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ABSTRACT

Based on a distributed parameter model for vibrations, an approximate �nite
dimensional dynamic compensator is designed to suppress vibrations (multiple modes
with a broad band of frequencies) of a circular plate with Kelvin-Voigt damping and
clamped boundary conditions. The control is realized via piezoceramic patches bonded
to the plate and is calculated from information available from several pointwise observed
state variables. Examples from computational studies as well as use in laboratory
experiments are presented to demonstrate the e�ectiveness of this design.
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1. INTRODUCTION

In recent years, a great deal of research has been carried out on the development
and derivation of control designs from an in�nite dimensional state-space approach;
however we are unaware of any implementation based on such designs being reported in
the literature. We have presented brie
y in [1] some preliminary experimental results on
implementation of an output feedback control which was designed based on an in�nite
dimensional (or distributed) system. In this paper we attempt to summarize the design
methodology and give further discussion of the implementation.

The feedback control system was implemented on a circular plate with a piezo-
ceramic patch as actuator. This choice of structure was motivated by the fact that it
is an isolated component from the structural acoustic system described in [7, 8]. The
structure in that system is made up of a hardwalled cylinder with a clamped circular
plate at one end and the control problem consists of using piezoceramic patches on
the plate to reduce the interior structure-born sound pressure levels which result when
the plate is subjected to a strong exterior acoustic �eld. The partial di�erential equa-
tion (PDE) system which describes the dynamics of this circular plate is presented in
Section 3 below.

In our control design, three primary concerns are: 1) presence of disturbance in
both input and output of the system; 2) robustness of control; 3) lack of full state
measurement. Those concerns lead to a design problem involving dynamic compen-
sators for distributed parameter systems. A great deal of recent research has been
carried on the individual or combined topics of our concerns here. For example, see
[2, 4, 13, 15, 16, 17, 18, 20, 21], and the references therein. This problem involves di�cult
issues and many theoretical and computational questions remain to be resolved. The
purpose of this paper is to demonstrate how �nite dimensional control theory together
with approximation theory for certain optimal control problems can be used to success-
fully design and implement feedback controllers for 
exible structures. A �nite dimen-
sional dynamic compensator design is outlined in Section 2. The approximation scheme
which leads to a �nite dimensional control problem will be discussed in Section 4. A nu-
merical example is given in Section 5 along with experimental results to provide prelim-
inary validation regarding the implementation of a PDE-based (distributed parameter
or in�nite dimensional system based) method for reducing structural vibrations.

2. CONTROL PROBLEM FORMULATION

We �rst consider an n-dimensional system

_y(t) = Ay(t) +Bu(t); y(0) = y0;

yob(t) = Cy(t);

z(t) = Hy(t) +Gu(t);

(1)

where the state variable y is in IRn, the control u is in IRm, the measurement yob is in IR
p

and the controlled output z is in IRr for some �nite positive integers n; m; p, and r.
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The coe�cients A; B; C; H, and G are time invariant matrices. The performance
index (or cost function) is given by

J(u) =
Z
1

0

���z(t)���2 dt
=

Z
1

0

�D
Qy(t); y(t)

E
+
D
Ru(t); u(t)

E�
dt;

(2)

subject to (1). In (2), Q = H 0H; R = G0G, where we assume H 0G = 0. The control
problem is to �nd a controller u 2 L2(0;1; IRm) which minimizes the cost function (2).

We are interested in the case when, as in most practical situations, measurement
of the full state is not available (p < n). (We note that when yob(t) = y(t) the solution
can be obtained by applying the well known linear quadratic regulator (LQR) optimal
control theory.) One possible approach is to build a state estimator or observer to
reconstruct the state from the measured partial state. One can then feed back this
reconstructed state. In this paper, we consider a full order observer for simplicity (it is
adequate for the plate experiments described below). Design of low order observers is
important when the dimension of the control system is large, and we refer to [10, 15]
for details on reduced order observers.

Let the reconstructed state be denoted by yc(t). We consider the standard com-
pensator (of Luenberger type [19]) for system (1) given by

_yc(t) = Acyc(t) + Fyob(t);

Ac = A� FC �BK;

u(t) = �Kyc(t);

(3)

for a properly chosen feedback gain K and observer gain F so that the reconstruction
error jyc(t)� y(t)j ! 0 as t!1 and the closed loop system

�"
y(t)
yc(t)

#
=

"
A �BK
FC Ac

# "
y(t)
yc(t)

#

is exponentially stable. Intuitively, we would like to choose F such that the observer
poles of A� FC are deep in the left half complex plane to obtain fast convergence of
the reconstruction error. This must be done with care since an observer so constructed
is very sensitive to any observation noise that may exist.

Among several compensator designs, we �rst consider the so called optimal com-
pensator. Suppose that the matrix Q is nonnegative-de�nite, R is positive-de�nite, the
pair (A;B) is stabilizable, (A;C) is detectable, (A;G) is controllable, and (A;H) is
observable. Then there exist unique (minimal) optimal feedback gain K and observer
gain F given by

K = R�1B0� (4)

F = PC 0 ~R�1 (5)
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where � and P are unique nonnegative-de�nite solutions to the following regulator and
observer algebraic Riccati equations

�A+A0���BR�1B0�+Q = 0; (6)

PA0 +AP � PC 0 ~R�1CP + ~Q = 0; (7)

respectively. Thus the optimal estimator is obtained and given by (3)-(5). In (7), ~Q is
a nonnegative symmetric matrix and ~R is a positive symmetric matrix. The matrices
Q; R; ~Q, and ~R are determined by some design criteria for the speci�c control problems.
We point out that this \optimal" observer can be de�ned without depending on the
(traditional) stochastic formulation. The name \optimal" is derived from the stochastic
interpretation of the above design (see [13, 19] for further discussions). Brie
y, the
above described observer

_yc(t) =
�
A�BR�1B0�

�
yc(t) + PC 0 ~R�1C

�
y(t)� yc(t)

�
(8)

is simply the Kalman-Bucy �lter if we consider the system (1) disturbed by the uncor-
related stationary Gaussian white noise v1(t) and v2(t):

_y(t) = Ay(t) +Bu(t) + v1(t); y(0) = y0;

yob(t) = Cy(t) + v2(t);

z(t) = Hy(t) +Gu(t);

(9)

where

Efv1(t)g = 0; Efv1(t) v
0

1(� )g = ~Q�(t� � )

Efv2(t)g = 0; Efv2(t) v
0

2(� )g = ~R �(t� � ):

Here Ef g is the expected value. The observer (8) is optimal in the sense that the limit
of the mean square reconstructed error

lim
t!1

E
n�
y(t)� yc(t)

�0
W
�
y(t)� yc(t)

�o

(W is a weighting matrix) is minimal with respect to all other observers (e.g., see [19]).
Even though the optimal compensator provides us with the desired performance,

it is well-known that it may lack robustness. To design a robust dynamic compensator,
let us consider the system (1) with input and output disturbance w(t)

_y(t) = Ay(t) +Bu(t) +Dw(t); y(0) = y0;

yob(t) = Cy(t) + Ew(t);

z(t) = Hy(t) +Gu(t);

(10)

where the disturbance vector w(t) is in IRq for some �nite positive integer q. The
coe�cientsD and E are time invariant matrices. Furthermore, we will restrict ourselves
to matricesH; G; D, and E such that H 0H = Q � 0; G0G = R > 0; H 0G = 0; DD0 =
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~Q � 0; EE0 = ~R > 0; DE0 = 0. The more general case where the cross product
terms H 0G and DE0 are not zero can be dealt with in a similar manner with slight
modi�cations (see [9]).

Our objective is to design a robust controller that provides acceptable performance
with disturbed incomplete state measurements. One such design technique is the so-
called H1=MinMax compensator given in [9]. One formulates H1-control problems
in the time domain and obtains a soft-constrained dynamic game associated with the
disturbance attenuation problem. The control problem is formulated as a form of
optimization of a performance index (or cost function). For this purpose, we introduce
the extended performance index:

J
(u;w) =
Z
1

0

����z(t)���2 � 
2
���w(t)���2� dt

=
Z
1

0

�D
Qy(t); y(t)

E
+
D
Ru(t); u(t)

E
� 
2

D
w(t); w(t)

E�
dt

(11)

subject to (10). The optimization problem is to �nd a controller u� 2 U � L2(0;1; IRm)
and disturbance w� 2 W � L2(0;1; IRq) such that

J�
 = inf
u2U

sup
w2W

J
(u;w) = J
(u
�; w�):

One seeks necessary and su�cient conditions on 
 so that quantity J�
 is �nite. The
lower bound of 
 for which J�
 < 1 is the optimal minimax attenuation level and is
denoted by 
�, i.e.


� = inff
 : J�
 <1g:

The �rst part of the optimization problem formulates the soft-constrained game and
the second is a disturbance attenuation problem (
 is the attenuation level). It can be
shown that the results of this optimization problem yields a bound for the H1-norm
of the transfer function from disturbance w(t) to the controlled output z(t).

To be more precise, the central results for this control problem can be summarized
as following. Let the pair (A;B) be stabilizable, (A;C) be detectable, (A;G) be control-
lable, and (A;H) be observable. For a given attenuation 
 > 0, there exist (minimal)
positive de�nite solutions � and P to the following two algebraic Riccati equations

�A+A0���(BR�1B0 � 
�2 ~Q)� +Q = 0; (12)

PA0 +AP � P (C 0 ~R�1C � 
�2Q)P + ~Q = 0; (13)

respectively. Moreover, if the spectral radius � of P� satis�es the condition

�(P�) < 
2; or �� 
2P�1 < 0; (14)

then there exists a unique optimal controller

u�(t) = �R�1B0�yc(t); (15)

and the state estimator yc(t) 2 IRn satis�es
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_yc(t) = Acyc(t) + Fyob(t);

yc(0) = yc0;
(16)

where

Ac = A�BK � FC + 
�2 ~Q�

F = (I � 
�2P�)�1PC 0 ~R�1:

In addition, we have 
 � 
�.
The resulting closed-loop system

�"
y(t)
yc(t)

#
=

"
A �BK

FC Ac

# "
y(t)
yc(t)

#
(17)

with the controlled output

z(t) =

"
H 0
0 �GK

# "
y(t)
yc(t)

#
(18)

is stable.
Finally, if we let ẑ(s) and ŵ(s) denote the Laplace transform of z(t) and w(t)

respectively, then the transfer function from the disturbance w(t) to the controlled
output z(t) is expressed by

T (s) =
ẑ(s)

ŵ(s)
=

"
H 0
0 �GK

# "
sI �

 
A �BK
FC Ac

!#�1 "
D

FE

#
: (19)

Furthermore, the H1 norm of the transfer function (19) is bounded by

kT (�)k1 � 
:

Thus, if we follow this procedure we obtain a dynamic compensator which not only
stabilizes the system with imperfect state measurements, but also provides robustness.

3. STRUCTURAL MODEL

In this section, the mathematical model used to describe the experimental setup
is given. To reduce computational complexity, in our initial experiments the structure
is axisymmetrically con�gured. We point out that all of the results and techniques
presented here can be extended directly to the more general case of nonaxisymmet-
ric con�gurations. The structure under study is a �xed-edge circular plate with a
centrally placed circular shaped piezoelectric ceramic patch for actuation and sens-
ing. The equations of motion will be formulated in polar coordinates (r; �). Under
the Love-Kirchho� plate theory with Kelvin-Voigt (or strain rate) damping, the trans-
verse vibrations w(t; r; �) of a plate of radius a subject to an axisymmetric external force
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g(t; r; �) are described by the system

~�(r; �)
@2w

@t2
+ ca

@w

@t
+
@2Mr

@r2
+
2

r

@Mr

@r
�

1

r

@M�

@r
= r2Mpe + g ;

0 < r < a

t > 0

w(t; a; �) = 0;
@w

@t
(t; a; �) = 0;

(20)

where the internal bending moments are

Mr = D(r; �)
�
@2w

@r2
+
�(r; �)

r

@w

@r

�
+ cD(r; �)

�
@3w

@r2@t
+
�(r; �)

r

@2w

@r@t

�

M� = D(r; �)
�
1

r

@w

@r
+ �(r; �)

@2w

@r2

�
+ cD(r; �)

�
1

r

@2w

@r@t
+ �(r; �)

@3w

@r2@t

�
;

and the piezoceramic patch generated excitation moment isMpe = KB�peu(t):Here ca is
the viscous (air) damping coe�cient, and u(t) is the voltage applied to the patch. With

E denoting the Young's modulus, the spatial variables D = Eh3

12(1��2)
; �; ~� and cD rep-

resent the 
exural rigidity, Poisson's ratio, the mass density per area, and Kelvin-Voigt
damping for the plate/patch structure. The constant KB is a piezoelectric parameter
depending on the material piezoelectric properties as well as geometry, and the char-
acteristic function �pe is given by �pe(r) = 1, for r < ape, �pe(r) = 0, for r � ape, for a
patch of radius ape. The term r2Mpe in (20) is an unbounded operator involving Dirac
delta function derivatives.

Let 
 denote the region occupied by the plate and 
pe that of the patch. The
energy (weak or variational) form of system (20) is

Z


~�
@2w

@r2
� d! +

Z


ca
@w

@t
� d! +

Z


Mr

@2�

@r2
d! +

Z



1

r
M�

@�

@r
d!

=
Z

pe

KB u(t)r2� d! +
Z


g � d!

(21)

for a class of test functions � (see [8] for details).

4. PLATE VIBRATION CONTROL

For the control examples discussed here, we will concentrate on the situation where
the plate starts with a given initial displacement and velocity and is then allowed to
vibrate. It is also assumed that there are no external forces applied, i.e. g(t; r; �) = 0.
The goal in the control problem is to determine a voltage u(t) which, when applied to
the piezoceramic patch, leads to a signi�cantly reduced level of vibration. For our dis-
cussions in this note, the control problem formulation (1)-(2) is used and we implement
the optimal observer of (3)-(8). Robustness of the controller was not considered in our
�rst attempt of implementation of the control design. However, it is the subject of our
current e�orts and will be reported on elsewhere.
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The system describing the dynamics of the plate is in�nite dimensional. To approx-
imate the plate dynamics, a Fourier-Galerkin scheme is used to discretize the in�nite
dimensional system (21). Following the ideas detailed in [8], the plate displacement is
approximated by

wN (t; r; �) =
NX
n=1

wN
n (t)Bn(r; �) (22)

where fBn(r; �)gNn=1 are cubic spline/Fourier basis functions. The substitution of the
expansion (22) into (21) yields the 2N � 2N matrix system

_yN (t) = ANyN(t) +BNu(t);

yN(0) = yN0 ;
(23)

where yN(t) = [wN
1 (t); � � � ; w

N
N (t); _w

N
1 (t); � � � ; _w

N
N (t)] denotes the 2N �1 vector contain-

ing the generalized Fourier coe�cients for the approximate displacement and velocity
(see [8] for details concerning the discretization of the circular plate equation and for-
mulation of the matrices AN and BN). To simplify the notation, the superscript N
(which is �xed) will be dropped hereafter in this note. The systems in what follows are
understood to be �nite dimensional.

It has been shown in [5, 6, 12] that the approximation scheme is well de�ned in
the sense that solution to the �nite dimensional system (23) converges to the solution
to the original in�nite dimensional system (21).

For the �nite dimensional approximate system, the problem of determining a con-
trolling voltage can be posed as the problem of �nding u(t) which minimizes the cost
function (2) where y(t) is the solution to (23). From the control design results in
Section 2, the optimal controller and observer are easily obtained from (3){(7).

We report here on a �nite dimensional compensator for the approximate system.
A natural question is whether this compensator will stabilize the in�nite dimensional
system. For bounded input and bounded output operator systems, we refer to [13, 15]
for detailed discussions on this issue. For the systems with unbounded input and
output operators, additional results and conditions under which well-posedness and
convergence are assured can be found in [4, 16, 17, 18, 20] as well as other references.

5. NUMERICAL EXAMPLES

It is known that the PDE-based control design introduced in preceding sections
requires accurate knowledge of system parameters ~�; D; �; cD; ca and KB. Even
though material handbooks may provide partial information, the damping coe�cients
are always unknown and the piezoelectric material constant is given only up to certain
range of values. Before the feedback control law can be designed and implemented,
signi�cant parameter identi�cation e�orts must be carried out. The methodology and
results for theoretical issues for this parameter identi�cation is reported in [3, 8]. Spe-
ci�c parameter identi�cation results using experimental data which were obtained from
our circular plate were reported in [1]. The same experimental setup was later used in
control law implementation. The dimension of the aluminum plate and piezoceramic
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patch are summarized in Table 1. The table also contains \handbook" values for the
Young's modulus, Poisson ratio and density of the plate and patch. The estimated
parameters via �tting model response to the experimental data are summarized in Ta-
ble 2. As explained in [12], the parameters ~�; D; cD and � have discontinuities (at the
patch boundary r = ap) which must be estimated.

Plate Properties Patch Properties

Radius a = :2286 (m) rad = :01905 (m)

Thickness h = :00127 (m) T = :0001778 (m)

Young's modulus E = 7:1� 1010 (N=m2) Epe = 6:3� 1010 (N=m2)

Density � = 2700 (kg=m3) �pe = 7600 (kg=m3)

Poisson ratio � = :33 �pe = :31

Strain coe�cient d31 = 190� 10�12 (m=V )

Table 1. Plate and PZT properties.

~� (kg=m2) D (N �m) cD (N �m � s) � ca KB

�10�4 (s �N=m) (N=V )

beam b+P beam b+P beam b+P beam b+P

Ana. 3.429 13.601 .33 .013369

Est. 3.157 3.123 11.017 11.178 2.158 2.210 .3304 .3271 15.566 .015288

Table 2. Analytical and estimated values of the physical parameters.

Using these estimated values of the physical parameters, simulation studies were
carried out. To closely resemble the experimental setup, we assumed that a single
point observation, velocity at center, is available. The nonnegative 2N � 2N matrix Q
was chosen by taking energy into consideration and weighted as explained in [3], and
the positive matrix R is just a positive constant which penalizes unrealistically large
voltages. The matrices ~Q; ~R are chosen to be 2N � 2N and p � p identity matrices,
respectively, where p is the number of observations (p = 1 in our simulation study).

The simulation was carried out in two steps. First, the PDE system with an
external excitation force and without control (u(t) = 0) was solved for the time period
of [0; t1]. The excitation force was cut o� before time t1. The solutions at t1 were then
used as initial conditions (displacement and velocity) in solving the system with control.
A recorded impact hammer hit was used as the excitation force. The simulation result
is depicted in Figure 1. In this �gure, plot (a) is a time history of uncontrolled versus
controlled velocities, and plot (b) is the control voltage fed back to the piezoceramic
patch. The maximum voltage re
ected the choice of weights d = 1 and Re = 10�7

for the design parameters Q and R respectively. It was observed that it is the ratio
Re=d which in
uences the amplitude of the controlling voltage. The sampling time was
set to 1=12000 Hz, and dimension of the approximation was set to N = 16 under the
criteria that solution to (23) does not vary signi�cantly if the dimension was larger
than 16. The time t1 for which the control feedback loop was closed was taken to be
0.01 seconds.
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Figure 1. Simulation results: (a) Uncontrolled and controlled plate vibrations;

(b) The controlling voltage.
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The simulation studies were most encouraging and we subsequently implemented
the control design in the Acoustic Division at NASA Langley Research Center. A num-
ber of practical problems arose during the implementation; a signi�cant one involved
the use of an accelerometer as sensor. To obtain the structural velocity, an approximate
integrator was used to integrate the acceleration signal. This integrator is de�ned by
(see [14])

�v(t) + 
 _v(t) + 
2 _v(t) = _a(t); (24)

where v(t) is velocity and a(t) is acceleration. The equation (24) has zero DC gain
and frequency response close to that of exact integration for ! > 6
. Since the �rst
structural mode was approximately 58 Hz, the design parameter 
 was set to 16� rad/s.
Equation (24) was implemented by solving the following equivalent �rst order equation

�2
4 v(t)

~v(t)

3
5=

2
4 �
 


�
 0

3
5
2
4 v(t)

~v(t)

3
5+

2
4 1

0

3
5 a(t);

in which the second variable ~v was introduced.
After obtaining the velocity, the estimated state at time t is evaluated by

_yc(t) =
�
A�BR�1B0�� PC 0 ~R�1C

�
yc(t) + PC 0 ~R�1 v(t) (25)

where v(t) is the integration of acceleration at the center of the plate. The backward
Euler method was employed to solve both di�erential equations (24) and (25). We
should point out that the last term in (25) is di�erent from the one in (3) which was
used in simulation. In (3), y(t) (in yob(t) = Cy(t)) is a vector of generalized Fourier
coe�cients, while in the implementation, the observation yob(t) is an observed variable
which can be used immediately instead of multiplying by the matrix C. The controlling
voltage u(t) was obtained through

u(t) = Kyc(t) (26)

and then fed back into the system. The matrices
�
A�BR�1B0�� PC 0 ~R�1C

�
and K

in (25) and (26) were calculated o�ine to reduce computation time in implementation.
As a preliminary investigation into the feasibility of implementing the feedback

control scheme, a series of experiments were conducted in which the plate was excited
with a centered impact hammer strike and the vibrations were recorded both with
and without controlling voltage being applied. In all cases, the same electronic setup
was used with the control cases di�ering only in that the calculated voltage was fed
back into the system whereas it was simply calculated and stored in the uncontrolled
case. Representative plots of the plate velocity (integrated from the data recorded by
the centered accelerometer) for the uncontrolled and controlled cases are given in Fig-
ure 2. The forces delivered by the hammer impact in the uncontrolled and controlled
case were nearly identical. By comparing the velocity levels in the two cases, it was
noted that a signi�cant reduction was obtained in the controlled case with a controlling
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Figure 2. Experimental results: (a) Uncontrolled and controlled plate vibrations;

(b) The controlling voltage.
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voltage having a maximum value below 60 volts. Quantitatively, the application of
the controlling voltage leads to a 47% reduction in maximum velocity levels by time
t = 0:5 seconds and a reduction of 73% by t = 1 second. We are happy to report
that these results are typical of those recorded in a series of experiments and hence
represent the typical reduction in vibration levels that were obtained when the con-
trolling voltage was fed back into the system in the manner described above. While
implementation procedures are not yet optimal, these preliminary tests demonstrated
that vibration levels could be e�ectively reduced when the PDE-based control scheme
was implemented. Further experiments are currently underway and will be reported
on at this conference.

6. CONCLUDING REMARKS

In this paper, the experimental implementation of a PDE-based feedback control
strategy for a 
exible structure has been considered. The structure under considera-
tion was a thin circular plate with a centered piezoceramic patch. When the control
law was experimentally implemented, the control technique led to a signi�cant reduc-
tions in the plate vibrations. As we have noted, even more vibration reduction was
observed in corresponding simulation studies. We are currently conducting research
to investigate the gap between the simulation and experimental �ndings. While the
results of implementation are not yet ideal, they provide a test as to the feasibility of
implementing a PDE-based method in this manner as well as indicating directions for
future experimental tests to further improve techniques and methodology.
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