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ABSTRACT

In this paper we apply a sensitivity equation method to shape optimization problems.

An algorithm is developed and tested on a problem of designing optimal forebody simulators

for a 2D, inviscid supersonic 
ow. The algorithm uses a BFGS/Trust Region optimization

scheme with sensitivities computed by numerically approximating the linear partial di�er-

ential equations that determine the 
ow sensitivities. Numerical examples are presented to

illustrate the method.
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1 Introduction

The development of practical computational methods for optimization based design and

control often relies on cascading simulation software into optimization algorithms. Black-box

methods are examples of this approach. Although the precise form of the overall \optimal

design" (OD) algorithm may change, there is an often unstated assumption that properly

combining the \best" simulation algorithm with the \best" optimization scheme will produce

a good OD algorithm. There are many examples to show that in general this assumption is

not valid. However, in many cases it is a valid assumption and often this approach is the

only practical way of attacking complex optimal design problems. If one uses this cascading

approach, then it is still important to carefully pass information between the simulation

and the optimizer. Typically, one uses a simulation code to produce a �nite dimensional

model and this discrete model is then used to supply approximate function evaluations to

the optimization algorithm. Moreover, the approximate functions are then di�erentiated to

supply gradients needed by the optimizer. Although there are numerous variations on this

theme, they all may be formulated as \approximate-then-optimize" approaches. There are

other approaches that �rst formulate the problem as an in�nite dimensional optimization

problem and then use numerical schemes to approximate the optimal design. All-at-once,

one-shot and adjoint methods are examples of this \optimize-then-approximate" approach.

Regardless of which approach one chooses, some type of approximation must be introduced

at some point in the design process.

The sensitivity equation (SE) method is an approach that views the simulation scheme

as a device to produce approximations of both the function and the sensitivities. The ba-

sic idea is to produce approximations of the in�nite dimensional sensitivities and to pass

these \approximate derivatives" to the optimizer along with the approximate function eval-

uations. There are several theoretical and practical issues that need to be considered when

this approach is used. For example, there is no assurance that the SE method produces \con-

sistent derivatives." This will depend on the particular numerical scheme used to discretize

the problem. However, the SE method allows one the option of using separate numerical

schemes for 
ow solves and sensitivities, so that consistent derivatives can be forced. We

shall not address these issues in this short paper. The goal here is to illustrate that a

SE based method can be used with standard optimization schemes to produce a practical

fast algorithm for optimal design. We concentrate on a particular application (the optimal

forebody design problem) and use a speci�c iterative solver for the 
ow equations (PARC).

Many 
ow solvers are iterative and for these types of codes, the SE method has perhaps the

maximum potential for improving speed and accuracy.
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In the next section we describe the forebody design problem and formulate the optimal

design problem. In Sections 3 and 4 we review the derivation of the sensitivity equations

and in Section 5 we discuss modi�cations to an existing simulation code that are needed in

order to use that code for computing sensitivities. In Section 6, we present numerical results

for the optimal design problem and Section 7 contains conclusions and suggestions for future

work.

2 Optimal Design of a Forebody Simulator

This problem is a 2D version of the problem described in [1,4,8] . The Arnold Engineering

Development Center (AEDC) is developing a free-jet test facility for full-scale testing of

engines in various free 
ight conditions. Although the test cells are large enough to house

the jet engines, they are too small to contain the full airplane forebody and engine. Thus,

the e�ect of the forward fuselage on the engine inlet 
ow conditions must be \simulated."

One approach to solving this problem is to replace the actual forebody by a smaller object,

called a \forebody simulator" (FBS), and determine the shape of the FBS that produces the

best 
ow match at the engine inlet. The 2D version of this problem is illustrated in Figure

2.1 (see [1],[4], [8] and [9]).

The underlying mathematical model is based on conservation laws for mass, momentum

and energy. For inviscid 
ow, we have that

@

@t
Q+

@

@x
F1 +

@

@y
F2 = 0 (1)

where

Q =

0
BBB@

�

m

n

E

1
CCCA ; F1 =

0
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mv

(E + P )u

1
CCCA and F2 =

0
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n
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1
CCCA : (2)

The velocity components u and v, the pressure P , the temperature T , and the Mach number

M are related to the conservation variables, i.e., the components of the vector Q, by

u =
m

�
; v =

n

�
; P = (
 � 1)

�
E � 1

2
�(u2 + v2)

�
;

T = 
(
 � 1)

 
E

�
� 1

2
(u2 + v2)

!
and M2 =

u2 + v2

T
: (3)

At the in
ow boundary, we want to simulate a free-jet, so that we specify the total

pressure P0, the total temperature T0 and the Mach number M0. We also set v = 0 at the
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in
ow boundary. If uI , PI and TI denote the in
ow values of the x-component of the velocity,

the pressure and the temperature, these may be recovered from P0, T0 and M0 by

TI =
T0

(1 + 
�1

2
M2

0 )
; PI =

P0

(1 + 
�1

2
M2

0 )




�1

and u2I =M2
0TI =

M2
0T0

(1 + 
�1

2
M2

0 )
:

(4)

The components of Q at the in
ow may then be determined from (4) through the relations

�I =

PI

TI
; mI = �IuI ; nI = 0 and EI =

PI


 � 1
+ �I

u2I
2
: (5)

The forebody is a solid surface, so that the normal component of the velocity vanishes,

i.e.,

u�1 + v�2 = 0 on the forebody; (6)

where �1 and �2 are the components of the unit normal vector to the boundary. Note that

we impose (6) on the velocity components u and v, and not on the momentum components

m and n. Insofar as the state is concerned, it is clear that it does not make any di�erence

whether (6) is imposed on m and n or on u and v, since m = �u and n = �v and � 6= 0. It

can be shown that it does not make any di�erence to the sensitivities as well.

Assume that at x = � the desired steady state 
ow Q̂ = Q̂(y) is given as data on the line

(called the Inlet Reference Plane)

IRP = f(x; y)jx = �; � � y � �g:

Also, we assume here that the in
ow (total) Mach number M0 can be used as a design

(control) variable along with the shape of the forebody. Let the forebody be determined by

the curve � = �(x), � � x � � and let p = (M0;�(�)). The problem can be stated as the

following optimization problem:

Problem FBS. Given data Q̂ = Q̂(y) on the IRP , �nd the parameters p� = (M�

0 ;�
�(�))

such that the functional

J (p) =
1

2

Z �

�
k Q1(�; y)� Q̂(y) k2 dy (7)

is minimized, whereQ1(x; y) = Q1(x; y; p) is the solution to the steady state Euler equations

G(Q; p) =
@

@x
F1 +

@

@y
F2 = 0: (8)

In the FBS design problem, the data Q̂ is generated both experimentally and numerically.

In particular, the full airplane forebody (which is longer and larger than the desired FBS) is

used to generate the data. Since the FBS is \constrained" to be shorter and smaller, we shall
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consider the optimization problem illustrated in Figure 2.2 below. The data Q̂ is generated

by solving (1)-(6) for the long forebody in Figure 2.2-(a) and the problem is to �nd p� to

minimize J where the shortened FBS is constrained to be one half the length of the \real

forebody." This problem provides a realistic test of the optimal design algorithm in that the

data can not be �tted exactly. Also, we note that we have a problem with shocks in the 
ow

�eld. As shown in [2], optimization of 
ows with shocks can be di�cult and requires some

understanding of the impact that shocks have on the smoothness of the cost functional.

Clearly the statement of the problem is not complete. For example, one should carefully

specify the set of admissible curves �(�) and questions remain about existence, uniqueness

and integrability of \the" solution Q1. We will not address these issues in this short paper.

Most optimization based design methods require the computation of the derivatives
@
@p
Q1(x; y; p). These derivatives are called sensitivities and various schemes have been de-

veloped to approximate the sensitivities numerically (see [7], [8], [10] and [11]). A common

approach is to use �nite di�erences. In particular, the steady state equation (8) is solved

for ~p and again for ~p+�p and then @
@p
Q1(x; y; ~p) is approximated by Q1(x;y;~p+�p)�Q1(x;y;~p)

�p
.

This method is often costly and can introduce large errors. Another approach is to �rst

derive an equation (the sensitivity equation) for @
@p
Q1(x; y; p) and then numerically solve

this equation. We shall illustrate this approach for the forebody design problem. In the next

two sections we derive the sensitivity equations. Although these derivations may be found

in [3] we repeat them here for completeness.

3 Sensitivities with Respect to the In
owMach Num-

ber

First, we consider the design parameter M2
0 . We will derive equations for the sensitivity

Q0 � @Q

@M2
0

�

0
BBB@

�0

m0

n0

E0

1
CCCA ; (9)

where

�0 � @�

@M2
0

; m0 � @m

@M2
0

; n0 � @n

@M2
0

and E0 � @E

@M2
0

: (10)

The di�erential equation system (1) has no explicit dependence on the design parameter

M2
0 , so that equations for the components of Q0 are easily determined by formally di�eren-

tiating (1) with respect to M2
0 . The result is the system

@Q0

@t
+
@F 0

1

@x
+
@F 0

2

@y
= 0; (11)
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where

F 0

1 =

0
BBB@

m0

mu0 +m0u+ P 0

mv0 +m0v

(E + P )u0 + (E0 + P 0)u

1
CCCA and F 0

2 =

0
BBB@

n0

nu0 + n0u

nv0 + n0v + P 0

(E + P )v0 + (E0 + P 0)v

1
CCCA ; (12)

and where,

u0 =
@u

@M2
0

; v0 =
@v

@M2
0

; P 0 =
@P

@M2
0

and T 0 =
@T

@M2
0

; (13)

and where, through (3), the sensitivities (10) and (13) are related by

u0 =
1

�
m0 � m

�2
�0; P 0 = (
 � 1)

�
E0 � 1

2
�0(u2 + v2)� �(uu0 + vv0)

�
;

v0 =
1

�
n0 � n

�2
�0 and T 0 = 
(
 � 1)

 
1

�
E0 � E

�2
�0 � (uu0 + vv0)

!
: (14)

Note that (11) is of the same form as (1), with a di�erent 
ux vector. In particular, (11)

is in conservation form. As a result of the fact that (11) is linear in the primed variables,

and that by (14) u0, v0 and P 0 are linear in the components of Q0, (11) is a linear system in

the sensitivity (9), i.e., in the components of Q0.

Now, we need to discuss the boundary conditions for Q0. Except for the in
ow conditions,

all boundary conditions are independent of the design parameter M2
0 . Thus, the latter may

be di�erentiated with respect to M2
0 to obtain boundary conditions for the sensitivities. For

example, at the forebody where (6) holds, we simply would have that

u0�1 + v0�2 = 0 on the forebody: (15)

Similar operations yield boundary conditions for the sensitivities along symmetry lines, other

solid surfaces and at the out
ow boundary. Note that if instead of (6), one interprets the no

penetration condition as one on the momentum, i.e., m�1 + n�2 = 0 on the forebody, then

instead of (15) we would have that

m0�1 + n0�2 = 0 on the forebody (16)

which is seemingly di�erent from (15). However, (6) and (14) can be used to show that

m0�1 + n0�2 = �(u0�1 + v0�2) + �0(u�1 + v�2) = �(u0�1 + v0�2) (17)

so that, since � 6= 0, (15) and (16) are identical.

The in
ow boundary conditions for the sensitivities may be determined by di�erentiating

(4) and (5) with respect to the design parameter M2
0 . Note that this parameter appears
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explicitly in the right-hand-sides of the equations in (4) and (5). Without di�culty, one

�nds from (5) that

�0I =



TI
P 0

I �

PI

T 2
I

T 0

I ; m0

I = �Iu
0

I + uI�
0

I ;

n0I = 0 and E0

I =
1


 � 1
P 0

I +
1

2
u2I�

0

I + �IuIu
0

I ; (18)

where, from (4),

T 0

I = �
�

 � 1

2

�
T0�

1 + 
�1
2
M2

0

�2 ; P 0

I = �
�



2

�
P0�

1 + 
�1
2
M2

0

� 2
�1


�1

and u0I =

p
TI

2M0

+
M0

2
p
TI
T 0

I =

p
T0

2M0

�
1 + 
�1

2
M2

0

�3=2
�
1 + (
 � 1)M2

0

�
: (19)

4 Sensitivities with Respect to the Forebody Design

Parameters

We assume that the forebody is described in terms of a �nite number of design parameters

which we denote by Pk, k = 1; . . . ;K, and that the forebody may be described by the relation

y = �(x;P1; P2; . . . ; PK); � � x � � (20)

We express the dependence of the state variable Q on the coordinates and the design

parameters by Q = Q(t; x; y;M2
0 ; P1; P2; . . .PK). We have already seen what equations can

be used to determine the sensitivity of the state with respect to M2
0 , i.e., for Q

0. We now

discuss what equations can be used to determine the sensitivities with respect to the forebody

design parameters Pk, k = 1; . . . ;K, i.e., for

Qk � @Q

@Pk

�

0
BBB@

�k
mk

nk
Ek

1
CCCA ; (21)

where

�k � @�

@Pk

; mk � @m

@Pk

; nk � @n

@Pk

and Ek � @E

@Pk

; k = 1; . . . ;K: (22)

System (1) has no explicit dependence on the design parameters Pk, so that equations

for the components of Qk are easily determined by di�erentiating (1) with respect to Pk,

k = 1; . . . ;K. This produces the systems, k = 1; . . . ;K, given by

@Qk

@t
+
@Fk1

@x
+
@Fk2

@y
= 0; (23)
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where

Fk1 =

0
BBB@

mk

muk +mku+ Pk

mvk +mkv

(E + P )uk + (Ek + Pk)u

1
CCCA and Fk2 =

0
BBB@

nk
nuk + nku

nvk + nkv + Pk

(E + P )vk + (Ek + Pk)v

1
CCCA ;
(24)

and where,

uk =
@u

@Pk

; vk =
@v

@Pk

; Pk =
@P

@Pk

and Tk =
@T

@Pk

: (25)

Moreover, by (3), the sensitivities (22) and (25) are related by

uk =
1

�
mk � m

�2
�k; Pk = (
 � 1)

�
Ek � 1

2
�k(u

2 + v2)� �(uuk + vvk)
�
;

vk =
1

�
nk � n

�2
�k and Tk = 
(
 � 1)

 
1

�
Ek � E

�2
�k � (uuk + vvk)

!
; (26)

for k=1,. . . ,K.

All boundary conditions except the one on the forebody also do not depend on the

forebody design parameters Pk, k = 1; . . . ;K. For example, consider the in
ow boundary

conditions (4)-(5). Di�erentiating these with respect to Pk, k = 1; . . . ;K yields that

�kI = mkI = nkI = EkI = TkI = PkI = ukI = vkI = 0 (27)

at the in
ow boundary. Now consider the boundary condition (6) on the forebody. We have

that on the forebody
�1

�2
= �@�

@x
: (28)

Combining (6) and (28) we have that

u
@�

@x
� v = 0 (29)

along the forebody or, displaying the full functional dependence on the coordinates and

design parameters, we have at a point (x; y) on the forebody, and at any time t,

u
�
t; x; y = �(x;P1; P2; . . . ; PK);M

2
0 ; P1; P2; . . . ; PK

� @�
@x

(x;P1; P2; . . . ; PK)

�v
�
t; x; y = �(x;P1; P2; . . . ; PK);M

2
0 ; P1; P2; . . . ; PK

�
= 0: (30)

We can proceed to di�erentiate (30) with respect to any of the forebody design parameters

Pk, k = 1; . . . ;K. The result is that, along the forebody for k = 1; . . . ;K,

uk
@�

@x
� vk = �

 
@u

@y

! 
@�

@Pk

! 
@�

@x

!
� u

@

@x

 
@�

@Pk

!
+

 
@v

@y

! 
@�

@Pk

!
; (31)
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where u, v and their derivatives are evaluated at the forebody (x; y = �(x)).

If an iterative scheme is used to �nd a steady state solution of this system ((23), (27),

(31)), then we assume that present guesses for the state variables u and v and their deriva-

tives @u=@y and @v=@y and for the design parametersM2
0 and Pk, k = 1; . . . ;K, are known.

It follows that the right-hand-side of (31) is known as well and equation (31), the bound-

ary conditions along the forebody for the sensitivities with respect to the forebody design

parameters, is merely an inhomogeneous version of (29), the boundary condition along the

forebody for the state.

Let us now specialize to the type of forebodies considered by Huddleston, [8,9], i.e.,

�(x;P1; P2; . . . ; PK) =
KX
k=1

Pk�k(x); (32)

where �k(x), k = 1; . . . ;K, are prescribed functions, e.g., Bezier curves (see [6]). In this

case,
@�

@Pk

= �k(x) and
@

@x

 
@�

@Pk

!
=
d�k

dx
(x); (33)

and
@�

@x
=

KX
k=1

Pk

d�k

dx
(x): (34)

Combining (31)-(34), one obtains that, at any point (x;�(x)) on the forebody and for each

k = 1; . . . ;K,0
@ KX
j=1

Pj

d�j

dx

1
Auk � vk = �

 
@u

@y

!0@ KX
j=1

Pj

d�j

dx

1
A �k � u

d�k

dx
+

 
@v

@y

!
�k: (35)

For forebodies of the type (32), (35) gives the boundary conditions along the forebody for

the sensitivities with respect to the forebody design parameters Pk, k = 1; . . . ;K. It is now

clear that, given guesses for the state variables u and v and their derivatives @u=@y and

@v=@y and for the design parameters M2
0 and Pk, k = 1; . . . ;K, then the right-hand-side of

(35) is known.

Consider now the problem of minimizing J (p) as de�ned above. Most optimization

algorithms use gradient information. In particular, if Pk denotes one of the shape parameters,

then the derivative

@

@Pk

J (~p) =
Z �

�
<

"
@

@Pk

Q1(�; y; ~p)

#
; Q1(�; y; ~p)� Q̂(y) > dy (36)

may be required in the optimization loop. The sensitivity @
@Pk

Q1(x; y; ~p) satis�es the steady-

state version of the sensitivity equations (23). In practice one must construct approximations

to @
@Pk

Q1(x; y; ~p) and feed this information into the optimizer.
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Assume that one has a particular simulation scheme (�nite di�erences, �nite elements,

etc.) to approximate the 
ow Q1(x; y; ~p) on a given grid, i.e.

Qh(x; y; ~p)! Q1(x; y; ~p): (37)

as the \step size" h ! 0. Given the design parameter ~p, one constructs a grid (depending

on ~p) and then computes Qh(x; y; ~p) � Q1(x; y; ~p). This process may require some type of

iterative scheme. We will address this issue below. In theory, one could use the same grid and

computational scheme to approximate @
@Pk

Q1(x; y; ~p) so that one generates \approximate

sensitivities" "
@

@Pk

Q1(x; y; ~p)

#
h

! @

@Pk

Q1(x; y; ~p) (38)

as h! 0. It is important to note that in general"
@

@Pk

Q1(x; y; ~p)

#
h

6= @

@Pk

[Qh(x; y; ~p)] ; (39)

i.e. this approach may not provide \consistent sensitivities". However, some schemes do

provide consistent derivatives and even if (39) holds, the error

EDh =

"
@

@Pk

Q1(x; y; ~p)

#
h

� @

@Pk

[Qh(x; y; ~p)] (40)

may be su�ciently small so that the optimization algorithm converges. Trust region methods

are particularly well suited for problems of this type, where derivative information may con-

tain (small) errors. As we shall see below, there are certain cases where
h

@
@Pk

Q1(x; y; ~p)
i
h
can

be computed fast and accurately. Hence, the SE method provides estimates for sensitivities

that may prove \good enough" for optimization and yet relatively cheap to compute. A com-

parison of
h

@
@Pk

Q1(x; y; ~p)
i
h
and various �nite di�erence approximations of @

@Pk
[Qh(x; y; ~p)]

may be found in [3].

It is important to note that the details of the computations needed to approximate a

sensitivity are not the central issue here. For example, the sensitivity equations (11) and

(23) are viewed as independent partial di�erential equations that must be solved by \some"

numerical scheme. This scheme does not necessarily have to be the same scheme used to

solve the 
ow equation (1), although as we shall see below, there are cases where using the

same scheme is a useful approach.

Also, note that the sensitivity equations are derived for the problem formulated on the

\physical" domain. If one uses a computational method that maps the problem to a com-

putational domain (as does PARC), then the SE method does not require derivatives of

this mapping. One simply maps the sensitivity equation (including the necessary bound-

ary conditions), grids the computational domain, solves the resulting transformed equations
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and then maps back to the physical domain. If, on the other hand, one mapped the 
ow

equation (1) and derived a sensitivity equation in the computational domain, then to obtain

the correct sensitivities one would have to compute the mapping sensitivity. Therefore, it is

more e�cient to derive the sensitivity equations in the physical domain.

Finally, we note that the SE method described here has one additional bene�t. To com-

pute a sensitivity, say @
@Pk

Q1(x; y; ~p), then one �rst selects the parameter value ~p, constructs

a computational grid and solves for
h

@
@Pk

Q1(x; y; ~p)
i
h
. There is no need to compute grid

sensitivities.

5 Computing Sensitivities using an Existing Code for

the State

Suppose one has available a code to compute the state variables, i.e., to �nd approximate

solutions of (1) along with boundary and initial conditions. In principle, it is an easy matter

to amend such a code so that it can also compute sensitivities.

First, let us compare (1) with (11). If one wishes to amend the existing code that can

handle (1) so that it can treat (11) as well, one has to change the de�nitions of the 
ux

functions from those given in (2) to those given in (12). Note that the solution for the state

is needed in order to evaluate the 
ux functions of (12).

Next, note that (11) and (23) are identical di�erential equations. Thus, the changes

made to the code in order to treat (11) can also be used to treat (23). In fact, as long as the

di�erential equation and any other part of the problem speci�cation do not explicitly depend

on the design parameters, the analogous relations will be the same for all the sensitivities.

The only changes that vary from one sensitivity calculation to another are those that

arise from conditions in which the design parameters appear explicitly. In our example, for

the sensitivity with respect to M2
0 , one must change the portion of the code that treats the

in
ow conditions (4)-(5) so that it can instead treat (18)-(19). In the problem considered

here, the nature (i.e. what variables are speci�ed) of the boundary conditions at the in
ow,

and everywhere else, is not a�ected. Note that for the sensitivity with respect to M2
0 , the

boundary condition (15) on the forebody is the same as that for the state, given by (6).

For the sensitivities with respect to the forebody design parameters, the in
ow boundary

conditions simplify to (27), i.e., they become homogeneous. The boundary condition at the

forebody is now given by (31) or (35). Once again, the nature of the boundary conditions

is unchanged from that for the state and only the speci�ed data is di�erent. For the in
ow

boundary conditions, we may still specify the same conditions for the sensitivities, but now

they would be homogeneous. The boundary conditions along the forebody change in that

10



they become inhomogeneous, (compare (29) and (35)).

In summary, to change a code for the state so that it also handles the sensitivities, one

must rede�ne the 
ux functions in the di�erential equations, and the data in the boundary

conditions. The changes necessary in the code to account for any particular relation that

does not explicitly involve the design parameters are independent of which sensitivity one is

presently considering.

The previous remarks are concerned only with the changes one must e�ect in a state code

in order to handle the fact that one is discretizing a di�erent problem when one considers the

sensitivities. We have seen that these changes are not major in nature. However, there are

additional changes that may be needed when one attempts to solve the discrete equations.

In the numerical results presented below we use the �nite di�erence code \PARC" (see [4]

and [8]) to solve the state and sensitivity equations. However, the following comments apply

equally well to other CFD codes of this type.

Since we are interested in steady design problems, the time derivative in (1) is considered

only to provide a means for marching to a steady state. Now, suppose that at any stage of a

Gauss-Newton, or other iteration, we have used PARC to �nd an approximate steady state

solution of (1) plus boundary conditions. In order to do this, one has to solve a sequence of

linear algebraic systems of the type

�
I +�tA(Q

(n)
h )

�
Q
(n+1)
h =

�
Q
(n)
h +�tB(Q

(n)
h )

�
; n = 0; 1; 2; . . . ; (41)

where the sequence is terminated when one is satis�ed that a steady state has been reached

and where Q(n)
h denotes the discrete approximation to the state Q at the time t = n�t. We

denote this steady state solution for the approximation to the state by Qh. One problem of

the type (41) is solved for every time step. In (41), the matrix A and vector B arise from

the spatial discretization of the 
uxes and the boundary conditions. Both of these depend

on the state at the previous time level.

Having computed a steady state solution by (41), the task at hand is now to compute the

sensitivities. We will focus on Q0, the sensitivity with respect to the in
ow Mach number.

Analogous results hold for the sensitivities with respect to the forebody design parameters.

Recall that given a state, the sensitivity equations are linear in the sensitivities. Therefore,

if one is interested in the steady state sensitivities, instead of (11) one may directly treat its

stationary version
@F 0

1

@x
+
@F 0

2

@y
= 0: (42)

Since (42) is linear in the components of Q0, one does not need to consider marching algo-

rithms in order to compute a steady sensitivity. One merely discretizes (42) and solves the
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resultant linear system, which has the form

A(Qh)Q
0

h = B(Qh); (43)

where Q0

h denotes the discrete approximation to the steady sensitivity. The matrix A and

vector B di�er from the A and B of (41) because we have discretized di�erent di�erential

equations and boundary conditions. Note that A and B in (43) depend only on the steady

state Qh and thus (43) is a linear system of algebraic equations for the discrete sensitivity

Q0

h.

The cost of �nding a solution of (43) is similar to that for �nding the solution of (41) for a

single value of n, i.e. for a single time step. The di�erences in the assembly of the coe�cient

matrices and right-hand-sides of (41) and (43) are minor. Thus, in theory at least, one can

obtain a steady sensitivity in the same computer time it takes to perform one time step in a

state calculation. If one wants to obtain all the sensitivities, e.g., K +1 in our example, one

can do so at a cost similar to , e.g., K+1 time steps of the state calculation. This is very

cheap compared to the multiple state calculations necessary in order to compute sensitivities

through the use of di�erence quotients.

Although (43) is in theory no more complex than one time step in (41), we can solve

(42) by using the same iterative (or another) scheme. The simplest approach (but certainly

not the optimal approach) is to use the PARC code to solve (42) by time marching. In

particular, assume that Q
(n)
h is a solution to (41), then the system

h
I +�tA0(Q(n)

h )
i
(Q0)

(n+1)

h =
h
(Q0)

(n)

h +�tB0(Q(n)
h )

i
(44)

can be used to �nd (Q0)(n+1)h given (Q0)(n)h . Thus, one makes an initial guess for Q(0)

h and

(Q0

h)
(0) and then iterates (41) and (44) simultaneously. Also, the same scheme can be used

to compute any Qk =
@Q

@Pk
, i.e.,

h
I +�tA0(Q(n)

h )
i
(Qk)

(n+1)

h =
h
(Qk)

(n)

h +�tB0(Q(n)
h )

i
: (45)

In practice, these \optimal" estimates of speed up are rarely achieved. Moreover, as

noted above, it is important to note that �nite di�erence (FD) and sensitivity equation (SE)

methods do not necessarily produce the same results. Since the ultimate goal is to �nd useful

and cheap gradients for optimization, the most important issue is whether or not the SE

method combined with an optimization algorithm produces a convergent optimal design as

fast as possible. We have tested this scheme on the forebody design problem and the next

section contains a summary of these results.
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6 An Optimal Design Example

In order to illustrate the SE method and to test its use in an optimization problem, we used

the PARC code as described above to compute sensitivities and the used these sensitivities

in a BFGS/Trust Region scheme to �nd an optimal shortened forebody simulator. As shown

in Figure 2.2, data was generated by solving the Euler equations over the long forebody at

a Mach number of 2.0. The objective is to �nd a forebody simulator with length one half of

the long forebody and such that the resulting 
ow matches the data as well as possible, i.e.

minimizes J along the out
ow boundary.

The shortened forebody was parameterized by a Bezier curve using two parameters.

Thus, there are three design parameters p = (M2
0 ; P1; P2). The algorithm used in this

numerical experiment was based on using the PARC code to simultaneously march to the

steady state solutions of the 
ow and sensitivity equations. We made no attempt to optimize

the algorithm since the main goal was to test for convergence.

The design algorithm proceeds as follows. First, an initial guess for the optimal design is

made, i.e., we select a p0 =
�
(M2

0 )
0
; P 0

1 ; P
0
2

�
. A good selection of initial parameters can be

made knowing the operating conditions of the aircraft and some rough guess of the shape

from the aircraft forebody. In our example, we chose M2
0 as the inlet Mach number from

the computation which generated our data. The initial guess for the parameters were those

used to generate the long forebody (although corresponding to di�erent x-locations). These

parameters, p0, are used to generate a grid, the in
ow and forebody boundary conditions

for both the 
ow (1) and sensitivity equations ((11) and (23)) and an initial guess for both

Q
(0)

h and
�

@
@p
Q
�(0)
h
. In our example, a rough guess for the 
ow �eld Q

(0)

h uses the constant

in
ow boundary condition throughout the 
ow domain. Likewise, the initial guess for (Q0)(0)h

is taken as the in
ow boundary conditions (given in equation (18)) throughout the 
ow

domain. The initial guess for (Qk)
(0)

h is initially taken as zero (except on the forebody). The

systems (41), (44) and (45) are then solved simultaneously (in our case the left hand side

matrix is the same for (41) as for the sensitivity equations (44) and (45), i.e. A = A0) for

the updated Q
(1)

h , (Q0)(1)h

�
@Q

@P1

�(1)
h

and
�
@Q

@P2

�(1)
h
. The updated Q

(n)
h is then used to formulate

(41), (44) and (45) and solve for (Qh)(n+1) and
�

@
@p
Q
�(n+1)
h

. Then one iterates until the

desired convergence is achieved. In our example, the residuals, �Qh =
h
Q
(n+1)
h �Q

(n)
h

i
were

converged to approximately 10�15 (in 800 time steps). The out
ow data Qh and
�

@
@p
Q
�
h
are

then used to compute J (p0) and rJ (p0).

The optimization algorithm consisted of a BFGS secant method coupled with a \hook"

step model trust region method [5]. The initial Hessian was obtained by �nite di�erences

on rJ (~p). The function and gradient information needed by the optimization algorithm is
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obtained by calling the modi�ed PARC code with p = ~p.

This algorithm was tested for the case where the forebody simulator was allowed to have

the full length of the body generating the data. In this case the optimization algorithm

produced exact data �ts, i.e. J (p�) = 0 and it recovered the parameters used to generate

the data. However, the more realistic test (constraining the length of the forebody simulator)

also produced a convergent design and reduced the cost functional signi�cantly.

Figure 6.1 shows the 
ow �eld over the long forebody. Observe, that there is a shock in

the 
ow. As noted in [2], shocks can cause di�culties if one is not careful in the selection of

an appropriate numerical scheme. High order schemes can produce (numerically generated)

local minimum that can cause the optimization loop to fail. This problem is avoided here

because the numerical viscosity in PARC (required for stability) is su�cient to \smooth"

the cost functional (see [2] for details).

Figure 6.2 shows the shape and 
ow �eld of the optimal shortened forebody. This design

was obtained after 12 iterations of the optimization loop. Figures 6.3{6.6 show the 1st, 2nd,

3rd, 5th and 12th iterations for each of the 
ow variables. The initial guess for the parameters

were

p0 =
��
M2

0

�0
; P1; P2

�
= (2:0; 0:10; 0:15)

and

J (p0) = 3:2339:

The \converged" optimal parameters are

p� = p12 = (2:020; 0:294; 0:156)

with

J (p�) = 0:2229:

Observe that the cost function was decreased by more than 93%. Figures 6.7{6.10 show a

comparison of the 
ow �elds for the optimal shortened forebody simulator and the data. The

optimization loops converged rapidly. For example, J (p3) = 0:2334 and J (p5) = 0:2289.

This is due to the fact that the shock location was found quickly.

Note that although the 
ows are close, there is a signi�cant error near the forebody. This

can also be seen in the plots in Figures 6.11{6.14. It is worthwhile to note that the match

is good considering the fact the shortened forebody is constrained to be one half the length

of the \real" forebody and only two Bezier parameters are used to model �(�). It is also

important to note that the shock is captured by the optimal design. In particular, observe

in Figures 6.3{6.6 how the optimization algorithm \shapes" the shortened forebody so that

the optimal shape has a blunt nose. This is necessary in order to generate the correct shock

location at the out
ow.
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7 Conclusions

The numerical experiment above illustrates that the SE method can produce sensitivities

suitable for optimization based design. There are a number of interesting theoretical issues

that need to be addressed in order to analyze the convergence of this approach. Moreover,

one should investigate \fast solvers" for the sensitivity equations (multi-grid, etc.) as well as

develop numerical schemes that are not only fast, but produces consistent derivatives when

possible.

Finally, we note that we have conducted a number of timing tests which compute sen-

sitivities to compare the SE method with the �nite di�erence method. In particular, we

observed that for the problem above (with three design parameters), the SE method needed

only 58% of the CPU time required by �nite di�erencing. When twenty design parameters

were used, the SE method produced these sensitivities in about 38% of the time required by

�nite di�erencing. These early numerical results indicate that considerable computational

savings may be possible if one extends and re�nes the basic SE method presented here.
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