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Figure 3: Poisson vs. normal approximations for large sample sizes.
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� For sample sizes larger than 150, the absolute error of either upper and lower

con�dence limit is less than 0.01 if the appropriate approximation technique

is used. Figure 3 should be consulted for speci�c guidance as to whether the

binomial or Poisson approximation is appropriate.

� Introductory probability and statistics textbooks targeting statistics and math-

ematics majors would bene�t from including the use of the F distribution to

�nd pL and pU . Also, more of these texts should include the use of the Poisson

approximation to the binomial distribution for determining interval estimates

for p. These con�dence limits only require a table look-up associated with the

chi-square distribution and are very accurate for large n and small p.
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corresponding to the normal approximation rule np̂(1 � p̂) � 10

� the rule labeled \R4" is a plot of p̂ = 1

2
�
p

n(n�36)

2n
on the range [36; 100]

corresponding to the normal approximation rule np̂(1 � p̂) > 9

� the rule labeled \R5" is a plot of n � 20 and p̂ � 0:05 or n � 100 and np̂ � 10

corresponding to the guideline for using the Poisson approximation.

The n, p̂ combinations falling above the dotted curves for rules R1, R2, R3, and R4

correspond to those that would be used if the rules of thumb were followed. Clearly,

rules R3 and R4 are signi�cantly more conservative than R1 and R2.

Figure 3 is a continuation of Figure 2 for sample sizes larger than n = 100. Note

that the vertical axis has been modi�ed and the horizontal axis is logarithmic. The

curve in the �gure represents the largest value of p̂ where the Poisson approximation

to the binomial is superior to the normal approximation to the binomial. Since this

relationship is linear, a rather unwieldy rule of thumb for n between 100 and 10,000

is: use the normal approximation over the Poisson approximation if p̂ > 5:2�log10 n

18:8
.

4 Conclusions

Although there are a number of di�erent variations of the calculations that have

been conducted here (e.g., one-sided con�dence intervals, di�erent signi�cance levels,

di�erent de�nitions of error), there are three general conclusions:

� The traditional advice frommost textbooks of using the normal and Poisson ap-

proximations to the binomial for the purpose of computing con�dence intervals

for p should be tempered with a statement such as: \the Poisson approximation

should be used when n � 20 and p � 0:05 if the analyst can tolerate an error

that may be as large as 0.04" (see Figure 2).
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on each Bernoulli trial is arbitrary, we only consider the range 0 < p̂ � 1

2
. Figures 1,

2 and 3 have mirror images for the range 1

2
� p̂ < 1.

Figure 1 contains a plot of n versus p̂ for n = 2; 4; . . . ; 100 and considers the range

0 < p̂ � 1

2
for a maximum error of 0.01. Thus if the actual error for a particular (n; p̂)

pair is greater that 0.01, the point lands in the \Do not approximate" region. If one

of the two approximations yields an error of less than 0.01, then the pair belongs to

either the \Normal approximation" or \Poisson approximation" regions, depending

on which yields a smaller error. Not surprisingly, the normal approximation performs

better when the point estimate is closer to 1

2
and the Poisson approximation performs

better when the point estimate is closer to 0. Both approximations perform better

as n increases. In order to avoid any spurious discontinuities in the regions, the

calculations were made for even values of n. The edges of the region are not smooth

because of the discrete natures of n and p̂. The boundary of the approximation

regions are those (n; p̂) pairs where the error is less than 0.01. If the horizontal axis

were extended, the normal and Poisson regions would meet at approximately n = 150.

Mathematica [18] was used for the comparisons because of its ability to hold variables

to arbitrary precision.

If the maximum error is relaxed to 0.04, then there are more cases where the

approximations perform adequately. Figure 2 is analogous to Figure 1 but considers

an error of 0.04. This �gure also contains the rules of thumb associated with the

normal and Poisson approximations to the binomial distribution. In particular,

� the rule labeled \R1" is a plot of p̂ = 5=n on the range [10; 100] corresponding

to the normal approximation rule np̂ � 5 and n(1 � p̂) � 5

� the rule labeled \R2" is a plot of p̂ = 4

4+n
on the range [4; 100] corresponding

to the normal approximation rule p̂� 2
q

p̂(1�p̂)

n
falling in the interval (0; 1)

� the rule labeled \R3" is a plot of p̂ = 1

2
�
p

n(n�40)

2n
on the range [40; 100]
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or

1 �
y�1X
k=0

(npPL)
k e�npPL

k!
= �=2:

The left-hand side of this equation is the cumulative distribution function for an

Erlang random variable with parameters npPL and y (denoted by EnpPL;y
) evaluated

at one. Consequently,

P [EnpPL;y
� 1] = �=2

Since 2npPLEnpPL;y
is equivalent to a �2 random variable with 2y degrees of freedom,

this reduces to

P [�2

2y
� 2npPL] = �=2

or

pPL =
1

2n
�2

2y;1��=2
:

By a similar line of reasoning, the upper limit based on the Poisson approximation

to the binomial distribution is

pPU =
1

2n
�2

2(y+1);�=2
:

This approximation works best when p is small (e.g., reliability applications where

the probability of failure p is small).

3 Comparison of the Approximate Methods

There are a multitude of di�erent ways to compare the approximate con�dence inter-

vals with the exact values. We have decided to compute the error of an approximate

two-sided con�dence interval as the maximum error

maxfjpL � ~pLj; jpU � ~pU jg

where ~pL and ~pU are the approximate lower and upper bounds, respectively. This

error is computed for all combinations of n and p̂. Since the de�nition of \success"
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fcrit = Quantile[FRatioDistribution[2 * y, 2 * (n - y + 1)], alpha/2]

pl = 1 / ( 1 + (n - y + 1) / ( y * fcrit) )

fcrit = Quantile[FRatioDistribution[2 * (y + 1), 2 * (n - y)], 1 - alpha/2]

pu = 1 / ( 1 + (n - y) / ( (y + 1) * fcrit) )

This method is signi�cantly faster than the approach using the binomial distribution,

but encounters di�culty with determining the F ratio quantiles for some combinations

of n and y.

The �rst approximate con�dence interval is based on the normal approximation

to the binomial. The random variable Y�npp
np(1�p)

is asymptotically standard normal.

Thus an approximate con�dence interval for p is

Y

n
� z�=2

s
Y

n
(1 � Y

n
)

n
< p <

Y

n
+ z�=2

s
Y

n
(1� Y

n
)

n

where z�=2 is the 1 � �=2 fractile of the standard normal distribution. This approxi-

mation works best when p = 1

2
(e.g., political polls). It allows con�dence limits that

fall outside of the interval [0, 1]. One should also be careful when Y = 0 or Y = n

since the con�dence interval will have a width of 0.

The second approximate con�dence interval is based on the Poisson approximation

to the binomial (see, for example, Trivedi [16], page 498). This con�dence interval

does not appear as often in textbooks as the �rst approximate con�dence interval.

The random variable Y is asymptotically Poisson with parameter np. Therefore, the

exact lower bound pL satisfying

nX
k=y

 
n

k

!
pk
L
(1� pL)

n�k = �=2

can be approximated with a Poisson lower limit pPL which satis�es

1X
k=y

(npPL)
k e�npPL

k!
= �=2
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Since this probability is equal to �=2 for a two-sided con�dence interval,

F2y;2(n�y+1);1��=2 =
(n� y + 1)pL

y(1� pL)

or

pL =
1

1 + n�y+1

yF2y;2(n�y+1);1��=2

:

In a similar fashion,

pU =
1

1 + n�y

(y+1)F2(y+1);2(n�y);�=2

:

The next paragraph discusses numerical issues associated with determining these

bounds.

The Mathematica (see [18]) code for solving the binomial equations numerically

is

pl = FindRoot[

Sum[Binomial[n, k] * p ^ k * (1 - p) ^ (n - k), {k, y, n}] == alpha/2,

{p, y / n} ]

pu = FindRoot[

Sum[Binomial[n, k] * p ^ k * (1 - p) ^ (n - k), {k, 0, y}] == alpha/2,

{p, y / n} ]

for a given n, y and �. This code works well for small and moderate sized values

of n. Some numerical instability occurred for larger values of n, so the well known

relationship (Larsen and Marx [10], page 101) between the successive values of the

probability mass function f(x) of the binomial distribution

f(x) =
(n� x+ 1)p

x(1� p)
f(x� 1) x = 1; 2; . . . ; n

was used to calculate the binomial cumulative distribution function. The Mathemat-

ica code for determining pL and pU using the F distribution is
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the lower limit pL satis�es

nX
k=y

 
n

k

!
pk
L
(1� pL)

n�k = �=2

where y is the observed value of the random variable Y and � is the nominal coverage

of the con�dence interval (see, for example, [10], page 279). For y = 1; 2; . . . ; n � 1,

the upper limit pU satis�es

yX
k=0

 
n

k

!
pk
U
(1 � pU )

n�k = �=2:

This con�dence interval requires numerical methods to determine pL and pU and

takes longer to calculate as n increases. This interval will be used as a basis to

check the approximate bounds reviewed later in this section. A �gure showing the

coverage probabilities for bounds of this type is shown in Blyth [2]. Following a

derivation similar to his, a faster way to determine the lower and upper limits can

be determined. Let W1;W2; . . . ;Wn be iid U(0, 1) random variables. Let Y be the

number of the Wi's that are less than p. Hence Y is binomial with parameters n and

p. Using a result from page 233 of Casella and Berger [3], the order statisticW � W(y)

has the beta distribution with parameters y and n � y + 1. Since the events Y � y

and W < p are equivalent, P [Y � y] (which is necessary for determining pL) can be

calculated by

P (Y � y) = P (W < p)

=
�(n + 1)

�(y)�(n � y + 1)

Z
p

0

wy�1(1 �w)n�ydw:

Using the substitution t = (n�y+1)w

y(1�w)
and simplifying yields

P (Y � y) =
�(n+ 1)

�(y)�(n� y + 1)
(
n� y + 1

y
)n�y+1

Z (n�y+1)p

y(1�p)

0

ty�1

(n�y+1
y

+ t)n+1
dt

= P [F2y;2(n�y+1) <
(n� y + 1)p

y(1� p)
]:
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Poisson approximations to the binomial distribution. Determining a con�dence in-

terval for p when the sample size is large using approximate methods is often needed

in simulations with a large number of replications and in polling.

Computing probabilities using the normal and Poisson approximations is not con-

sidered here since work has been done on this problem. Ling [11] suggests using

a relationship between the cumulative distribution functions of the binomial and F

distributions to compute binomial probabilities. Ghosh [6] compares two con�dence

intervals for the Bernoulli parameter based on the normal approximation to the bi-

nomial distribution. Schader and Schmid [14] compare the maximum absolute error

in computing the cumulative distribution function for the binomial distribution us-

ing the normal approximation with a continuity correction. They consider the two

rules for determining whether the approximation should be used: np and n(1 � p)

are both greater than 5, and np(1� p) > 9. Their conclusion is that the relationship

between the maximum absolute error and p is approximately linear when considering

the smallest possible sample sizes to satisfy the rules.

Concerning work done on con�dence intervals for p, Blyth [2] has compared �ve

approximate one-sided con�dence intervals for p based on the normal distribution.

In addition, he uses the F distribution to reduce the amount of time necessary to

compute an exact con�dence interval. Using an arcsin transformation to improve the

con�dence limits is considered by Chen [4].

2 Con�dence Interval Estimators for p

Two-sided con�dence interval estimators for p can be determined with the aid of

numerical methods. One-sided con�dence interval estimators are analogous. Let

pL < p < pU be an \exact" (see [2]) con�dence interval for p. For y = 1; 2; . . . ; n� 1,
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1 Introduction

There is con
icting advice concerning the sample size necessary to use the normal

approximation to the binomial distribution. For example, a sampling of textbooks

recommend that the normal distribution be used to approximate the binomial distri-

bution when:

� np and n(1 � p) are both greater than 5 (see [1], page 211, [5], page 245, [7],

page 304, [9], page 148, [16], page 497, [17], page 161)

� p� 2
q

p(1�p)

n
lies in the interval (0; 1) (see [15], page 242, [12], page 299)

� np(1 � p) � 10 (see [13], page 171)

� np(1 � p) > 9 (see [1], page 158).

Many other textbook authors give no speci�c advice concerning when the normal

approximation should be used. To complicate matters further, most of this advice

concerns using these approximations to compute probabilities. Whether these same

rules of thumb apply to con�dence intervals is seldom addressed. The Poisson ap-

proximation, while less popular than the normal approximation to the binomial, is

useful for large values of n and small values of p. The same sampling of textbooks

recommend that the Poisson distribution be used to approximate the binomial dis-

tribution when n � 20 and p � 0:05 or n � 100 and np � 10 (see [8], page 177, [5],

page 204).

Let X1;X2; . . . ;Xn be iid Bernoulli random variables with unknown parameter

p and let Y =
P

n

i=1
Xi be a binomial random variable with parameters n and p.

The maximum likelihood estimator for p is p̂ = Y

n
, which is unbiased and consistent.

The interest here is in con�dence interval estimators for p. In particular, we want

to compare the approximate con�dence interval estimators based on the normal and

1
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