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ABSTRACT

The technique of windowing has been often used in the implementation of

the waveform relaxations for solving ODEs or time dependent PDEs. Its ef-

�ciency depends upon problem sti�ness and operator splitting. Using model

problems, the estimates for window length and convergence rate are derived.

The e�ectiveness of windowing is then investigated for non-sti� and sti� cases

respectively. It concludes that for the former, windowing is highly recom-

mended when a large discrepancy exists between the convergence rate on

a time interval and the ones on its subintervals. For the latter, window-

ing does not provide any computational advantage if machine features are

disregarded. The discussion is supported by experimental results.
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1 Introduction

The waveform relaxation (WR) method was originally proposed for solv-

ing ordinary di�erential equations arising from very large scale integration

(VLSI) circuit simulation [5] [9]. Unlike conventional timestepping methods,

it iteratively partitions a big system into mutually decoupled subsystems,

and then solves each subsystem independently. Di�erent discretizations and

time steps are allowed for integrating subsystems. Based on its nature, the

method has been proposed as a multirate method for sequential computing

or a parallel method on advanced computers [2].

Under reasonable assumptions for an ODE, the WR iteration has been

shown to converge superlinearly on �nite intervals [1] [5] [8]. The uniform

convergence on an interval of [0; T ] is reached in the exponential norm

jjujj�;T := max
t2[0;T ]

je��tu(t)j; � > 0;

which implies that, for many problems, the WR iteration will converge much

faster on short intervals than on longer ones. In order to accelerate the

convergence, the technique of windowing is recommended, in which the in-

terval of integration is split into a series of subintervals, called windows, with

iteration taking place on each window successively.

The length of window is of practical important and strongly depends upon

problem and machine involved. The general guidance for its selection and

the way for evaluating its e�ectiveness are relatively unknown even though

windowing has been a common practice in using the WR method.

The estimates for time windows of the WR iteration were studied by

Leimkuhler and Ruehli for RC circuits arising as simpli�ed models of a VLSI

interconnect [4]. Finer estimates were developed by Leimkuhler for a model

linear second-order system [3]. Using the speed of splitting and weighted

spectral radius of iteration operator, Leimkuhler estimated the abscissa of !-

convergence, which then provided a priori estimate for the length of a window

wherein convergence was approximately geometric with the given rate !. His

approach puts emphasize on the qualitative comparisons between splittings.

In this paper, we focus on the time dependency of the approximation

error and intimate relation between the WR iteration (or dynamic iteration

called in [6]) for time dependent problems and the static iteration for corre-

sponding steady-state (or static) problems. For certain model problems, it is
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possible to separate the factor that represents early sweeps from the one that

dominates asymptotic behavior. Simple convergence estimates are therefore

obtained. The estimates and the results observed in the experiments are

compared and shown to have good agreements. Based on these estimates,

the e�ectiveness of windowing is discussed for non-sti� and sti� problems

respectively. General guidance for the use of windowing is concluded in the

end.

2 Waveform relaxation

Using a �rst-order linear system

du

dt
+ Lu = f; t > 0; u(0) = u0; (1)

with a given splitting L = M �N , the WR iteration can be illustrated by

du(v)

dt
+Mu(v) = Nu(v�1) + f; t > 0; u(v)(0) = u0:

It is an iterative process on a space of di�erential functions. The functions

u(v), so called \waveforms," are then discretized for numerical integration.

The continuous approximation error e(v) := u(v) � u satis�es

e(v)(t) = Se(v�1)(t); t � 0; (2)

where S is a linear operator on Lp(R+; Cn) (1 � p � 1) depending upon M

and N , and is called the iteration operator.

Several convergent splittings for an ODE system were proposed and dis-

cussed in [3] and [6]. We shall restrict ourselves to splittings that resemble

Jacobi splitting and Gauss-Seidel splitting on linear systems with time in-

dependent coe�cients, as described by Eq.(1). For simplicity, the space

considered in this work is C1([0; T ]; Cn), the space of continuous Cn-valued

functions in [0; T ], with jj � jj denotes l1 norm for space variables:

jju(t)jj := max
1�i�n

jui(t)j;

and jjj � jjjT stands for

jjjujjjT := max
t2[0;T ]

jju(t)jj:

2



The notation jj � jj will also be used as l1 induced matrix and operator norm.

The issue of time discretization is beyond our consideration, for which the

reader may refer to [7].

3 Convergence estimates

For certain type of problems or operator splittings, the factor representing

early phase of iterations and the factor dominating asymptotic behavior in

the approximation error can be separated. Laplace transform is a conve-

nient tool for doing this. Applying Laplace transform to Eq.(2), the error is

expressed as

ê(v)(z) = S(z)ê(v�1)(z) = Sv(z)ê(0)(z); Rez � 0;

where

S(z) = (zI +M)�1N

is the Laplace transform of the convolution kernel of S. Note, S(0) is the

iteration operator for the steady-state problem Lu = f corresponding to

Eq.(1).

Theorem 1. Let L be split as L = M �N with M = dI, d > 0. After v

WR iterations, the error is bounded by

jje(v)(t)jj � gv(dt) � jjS
v(0)jj � jjje(0)jjjT ; t 2 [0; T ];

where

gv(t) =
�t(v)

�(v)
= 1 � e�t(

v�1X
i=0

ti

i!
) = e�t

1X
i=v

ti

i!
; (3)

and �t(v) is the incomplete �-function.

Proof. For M = dI, d > 0,

Sv(z) = ((z + d)�1N)v = (z=d + 1)�vSv(0):

Let

f̂v(z) := (z + 1)�v:

3



The inverse Laplace transform of f̂v is

fv(t) =
1

(v � 1)!
e�ttv�1:

Hence the error in the time domain satis�es

e(v)(t) = Sv(0)

Z dt

0
fv(� )e

(0)(t� �=d)d�:

De�ne

gv(t) :=
Z t

0
fv(� )d� =

�t(v)

�(v)
; t � 0:

For t 2 [0; T ],

jje(v)(t)jj � jjSv(0)jj � max
1�i�n

(
Z dt

0
fv(� )d� � max

t2[0;T ]
je

(0)
i (t)j)

= gv(dt) � jjS
v(0)jj � jjje(0)jjjT :

Equation (3) can be easily veri�ed by induction. 2

It is interesting to examine the bounds given by Theorem 1. Note that

(jjSv(0)jj)1=v is time independent and approximates the asymptotic conver-

gence rate either for obtaining the steady-state solution or solutions over long

time intervals. Function gv represents the time dependency of the error and

dominates the convergence behavior at early phase of iteration or on short

intervals. It is a monotone increasing function, bounded by 0 � gv(t) < 1

with

gv(0) = 0; lim
t!1

gv(t) = 1�:

These observations on the error bound agrees with computational experiences

that the WR iteration converges faster on short intervals than on longer ones,

and the convergence rates on any time intervals, including in�nite interval,

are at least as good as the one for the static iteration.

When operator L has constant diagonal, Theorem 1 actually gives an error

bound for Jacobi WR iteration. The next two theorems will give results for

Gauss-Seidel WR iteration on model problems.
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Theorem 2. Let L =M�N . Assume thatM and N are simultaneously

diagonalizable by matrix X, and all eigenvalues of M are positive. Then

jje(v)(t)jj � gv(dt) � jjS
v(0)jj � cond(X) � jjje(0)jjjT ; t 2 [0; T ];

where d is the largest eigenvalue of M and cond(X) = jjX�1jj � jjXjj.

Proof. From the assumptions, there are diagonal matrices �M and �N ,

such that

M = X�1�MX; N = X�1�NX;

and

�M = f�i(M)g; �i(M) > 0 for all i:

In the Laplace domain,

Sv(z) = X�1((zI + �M )�1�N)
vX = (X�1��vM �v

NX)(X�1(z��1M + I)�vX);

leading to

ê(v)(z) = Sv(0)X�1

2
666664

f̂v(z=�1(M))
. . .

f̂v(z=�i(M))
. . .

3
777775Xê(0)(z):

Applying inverse Laplace transform, one obtains

jje(v)(t)jj � jjSv(0)jj � jjX�1jj � max
1�i�n

j
Z �i(M)t

0
fv(� )

nX
j=1

xije
(0)
j (t� �=�i(M))d� j

� jjSv(0)jj � jjX�1jj � max
1�i�n

(gv(�i(M)t)
nX

j=1

jxijj) � jjje
(0)jjjT

� gv(dt) � jjS
v(0)jj � cond(X) � jjje(0)jjjT : 2

The lexicographic (or forward point) Gauss-Seidel WR iteration on heat

equation with periodic boundary condition is an example that this theorem

can be applied (see [10]). When operator L has the form

L = d

"
I �B

�R I

#
; d > 0; (4)
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a common structure when using a red-black ordering on certain model prob-

lems in ODEs or in time dependent PDEs, the error in Gauss-Seidel WR has

a similar upper bound.

Theorem 3. For operator L represented by Eq.(4), the error after v

Gauss-Seidel WR iterations, expressed as e(v)(t)T = [e
(v)
R (t)T ; e

(v)
B (t)T ], is

bounded by

jje(v)(t)jj � g2v�1(dt) � jjS
v(0)jj � jjje

(0)

B jjjT ; t 2 [0; T ]: (5)

Proof. For Gauss-Seidel splitting,

M = d

"
I 0

�R I

#
; and N = d

"
0 B

0 0

#
:

Laplace transform of the convolution kernel of S can be expressed as

S(z) = (zI +M)�1N =

"
0 1

z=d+1
B

0 1
(z=d+1)2

P

#
; P = RB; Rez � 0;

which yields

Sv(z) =

"
0 f̂2v�1(z=d)BP

v�1

0 f̂2v(z=d)P
v

#

and

ê(v)(z) =

"
f̂2v�1(z=d)BP

v�1ê
(0)
B (z)

f̂2v(z=d)P
v ê

(0)

B (z)

#
:

Back to the time domain,

e(v)(t) =

"
BP v�1

R dt
0 f2v�1(� )e

(0)
B (t� �=d)d�

P v
R dt
0 f2v(� )e

(0)

B (t� �=d)d�

#
:

Using the properties

gv+1(t) < gv(t); t > 0; v > 0;

and

maxfjjBP v�1jj; jjP vjjg � jjSv(0)jj;
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(note, Sv(0) =

"
O BP v�1

O P v

#
), the inequality (5) follows immediately. 2

The discussion above indicates that the error at early stage of the WR

iteration is controlled by function gv. Simple convergence estimates are there-

fore derived naturally from this function. Given a convergence rate ! and an

iteration number v, the length of a window of !-convergence (see [3]) can be

estimated by

T! := maxft : (gmtd(v)(dt))
1=v � !g; (6)

where mtd(�) is an integer function, de�ned by the operator splitting. For

instance, mtd(v) = v and mtd(v) = 2v�1 for the cases discussed in Theorem

1 and Theorem 3 respectively. A useful variant of Eq.(6) is the value

!T := (gmtd(v)(dT ))
1=v; (7)

which gives an estimated average convergence rate on windows of length T

in �rst v sweeps.

Example 1. Consider the ODE system

du

dt
+ Lu = 0;

where L = [�1; 2;�1], a symmetric tridiagonal matrix with 2 and -1 on

main and o� diagonal. This system describes the nodal voltage of a linear

resistor-capacitor (RC) network [3] [4]. Jacobi WR iteration was performed

with randomly generated starting function u(0). The trapezoidal rule was

used in the integration with conservative time step 4t = 0:01 for simulating

time-continuous iteration. For a given number of sweeps v, the observed

convergence rates !obs were collected as

0
@max

1�i�n
max
t2[0;T ]

j
u
(v)
i (t)� u

(v�1)
i (t)

u
(v)
i (t)

j

1
A

1=v

:

Figure 1 depicts the graph of T! for 5 Jacobi iterations (v = 5) together

with observed data marked by x's. Table 1 shows more detailed comparison

between the observed convergence rate !obs and estimated rate !T on interval
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[0; T ]. The estimates T!'s and !T 's provided by Eq.(6)-(7) are surprisingly

close to the observed data. Although such a good agreement cannot be

predicted in general, reasonable match at early phase of iteration should be

expected if similar error bounds, as given by these theorems, are conjectured.

Figure 1: Observed and estimated window length

8



Table 1: Observed and estimated convergence rate on [0; T ]

v !obs=!T
T=0.2 T=0.4 T=0.6 T=0.8 T=1.0

3 .2271/.1994 .3840/.3620 .4920/.4939 .5682/.6006 .6227/.6864

5 .1536/.1437 .2793/.2691 .3801/.3783 .4622/.4730 .5295/.5550

9 .0000/.0927 .1796/.1781 .2555/.2568 .3242/.3292 .3852/.3956

4 E�ectiveness of windowing

The theoretical analysis and practical experiments have revealed that the

e�ectiveness of the WR method depends highly on the sti�ness of the ODE

solved. Not surprisingly, the e�ectiveness of using windows in the WR it-

eration is also closely related to the sti�ness of the system. In this section,

we investigate their relation, and show how to estimate the e�ciency of win-

dowing, which then results the general guidance for the implementation of

the WR iteration.

The e�ectiveness of windowing is discussed in terms of computational

cost or operation counts. Following concepts and notations are needed.

Let � be average operation counts on unit windows per sweep. For a

given error tolerance � > 0, vT (�) denotes the average number of iterations

needed for the convergence on windows of length T . Using Theorem 1, vT (�)

can be estimated as

~vT (�) := minfv : gmtd(v)(dT ) < �g:

The error tolerance � will be dropped whenever the context is clear. The

total computations on a window of length T for the convergence is then

approximately equal to

C := vTT�:

Note that T� is the average computations on a window of length T per

sweep. Let this window be split into two subwindows of length T1 and T2,

T1 + T2 = T , with the WR iteration taking place on each of them until the

tolerance level is reached one after the other. The total cost then satis�es

vT1T1�+ vT2T2� � vT 0T�; T 0 = maxfT1; T2g:
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De�ne Cwin := vT 0T�. C and Cwin will be referred as the average compu-

tations on an interval of length T without and with windowing respectively.

Since vT 0 � vT , we have

Cwin � C: (8)

This indicates that windowing does not introduce extra computation.

The number of iterations for the convergence on an interval of length T

is closely related to the sti�ness of the ODE involved. This can be seen from

the behavior of the function gv (see Eq.(3)). For example, an approximation

for the case stated in Theorem 1 is

gv(dT ) �
(dT )~vT

~vT !
� �;

leading to

�1=~vT (~vT=2)
1=2 < dT � (�~vT !)

1=~vT < �1=~vT ~vT :

That is, the estimated number of iterations ~vT increases proportional to the

parameter d, an indicator of the sti�ness of the ODE solved.

4.1 Non-sti� case

Given an interval of length T . Following above arguments, the number of

the WR iterations for convergence is not too large for non-sti� systems. If

the interval is split into k windows of equal length T 0 = T=k, the gain or the

percentage of the savings of using windows can be measured by

Swin : =
C � Cwin

C
=

vTT�� kvT 0T 0�

vTT�

=
vT � vT 0

vT
:

If vT � vT 0; Swin � 0, not much computation can be saved by windowing.

When vT > vT 0, using windows, vT � vT 0 sweeps of WR on this interval of

length T are likely to be reduced.

Table 2 lists the experimental results on Example 1 discussed in Section

3, as well as corresponding estimated values. The entries are of the form

observed/estimated. The numbers listed inside parenthesis in column 2 are

average number of iterations collected on subintervals of [0, 2] with length

T . Windowing was used on intervals [0; T ], T = 0:5, 1:0, and 2:0 with the
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window length 0:25. The iteration was terminated when the relative error

was in the order of � = 1:e� 7. Again, the estimates were in good agreement

with the observed ones. Windowing reduced the computations by 25-60%.

It clearly suggests that windowing is quite e�cient in reducing computations

when a large discrepancy exists between the convergence rate on an interval

and the ones on its subintervals.

Table 2: E�ctiveness of windowing (observed/estimated)

Interval No. of Iterations Computations Swin
[0; T ] vT ( ave. vT )=~vT Without Windowing With Windowing %

[0, 0.25] 8 (7) /8 2� / 2� 2� / 2�

[0, 0.50] 10 (9) /10 5� / 5� 3.75� / 4� 25 / 20

[0, 1.00] 13 (12) /13 13� / 13� 7.25� / 8� 44 / 38

[0, 2.00] 17 (17) /18 34� / 36� 13.5� / 16� 60 / 56

Remark. Eq.(8) and the observed data in Table 2 seem to suggest choos-

ing minimum window length, which ironically is equivalent to the step size

used in the time integration of subsystems. In this situation, the WR method

is nothing but a time-stepping method for solving ODEs. However, recall

that the method is proposed as a multirate method in the context of serial

computation or a parallel method on advanced computers. For the former,

it is developed for problems in which the coupling of subsystems is relatively

loose and many subsystems allow large integration steps. The window length

is therefore recommended as the largest step size used in the time integra-

tion of subsystems. For the later, machine characters such as vector length,

communication overhead, play important roles. The study in this paper is

restricted to the mathematical concerns only.

4.2 Sti� case

In this situation, the WR iteration would take large number of iterations to

converge in an interval. The convergence rate very likely has entered the

asymptotic behavior. Estimating it in terms of function gv alone is no longer
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adequate. From the error bounds given by Section 3, the rate of convergence

at time t would be dominated by

(gmtd(v)(dt)jjS
v(0)jj)1=v � �(S(0));

the spectral radius of S(0) or the convergence rate of the related static it-

eration. Since �(S(0)) is time independent, the convergence rates on any

intervals are almost identical, so are the numbers of iterations needed for the

convergence on those intervals.

Example 2. Consider the heat equation on the unit square 
 = (0; 1)�

(0; 1) with Dirichlet boundary conditions

ut ��u = 0; (t; x) 2 (0; T ]� 


u = 0; (t; x) 2 [0; T ]� @
; u(0; x) = u0(x); x 2 
:

The equation was �rst discretized in space, resulting the semi-discrete prob-

lem
dU

dt
+ LhU = 0; (9)

where Lh is the �ve point di�erence approximation operator to the Laplacian

Lh :=
1

h2

2
64 �1
�1 4 �1

�1

3
75 ;

and h is the mesh size of space discretization. The red-black Gauss-Seidel

WR was then implemented on the system (9) over time interval [0; T ]. The

iteration was terminated when the di�erence between the vth and v � 1th

approximation

jjjU (v) � U (v�1)jjjT

reached the level of truncation error O(h2), a safe stopping criterion proven

by Nevanlinna [8]. Table 3 shows that the numbers of iterations needed

on di�erent time intervals are almost the same, con�rming the above argu-

ments. As is discussed, using small windows for this problem virtually has

no mathematical advantage.
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Table 3: Number of iterations
h [0; 0:125] [0; 0:25] [0; 0:5] [0; 1:0]

1/8 16 17 17 17

1/16 53 60 60 60

1/32 208 239 239 239

5 Conclusions

In this paper, the convergence estimates such as window length and conver-

gence rate are developed using the qualitative comparison between the WR

iteration and the corresponding static iteration. The e�ectiveness of win-

dowing technique for the WR method is discussed. The results proven in

this work and observed in the experiments suggest that, for non-sti� ODEs,

substantial computations can be saved by windowing when a large discrep-

ancy exists between the convergence rate on an interval and the ones on its

subinterval; while for sti� problems, which are typically arisen from time

dependent PDEs, windowing has no mathematical advantage. Thus for sti�

systems, the selection of the window length should be mainly determined by

the machine features, such as memory capacity, vector length, cache size,

communication cost, etc.

Although only a few model problems are considered in this work, similar

approach could be taken for some generalized problems. The guidance con-

cluded above certainly provide helpful information in the implementation of

the WR method for wide class of applications.
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