the �fth iteration of the

algorithmwhen starting with the initial guess shown in Figure 3a. At this point the algorithm

has converged in the sense that the maximum of all four components of G is less than 10�10

in absolute value. We now take this crack and divide it into two by omitting a central piece,

1/10 of its size. The resulting two cracks are given as initial guess to our algorithm for the

reconstruction of two cracks. After 83 iterations the reconstructed cracks have converged
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Figure 3a

The �rst iteration reconstructing one crack. The \true" crack locations are shown in dashed
lines in the disk to the right. The currently active electrode locations are indicated on the
circle to the left.

to the two cracks shown in the right disk of Figure 3c. We have run several examples with

data originating from two cracks. As one would expect the reconstructed cracks deviate

more from the \true" cracks when the \true" cracks are closer to the center of the disk. The

above reconstruction is quite representative of cracks located about 1/3 of the way towards

the center. Figures 4a and 4b show the iterations at which convergence is reached when

reconstructing one and two cracks respectively, given data that correspond to two \true"

cracks located nearly halfway towards the center. Figures 5a and 5b show reconstructions

obtained from data corresponding to two \true" cracks located approximately 3/4 of the way

towards the center. Figure 5a shows the �fth iteration reconstructing only a single crack,

at which point this process has converged. We divide the resulting crack into two pieces by

cutting out a central piece 1/10 of its size, and feed these two cracks as initial guess to our

algorithm reconstructing two cracks. Figure 5b shows the 90th iteration of the two-crack

reconstruction process. There is no convergence, nor does any converged state appear to

be reached at a later iteration. The collected data is apparently not accurate enough to

distinguish these two cracks from a single crack near the center. We now proceed with a
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Figure 3b

The 5th iteration reconstructing one crack. The collected data are the same as in Figure 3a.
The \true" crack locations are shown in dashed lines in the disk to the right. The currently
active electrode locations are indicated on the circle to the left.

scenario involving three \true" cracks. We start by reconstructing one crack which, in the

sense of our functionals, is consistent with the data. The initial guess is generated by means

of the Andrieux-Ben Abda formulae, as described earlier. We take the converged crack as

shown in Figure 6a (after 6 iterations), divide it into two and feed the resulting cracks as

an initial guess to our algorithm for the reconstruction of two cracks. After convergence (in

this case after another 33 iterations, as shown in Figure 6b) we divide the largest of the

reconstructed cracks into two pieces, and feed the 3 resulting cracks as an initial guess to our

algorithm for the reconstruction of three cracks. Figure 6c shows the results of the three-

crack reconstruction after 90 iterations. Convergence has not been attained, but notice that

the reconstructed cracks none the less give a reasonable prediction of the \true" locations.

Also notice that there are only 5 active electrodes on the left circle in Figure 6c. This is

therefore an example where two active electrode locations coincide, as discussed earlier.

Finally, in Figures 7a and 7b we show the converged reconstructions using one and two

cracks respectively and data which come from insertion of a single strip of metal which has

been bent so that its cross section forms an L-shape.
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Figure 3c

The 83rd iteration reconstructing two cracks. The collected data are the same as Figures 3a
and 3b. The \true" crack locations are shown in dashed lines in the disk to the right. The
currently active electrode locations are indicated on the circle to the left.

Figure 4a

The 6th iteration reconstructing one crack. The \true" crack locations are shown in dashed
lines in the disk to the right. The currently active electrode locations are indicated on the
circle to the left.
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Figure 4b

The 31st iteration reconstructing two cracks. The collected data are the same as in Figure 4a.
The \true" crack locations are shown in dashed lines in the disk to the right. The currently
active electrode locations are indicated on the circle to the left.

Figure 5a

The 5th iteration reconstructing one crack. The \true" crack locations are shown in dashed
lines in the disk to the right. The active electrodes are indicated on the circle to the left.
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Figure 5b

The 90th iteration reconstructing two cracks. The collected data are the same as in Figure 5a.
Convergence has not been reached. The \true" crack locations are shown in dashed lines in
the disk to the right. The currently active electrodes are indicated on the circle to the left.

Figure 6a

The 6th iteration reconstructing one crack. The \true" crack locations are shown in dashed
lines in the disk to the right. The currently active electrodes are indicated on the left disk.
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Figure 6b

The 33rd iteration reconstructing two cracks. The collected data are the same as in Figure 6a.
The \true" crack locations are shown in dashed lines in the disk to the right. The currently
active electrode locations are indicated on the left disk.

Figure 6c

The 90th iteration reconstructing three cracks. The collected data are the same as Figures 6a
and 6b. Convergence has not been reached. The \true" crack locations are shown in dashed
lines in the disk to the right. The currently active electrodes are indicated on the left circle.
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Figure 7a

The 7th iteration reconstructing one crack. The \true" crack location is shown as a dashed
curve in the disk to the right. The active electrodes are indicated on the circle to the left.

Figure 7b

The 12th iteration reconstructing two cracks. The collected data are the same as Figure 7a.
The \true" crack location is shown as a dashed curve in the disk to the right. The currently
active electrodes are indicated on the circle to the left.
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