
i

Design Considerations for Parallel Graphics Libraries

Thomas W. Crockett

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Abstract

Applications which run on parallel supercomputers are often characterized by massive datasets.

Converting these vast collections of numbers to visual form has proven to be a powerful aid to

comprehension. For a variety of reasons, it may be desirable to provide this visual feedback at runtime.

One way to accomplish this is to exploit the available parallelism to perform graphics operations in place.

In order to do this, we need appropriate parallel rendering algorithms and library interfaces. This paper

provides a tutorial introduction to some of the issues which arise in designing parallel graphics libraries

and their underlying rendering algorithms. The focus is on polygon rendering for distributed memory

message-passing systems. We illustrate our discussion with examples from PGL, a parallel graphics library

which has been developed on the Intel family of parallel systems.

This work was supported by the National Aeronautics and Space Administration under Contract Nos. NAS1-18605
and NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science and
Engineering (ICASE), M/S 132C, NASA Langley Research Center, Hampton, VA 23681-0001.

E-mail: tom@icase.edu



1

1. Introduction

Massively parallel supercomputers are becoming important tools for solving large-scale computational

problems. For many applications, the ability of these systems to provide large, scalable memory capacities

is at least as important as their raw computational power. The output datasets produced by these

applications may range in size from hundreds of megabytes to hundreds of gigabytes. The data may also be

in complex form, with sophisticated data structures and numerous interrelated variables.

Understanding these vast collections of numbers poses a challenge to the scientists and engineers who

need to relate them to the problem under investigation. Conversion of abstract data into visual

representations has proven to be a powerful aid to comprehension. The traditional approach to this process

has been to run the simulation on the parallel machine, dump the results to disk, and then ship the data

across the network to a specialized graphics workstation for post-processing and display. For large

datasets, and particularly for time-dependent simulations, this approach may be impractical, due to

limitations on file system capacities and I/O rates, network bandwidth, and workstation memory and

processing capacities. Thus the researcher is forced to select some subset of the results for inspection, for

example, by limiting the analysis to certain timesteps or reducing the resolution. This raises the possibility

that unexpected or fine-grain phenomena may be overlooked.

An alternate approach is to exploit the power of the parallel supercomputer to perform the graphics and

visualization operations in place. In the following sections, we explain why this approach is useful, and

examine some of the issues which arise in designing graphics software on which parallel visualization

applications can be based. For the sake of concreteness, we limit our discussion to the problem of parallel

polygon rendering on distributed-memory message-passing architectures, as exemplified by the Intel

family of parallel systems.

2. Why Parallel Rendering Is Useful

The term rendering refers to the computational process of generating an image from an abstract

description of a scene.Parallel rendering refers to the exploitation of parallelism in performing the

rendering computations. We will describe the rendering process in more detail when we examine strategies

for parallelizing it in a subsequent section. But first we need to understand why parallel rendering is useful

in the context of parallel applications. The benefits can be grouped into four main categories: data

reduction, live visual feedback, processing power, and flexibility. We will examine each of these

individually.



2

2.1 Data reduction

By performing visualization and graphics operations in place on the data, we may be able to reduce the

size of the output stream substantially. With current workstation technology, useful image resolutions for

visualization range from about 512 x 512 (roughly one-quarter of the display) up to 1280 x 1024 (full-

screen on a large monitor). Images may be in a color-mapped or pseudo-color format, or in full color. To

achieve reasonable quality, color-mapped images usually require at least 8 bits per pixel, resulting in a

selectable palette of 256 colors. Full-color images usually use three color channels with 8 bits of color

resolution in each channel, which results in a color palette containing over 16 million colors. Thus a typical

image requires between 256 KB and 4 MB of data to represent. While this may seem like a lot, it is often a

few orders of magnitude smaller than the output dataset produced by a large simulation, and image

compression techniques can reduce this significantly.

With image sizes of a few hundred kilobytes or below, we have reached a level at which current

networking technology (Ethernet and FDDI, for example) can deliver images at rates ranging from one to

a few frames per second. At this speed, interactive work becomes practical.

By rendering on the parallel machine, we also eliminate the need for an expensive graphics workstation to

drive the display device. Essentially any workstation-class machine with a color monitor and a reasonable

network connection is sufficient, bringing visualization services to the desktop of the ordinary user.

2.2 Live visual feedback

Given appropriate parallel rendering algorithms and application programming interfaces, plus support for

network image transmission, we can incorporate graphics directly into parallel applications to produce

runtime visual output. This capability is useful for several purposes, including debugging, execution

monitoring, and interactive steering. In debugging, for example, a visual representation of the data can

help to identify variables which are not within expected ranges, or illustrate portions of the computational

domain in which processors are not behaving as expected.

In execution monitoring, the user can obtain periodic visual snapshots of a computation to follow its

progress or see how certain phenomena develop. Visual monitoring can also provide an early indication

that things are going awry, allowing a run to be terminated early, with commensurate savings in computer

charges and faster turnaround time.

The next step beyond monitoring is interactive steering, in which the user intervenes during the

computation to modify simulation parameters or explore alternate scenarios. A parallel renderer does not



3

provide this capability directly, of course, but is one of the building blocks which can help to make

interactive steering practical on parallel machines.

2.3 Processing power

A graphics library, parallel or otherwise, does not implement visualization operations directly, but provides

a set of general-purpose routines which visualization tasks can use for modelling and rendering purposes.

Some visualization methods are computationally expensive in their own right, especially when applied to

large datasets. These techniques can make good use of parallelism to reduce computation times. One such

example is described in [4].

The availability of parallel graphics libraries allows image generation to be incorporated directly into the

parallel visualization task, as is normally the case for workstation-based visualization. This is useful not

only for runtime visualization, but also for resource-intensive post-processing and data exploration tasks,

in which the power or storage capacity of the parallel system may be needed to perform the visualization

computations. Figure 1 shows the relationships between various software components in an application

with integrated visualization.

2.4 Flexibility

Graphics workstations provide high levels of rendering performance by implementing common graphics

operations in hardware. While this approach is quite effective, it has certain limitations. Usually the

graphics operations can be performed only on a small set of predefined geometric primitives, with a

limited set of illumination options, and at a maximum resolution which is determined by the size of the

frame buffer memory. When specialized functionality is required, it must be performed in software or

approximated using the built-in capabilities, with corresponding reductions in performance or image

quality.

Figure 1: Relationship of software components in an application with integrated visualization.

Application Layer

Visualization Layer

Graphics Libraries

System Services



4

Software-based parallel rendering provides more flexibility, allowing additional geometric primitives, non-

standard lighting models, high-resolution imaging, etc. The use of parallelism compensates for the absence

of specialized rendering hardware to deliver performance that can be quite good.

3. Scope

In the remainder of this paper, we will concentrate on the problem of designing parallel graphics libraries

which support parallelpolygon rendering on distributed-memory message-passing (DMMP) architectures.

Polygon rendering is the process of generating 2D images from a collection of 3D objects whose surfaces

are defined by planar polygonal facets. Figure 2 illustrates the essentials of the polygon rendering problem.

This is the type of rendering which is commonly supported in hardware by graphics workstations. It is

useful for a wide variety of tasks, especially when features such as transparency and texture mapping are

added. Polygon rendering is distinct from other techniques such as ray-tracing, radiosity, and volume

rendering, which also have important applications. For a broader view of the parallel rendering field, see

[5] [8] [9] [13] [14].

Although our focus is on polygon rendering, most of the issues we discuss generalize to other types of

geometric primitives (points, lines, patches, etc.), and a parallel polygon renderer could easily support

additional primitives without changing the basic structure of the algorithms.

We concentrate on message-passing systems because they are the predominant class of scalable parallel

system in use today. Again, we can generalize our discussion to any system with distributed memory

which distinguishes between local and remote memory references. We will see, however, that the relative

Figure 2: A scene is described by a collection of objects with associated light sources and viewing
parameters.

Objects

Projection
Plane

Viewer

Lights



5

cost of a remote memory reference is an important parameter which can influence a number of design

decisions.

4. Design Issues for Parallel Graphics Libraries

The design space for a parallel graphics library and its underlying rendering algorithms is large, so it is

important to understand the issues involved to help guide our decisions. Design considerations include, but

are not necessarily limited to,

• finding and exploiting parallelism

• programming paradigm and library interface

• memory constraints

• data distribution

• communication

• load balancing

• performance scalability

• image output and display

We will examine each of these areas in detail.

4.1 Finding and exploiting parallelism

We would like for a parallel graphics library to exploit parallelism in its own internal computations so that

rendering is fast and efficient, and does not become a bottleneck to the rest of the application. Thus we

need to understand where parallelism can be found in the rendering process. There is a well-established

functional pipeline for the polygon rendering process, as shown in Figure 3. This pipelined approach has

been used to great advantage by graphics workstation vendors who have essentially mapped the pipeline

into hardware. Geometric primitives are fed into the pipe one at a time, and a series of operations is

performed which ultimately results in corresponding pixel values being set in the frame buffer memory.

However, the parallelism in the pipelined approach is limited by the number of operations in the pipe. For

massively parallel systems, we need to exploitdata parallelism, perhaps in combination with pipelining, in

order to keep the processors busy. With the data parallel approach, operations are performed on multiple

data items simultaneously, with the potential for much higher levels of parallelism. This strategy has been



6

adopted by a number of high performance systems, including Silicon Graphics’ RealityEngine [1] and the

University of North Carolina’s Pixel-Planes 5 [7] and PixelFlow systems [10].

Figure 3: A typical polygon rendering pipeline.

Scene Description

Modelling

Transformations

Backface

Culling

Lighting

Calculations

Viewing

Transformations

Clipping

Rasterization

Z-buffer

Compare & Store

Final Image

T
ra

n
sf

o
rm

at
io

n
 P

h
as

e
R

as
te

ri
za

ti
o

n
 P

h
as

e



7

There are two main types of data parallelism which can be found in the rendering process. The first type is

called object parallelism, because it refers to the operations which are performed on the geometric

primitives which comprise objects in the scene. These operations constitute the first few stages of the

rendering pipeline, including modelling and viewing transformations, backface culling, lighting

calculations, and clipping. Collectively, we refer to this portion of the rendering pipeline as the

transformation phase. The operations in this phase can be performed independently on each geometric

primitive. Since complex scenes may contain hundreds of thousands or even millions of polygons, the

transformation phase provides ample opportunities for data parallelism.

The second type of parallelism occurs in the later stages of the rendering pipeline, where the individual

pixel values are computed for each transformed primitive. This process is known asrasterization, and we

call this section of the rendering pipeline therasterization phase. In principle, the value at each pixel can

be computed independently based on the information at polygon vertices, resulting in massiveimage

parallelism. In practice, pixel values are computed in groups, either over an entire primitive, or some

subset of the primitive. This allows more efficient incremental interpolation algorithms to be used, but

complex scenes may still contain millions of independent rasterization tasks.

So far we have not addressed the problem of hidden surface elimination. A variety of techniques are

available, but for simplicity we will assume a z-buffer algorithm, in which a depth component (z

coordinate) is associated with each pixel. Pixels which lie behind other pixels along the line of sight are

discarded in the final step of the rasterization phase. Due to its simplicity, z-buffering has been very

popular in hardware renderers, even though it requires a few bytes of additional memory at each pixel. For

parallel rendering, z-buffering is attractive since it exploits image parallelism very naturally.

4.2 Programming paradigm and library interface

Now that we have determined where parallelism exists in the rendering process, we must consider how

parallel applications behave and how they will invoke graphics operations. DMMP systems are very

flexible with respect to the parallel programming paradigms which they support. At one extreme, they can

support truly MIMD applications, in which processors may perform completely different functions. At the

other extreme, they allow data-parallel applications to run in a pseudo-SIMD mode, with every processor

performing the same set of operations on its portion of a distributed data structure. In between is the SPMD

(Single-Program Multiple-Data) model in which processors execute the same program, but with some

flexibility in local control flow.



8

For reasons that will become apparent, parallel rendering algorithms require significant amounts of

communication and at least some internal synchronization. Thus a purely MIMD application interface is

unworkable. However, parallel polygon renderers have been developed using both SIMD [12] and SPMD

[3] [6] approaches, so it should be possible to construct a library interface using either of these models. On

a DMMP system, many applications are written in an SPMD style, so this choice is preferred. It does not

conflict with purely data-parallel applications, but does allow processors some independence for

operations such as data modelling. The rendering and display operations are then considered to be

synchronization points in the code, and must be invoked more or less simultaneously by every processor.

4.3 Memory constraints

As we have already discussed, many applications of interest are memory-intensive. Thus it is important for

the graphics library and its underlying rendering algorithms to avoid consuming the resources that the

application needs to use. A good parallel graphics library should have modest, uniform, and predictable

memory requirements so that the application programmer can plan accordingly. This constraint is

noticeably absent in much of the literature on parallel rendering algorithms, where the assumption is often

made that the renderer existsin vacuo and that large amounts of memory are available for its use.

Memory considerations also argue againstretained mode approaches in which the graphics library

maintains an internal copy of the object data. Rather, the library should be structured to give the

application programmer considerable control over memory management.

4.4 Data distribution

The rendering process requires two large data structures:

• the list of objects to be rendered

• the memory buffer in which the image is constructed

The size of the object database depends on the application. Since we are targeting a DMMP environment,

we can assume that an application will distribute its large data structures in a roughly uniform fashion

among the processors. Since these same data structures either constitute the objects to be rendered or

contain the information from which objects will be generated, partitioning of the object database is a

natural side-effect of parallelizing the application.

Image memory stores information about individual pixels, including as a minimum color and depth values.

Simple renderers require about 8 bytes per pixel, or roughly 8 MB for an image with 1024 x 1024



9

resolution. The addition of features such as transparency can increase this significantly. On most DMMP

systems this is too high a price to pay on a per processor basis, so we will need to partition the image

memory, rather than replicating it. A number of strategies are possible. Perhaps the simplest is to partition

the image memory intop equal-sized segments, wherep is the number of processors. Figure 4 shows

several common approaches. A subdivision into square rather than rectangular regions is theoretically

more efficient, since it tends to minimize the number of regions intersected by a primitive, which in turn

reduces communication requirements and interpolation overheads. The adaptive partitioning strategy of

Figure 4(d) has been used effectively in shared memory environments in conjunction with dynamic load

balancing schemes [15].

By distributing both the object data structures and image memory, we providedata scalability. Increases in

scene complexity or image resolution can be accommodated simply by adding additional processors.

4.5 Communication

During the rendering process, three-dimensional primitives in user-definedworld coordinates are

projected into a two-dimensional screen space. The mapping between these two spaces is a function of the

viewing parameters and the positions of the objects, both of which are subject to change from frame to

frame. Given that the object data and image memory are both distributed among the processors, an

inherent sorting step must take place at some point during the rendering pipeline. For complex scenes, this

sort results in a massive amount of communication as geometric primitives (or pieces of primitives) are

Figure 4: Image partitioning strategies: (a) scanline strips, (b) interleaved scanlines, (c) square
blocks, (d) adaptive decomposition. Vertical partitionings are also possible.

(a) (b)

(c) (d)



10

moved to the processors which contain the corresponding image pixels. Performing this communication

efficiently is one of the central issues for parallel rendering algorithms on DMMP systems. We will discuss

this problem in more detail in Section 4.7.

Molnar et al. have developed a taxonomy for parallel rendering algorithms based on where the

communication occurs within the rendering pipeline [11]. They propose three classes of algorithms which

they callsort-first, sort-middle, andsort-last. In a sort-first algorithm, primitives are mapped to their final

destinations early in the transformation phase. Sort-middle algorithms insert communication between the

transformation and rasterization phases, while sort-last algorithms send pixels to their final destination late

in the rasterization phase. Molnar’s analysis shows that the preferred approach depends on a variety of

architectural parameters and application considerations. Recent work on DMMP systems has tended

toward sort-middle approaches [3] [6], which tend to strike a balance between computational overhead and

communication volume. With sufficiently high bandwidth, sort-last approaches become more interesting,

since they avoid the computational overheads which occur when primitives must be split prior to

rasterization.

4.6 Load balancing

Another major issue is load balancing. To achieve maximum performance, processors need to have

roughly the same amount of work to do. If primitives are uniformly distributed among processors and they

map uniformly into the image space, then the rendering process is almost perfectly parallel, although

overheads are introduced due to primitive splitting and communication [3]. Unfortunately, real scenes are

not this well-behaved. In many applications, the area of interest may be localized within the data space,

and depending on the data partitioning scheme in use, this may correspond to a subset of the processors. In

this case the objects to be rendered will not be evenly distributed. If the load imbalance is severe enough, it

may be worthwhile to redistribute objects, either before or during the rendering process.

The distribution of primitives within the image space is often localized as well. An example is shown in

Figure 5. In this image, the vast majority of primitives are located on the leading and trailing edges of the

wing and engine pod, and to a lesser extent on the fuselage. Hence the bulk of the rasterization operations

map to a small percentage of the image space. Processors which are responsible for these pixels will have

an inordinate amount of work to do relative to others which may be assigned to empty space. Perhaps the

best static approach to this problem is to assign scanlines to processors in an interleaved fashion, as in

Figure 4(b). At least for modest numbers of processors, this will distribute the load reasonably well, with

no additional overhead due to load balancing.



11

For large numbers of processors or more pathological cases, dynamic load balancing schemes may be in

order. While these can be devised fairly easily for shared memory systems [2] [14] [15], higher

communication costs and the need to maintain global state make this problem more challenging in a

DMMP environment, and little work has been done in this area. Ellsworth [6] uses a predictive approach to

the problem on Intel’s Touchstone Delta system. He exploits a property known asframe coherence, the

tendency of one frame in a sequence to be similar to immediately preceding frames. With this technique,

the distribution of primitives within the previous frame is used to predict the rasterization loads in the

Figure 5: Example of a scene in which geometric primitives are highly localized. The image
contains 31,271 triangles, mostly along the wing and engine pod.



12

current frame, and image segments are reassigned based on the expected load. While the results are

promising, his load reassignment algorithm is serial, and becomes a significant bottleneck with large

numbers of processors.

In the context of a graphics library, some dynamic load balancing schemes can pose a problem with respect

to memory utilization. If significant portions of the object data or image buffers are reassigned, the

previously stated goal of modest, uniform, and predictable memory utilization may be compromised. This

is a classic example of the trade-offs which arise in designing parallel renderers. In this case, we could

place limits on the amount of data which could be reassigned, with a possible performance penalty for

situations in which the load imbalance is high.

An alternate view is to treat processors as simply “smart memory”. In this approach, data is statically

assigned, and processors are responsible for operations on their local data. With large numbers of

processors, performance will be generally high (but see the discussion of latency in the next section), even

though utilization may not be particularly good.

4.7 Performance scalability

Ideally, we would like for rendering performance to scale with the number of processors. Unfortunately,

this is a major problem for parallel renderers on DMMP systems. Communication costs and load

imbalance both contribute to this problem, but communication is more serious, since the high costs of

remote memory references also contribute to overheads in dynamic load balancing schemes.

Given a uniform load, Crockett and Orloff show that the software overhead, orlatency, involved in sending

and receiving messages poses fundamental limits on the scalability of parallel rendering algorithms which

distribute both object and image data [3]. This occurs because the communication patterns which arise are

all-to-many or all-to-all, implying that the average processor will have to communicate with a substantial

proportion of the other processors. Hence the number of messages handled by each processor (and thus the

message overhead) increases with the number of processors in the system.

Despite this fundamental restriction, there are some things that can be done to improve the situation. Data

items can be buffered into longer messages before sending them, which helps to amortize the message

latencies. For a given scene, we can define a quantity called theuseful message length.This is the average

number of data items which a processor will send to each of the processors with which it communicates.

Increasing message sizes beyond this value will have diminishing returns, since few messages will actually

contain that much data. For fixed scene complexity, the useful message length decreases with the square of

the number of processors, so this technique scales very poorly.



13

Crockett and Orloff also show that network contention can cause delays as message sizes approach their

useful limits, so that in bandwidth-limited networks, the optimum message size is less than the expected

useful length. Figure 6 illustrates this phenomenon for the highly uniform random triangle scene shown in

Figure 7. For a given numbers of processorsp, the message length is varied from 1 to the useful maximum.

On the iPSC/860, longer messages result in high volumes of data being injected into the network within a

relatively short time, which in turn results in contention delays and degraded performance. On the

Paragon, where the network bandwidth is roughly an order of magnitude higher than the load which can be

generated by a single processor, contention delays are not apparent.

Another way to combat message overhead is to reduce the algorithmic complexity of the message counts.

Ellsworth uses a “two-step” communication protocol to reduce the number of messages which are required

[6]. His store-and-forward approach inserts an intermediate communication step in which data from

multiple source processors are aggregated for routing to the final destination. As an added benefit, the

useful message lengths also increase, providing better latency amortization. Results from Intel’s

Touchstone Delta show substantial performance improvements with large numbers of processors.

Figure 6: Rendering rates vs. message lengths for 100,000 random triangles. For a given number
of processorsp, message lengths range from 1 to the expected useful maximum. On the
iPSC/860, forp < 16, maximum message lengths were limited by processor memory capacities.

0

50000

100000

150000

200000

250000

300000

1 10

10
0

10
00

10
00

0

10
00

00

10
00

00
0

T
ria

ng
le

s 
/ S

ec

Message Length in Spans

0

50000

100000

150000

200000

250000

300000

1 10

10
0

10
00

10
00

0

10
00

00

10
00

00
0

T
ria

ng
le

s 
/ S

ec

Message Length in Spans

iPSC/860
NX 3.3.2, icc 4.0

Paragon
OSF/1 1.1.5, icc 4.5

p = 2
p = 4

p = 8

p = 16

p = 32

p = 64

p = 128

p = 192
p = 128

p = 64

p = 32

p = 16

p = 8

p = 4
p = 2



14

In situations where network bandwidth is a limiting factor or processors have varying workloads, it may be

desirable to decouple the transformation and rasterization phases, allowing each to proceed

asynchronously with respect to the other. Crockett and Orloff describe a technique for doing this which

uses a combination of buffering and asynchronous message passing protocols to allow a high degree of

overlap between computation and communication [3]. This method should be well-suited to systems

which provide independent mechanisms for message delivery, such as the message co-processors on the

Intel Paragon.

Figure 7: Test scene composed of 100,000 isosceles right triangles randomly oriented within a
cubic volume. This scene statistically approximates a uniform scene and is useful for verifying
our analytical performance models.



15

4.8 Image output and display

While distributing image memory among processors may be desirable from the standpoint of maximizing

image parallelism and assuring data scalability, it poses a problem when the results need to be displayed.

Portions of the image must be collected from every processor and assembled into a whole. Since a

complete image may be several megabytes in size, we would prefer to have the final assembly occur

someplace external to the graphics library, in order to minimize the impact on the driving application. We

would also prefer to have the image segments written in parallel to the display device, to avoid a

potentially serious sequential bottleneck.

The problem of image assembly is not especially severe. If the image is being saved to a file, each

processor can write its own segment of the image. Address tags can be inserted into the image format so

that the order of the segments is not important, and the image can be reconstructed at display time. With

appropriate support for parallel file I/O, the output step may perform satisfactorily.

If the image is going to a dedicated display device, for example a HiPPI frame buffer, then the problem

may also be tractable. To illustrate the requirements, consider this demanding scenario: Assume that we

have a high-performance parallel renderer which is capable of generating full-frame (1280 x 1024) images

in 24-bit color at animation rates, i.e., 30 frames per second. In order to display the image data at these

rates (assuming no compression), we need a display bandwidth of 120 MB/s. On paper, the internal

bandwidth of recent high-performance systems such as the Cray T3D and Intel Paragon are sufficient to

support this. The problem is to orchestrate data flow from the processors to the display device so that these

rates can be achieved in practice. If image segments are sent to the display device as messages, latencies

may become the limiting factor with large numbers of processors. Aggregation techniques can be used to

reduce the number of messages, but the increased memory requirements could conflict with our goal of

modest memory consumption within the graphics library. We also need an external interface to the display

capable of sustaining the internal data rates, and the display memory must be randomly addressable to

avoid serializing the image stream.

If the images are destined for a remote workstation, a serial data stream is required and the bandwidth

problem becomes more severe. Image compression techniques need to be applied to achieve reasonable

display rates. Again, image assembly is not particularly a problem, since typical workstations can perform

this task at satisfactory frame rates.

In the next section, we will give a brief overview of a parallel graphics library being developed by the

author, and describe how it addresses some of the design issues raised above.



16

5. PGL: A Parallel Graphics Library for DMMP Systems

PGL is a prototype parallel graphics library for distributed memory message passing systems. It is

intended both as a testbed for research on parallel rendering algorithms, as well as a semi-production

graphics library for parallel scientific and engineering applications. PGL is written to be portable to a

variety of message-passing systems, but to date it has been tested only on Intel iPSC/860 and Paragon

XP/S platforms. In the following paragraphs, we will examine PGL in the context of the design

considerations discussed above.

PGL is based on an improved version of the rendering algorithm described in [3]. The PGL renderer

exploits both object and image parallelism, with the sort step occurring in the middle of the rasterization

stage of the rendering pipeline. The unit of communication is aspan, which is defined as that portion of a

2D primitive which intersects a single scanline (Figure 8). Each span consists of two endpoints with

associated color and depth information. A significant advantage of sorting at the span level is that

computational overheads incurred by splitting geometric primitives are completely eliminated, since spans

are produced as a normal part of the rasterization process. The disadvantage is that the volume of data to be

communicated is higher than if intact primitives were used. On high-bandwidth machines (such as the

Paragon), this message traffic is manageable. Furthermore, our rendering algorithm permits a high degree

of overlap between computation and communication, so message transfers can proceed in the background.

The PGL application interface represents a compromise between retained mode and immediate mode

rendering strategies. Efficient operation is obtained by first defining aggregate data objects, and then

rendering them all at once. To reduce memory requirements, PGL does not make its own copy of the data,

but instead uses pointers to the application’s data structures.

Objects are defined as collections of geometric primitives, with a number of attributes (color, normals,

material properties, etc.) which can be specified on a per-object or per-primitive basis. In order to render an

object it must first be instantiated. Objects may be instantiated as many times as needed. The instantiation

mechanism allows for inheritance of geometry and attributes, with the ability to override these properties

Figure 8: A span is that portion of a 2D geometric primitive which intersects a single scanline.



17

on a per-instance basis. An instance may have nested sub-instances, and modelling transformations may be

specified at each level.

PGL assumes an SPMD programming paradigm. Modelling operations may be performed semi-

independently on each processor, while rendering and display operations require the participation of every

processor. Operations which set global state, such as viewing parameters or lighting specifications, must

also be performed cooperatively.

The current version of PGL makes no attempt to perform dynamic load balancing. Instead, it uses an

interleaved partitioning of scanlines to spread the rendering load for high-density areas of the screen across

multiple processors (the “smart memory” philosophy of Section 4.6). This approach meshes well with the

span-based sorting step, and strictly follows the rule that memory requirements must be uniform and

predictable. By always assigning complete scanlines to processors, PGL guarantees that spans will never

need to be split, and the full benefit of incremental interpolation algorithms can be achieved.

For PGL, performance scalability remains an open issue. The current design does not use Ellsworth’s two-

step sending optimization, but instead is anticipating (perhaps prematurely) the day when low-latency

remote memory references will make direct communication competitive with the store-and-forward

approach. The problem with direct communication in a high-latency environment is readily seen in

Figure 6. With large numbers of processors, the number of spans to be communicated from one processor

to any other is relatively small. Consequently, message latencies cannot be amortized completely, and

performance suffers. For this particular scene, a single Paragon processor can render about 4,200

triangles/second. With 192 processors, performance peaks at about 292,000 triangles/second, for a parallel

efficiency of 36%. With more complex scenes, rendering rates in excess of half a million polygons per

second have been achieved, with parallel efficiencies reaching 59%.

Image output in PGL has been designed primarily to support network transmission to remote workstations,

although output to files is also provided. For remote image display, we assume that the network will be the

bottleneck, so we want to reduce the volume of output to a reasonable level. PGL accomplishes this by

compressing images using a combination of run-length encoding and frame-to-frame differencing. This

strategy exploits both spatial coherence within an image as well as temporal coherence between images.

Although more aggressive compression techniques are possible, this approach has several advantages:

• the algorithm is lossless

• compression is fast, and can be performed independently and in parallel on each scanline, with no



18

communication required

• decompression is very fast, approaching animation rates on typical workstations

The principal disadvantage is that a copy of the previous image must be retained to compute the frame-to-

frame differences. Because image memory is evenly distributed, the per-processor memory penalty is

generally acceptable with moderate to large numbers of processors.

For transmission across the network, compressed image segments must be sent to a designated processor

which then writes them to a socket connection. This is a potential bottleneck with large numbers of

processors, but for the moment, the speed of the network and network interfaces is the limiting factor.

Our experience has shown that we can expect display rates of between 0.5 and 2 frames per second on

Ethernet and FDDI networks in the presence of normal traffic. While faster display rates would be

preferred, this is adequate for simple interactive work. Of course, performance in any given situation

depends on image content and resolution along with network bandwidth and traffic.

5.1 Initial experiences with PGL

Although it is still under development, we have used PGL in two demonstration programs. One is a simple

interactive geometry viewer which allows a user to load object descriptions into memory and manipulate

them. The interactive interface resides on the user’s workstation and sends commands to the renderer

which runs on the parallel machine. Figure 5 was rendered using this program.

The second demonstration program is a parallel Direct Simulation Monte Carlo (DSMC) application

developed by Richard G. Wilmoth at NASA Langley. This code is being used to investigate the behavior

of rarefied flowfields, such as the plumes from space shuttle thrusters when they are fired in space. These

simulations typically run for thousands of time steps with hundreds of thousands of particles. We added

PGL calls to the DSMC code to produce live visual output at each timestep of the simulation. Figure 9

shows an example of the output. Table 1 gives execution times for the first 100 timesteps of this particular

problem. The number of particles being simulated starts at 0 and increases over time until a steady state is

reached. At the 100th timestep, we are rendering 176,712 particles. The problem was run on Langley’s

Paragon XP/S using 32 processors. The display time includes network transmission via FDDI to a Sun

SPARCstation-10, as well as output to an animation file on the Paragon’s Parallel File System. Image

resolution was 800 x 640.

We have also found PGL to be very useful for high resolution rendering. We routinely use it to produce

publication-quality images on our film recorders and dye sublimation printers at resolutions up to 4096 x



19

4096. At these resolutions, details emerge which are often invisible on workstation monitors. Given a

sufficiently large machine and a suitable output device, PGL is capable of rendering at gigapixel (32K x

32K) resolution. Eight gigabytes of memory would be needed for the image and z buffers.

6. Summary

Applications which run on large-scale parallel supercomputers often generate massive datasets. Graphics

and visualization operations on these datasets can be performed in place by exploiting the available

Operation
Time in
seconds

Modelling 2.52

Rendering 88.02

Display 78.57

Total (simulation + graphics) 365.67

Table 1: Cumulative execution time for graphics operations in the DSMC simulation.

Figure 9: This simulated plume from a reaction control jet was rendered using PGL. It contains
176,712 particles.



20

parallelism. Not only does this approach cut down on network traffic, it also allows live visual feedback

from executing applications.

To realize these benefits, we require appropriate parallel graphics libraries and underlying rendering

algorithms. This is an active area of research. Many issues arise in designing both the library interface and

the rendering algorithms. These are driven by the properties of the intended applications as well as the

target architectures. Successful designs must achieve balanced trade-offs between conflicting goals.

Message latency, load balancing, and image output are areas which require special attention in order to

achieve scalable performance.

We are developing a parallel graphics library called PGL which is intended specifically for distributed

memory message passing environments. We have described how PGL addresses many of the design issues

which arise. While PGL does not solve all of the outstanding problems, it has proven to be viable for the

small number of applications on which it has been tested. We expect ongoing research efforts by ourselves

and others to yield further improvements.

Acknowledgments

This work was conducted using Intel iPSC/860 and Paragon XP/S computers operated by NASA’s

Numerical Aerodynamic Simulation Program and the Information Systems Division of Langley Research

Center. The grid and solution data used to create Figure 5 was provided by Dimitri Mavriplis.

References

[1] Akeley, Kurt. RealityEngine graphics.Computer Graphics Proceedings, Annual Conference Series,
1993, ACM SIGGRAPH, Aug. 1993, pp. 109-116.

[2] Crockett, T., and Orloff, T. A Parallel Rendering Algorithm for MIMD Architectures. ICASE Report
91-3 (NASA CR 187571), ICASE, June 1991.

[3] Crockett, T., and Orloff, T. A MIMD rendering algorithm for distributed memory architectures.
Proceedings 1993 Parallel Rendering Symposium, IEEE Computer Society Press, Oct. 1993, pp. 35-
42, 108.

[4] Crossno, P., Cline, D., and Jortner, J. A heterogeneous graphics procedure for visualization of
massively parallel solutions. FED-Vol. 156,CFD Algorithms and Applications for Parallel
Processors, ASME Fluids Engineering Conference, Washington, D.C., June 1993, pp. 65-70.

[5] Dew, P. M., Earnshaw, R. A., and Heywood, T. R., eds.Parallel Processing for Computer Vision and
Display, Addison-Wesley, 1989.

[6] Ellsworth, D. A multicomputer polygon rendering algorithm for interactive applications.
Proceedings 1993 Parallel Rendering Symposium, IEEE Computer Society Press, Oct. 1993, pp. 43-
48, 109.



21

[7] Fuchs, H., Poulton, J., Eyles, J., Greer, T., Goldfeather, J., Ellsworth, D., Molnar, S., Turk, G., Tebbs,
B., and Israel, L. Pixel-Planes 5: a heterogeneous multiprocessor system using processor-enhanced
memories.Computer Graphics 23, 3, ACM SIGGRAPH, July 1989, pp. 79-88.

[8] IEEE Computer Graphics and Applications 14, 4, special issue on parallel rendering, July 1994.

[9] IEEE Parallel and Distributed Technology 2, 2, Summer 1994.

[10] Molnar, S., Eyles, J., Poulton, J. PixelFlow: high-speed rendering using image composition.
Computer Graphics 26, 2, ACM SIGGRAPH, July 1992, pp. 231-240.

[11] Molnar, S., Cox, M., Ellsworth, D., and Fuchs, H. A sorting classification of parallel rendering.
IEEE Computer Graphics and Applications 14, 4, July 1994, to appear.

[12] Ortega, F., Hansen, C., and Ahrens, J. Fast data parallel polygon rendering.Proceedings
Supercomputing ‘93, IEEE Computer Society Press, Nov. 1993, pp. 709-718.

[13] Proceedings 1993 Parallel Rendering Symposium, ACM Press and IEEE Computer Society Press,
October 1993.

[14] Whitman, S.Multiprocessor Methods for Computer Graphics Rendering, Jones and Bartlett, 1992.

[15] Whitman, S. A task adaptive parallel graphics renderer.Proceedings 1993 Parallel Rendering
Symposium, IEEE Computer Society Press, Oct. 1993, pp. 27-34, 107.


