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ABSTRACT

Algorithms for nonlinear eigenvalue problems (EP), often require solving selfconsistently a large number

of EP. Convergence di�culties may occur if the solution is not sought in a right neighborhood; if global

constraints have to be satis�ed; and if close or equal eigenvalues are present. Multigrid (MG) algorithms for

nonlinear problems and for EP obtained from discretizations of partial di�erential EP, have often shown to

be more e�cient than single level algorithms.

This paper presents MG techniques for nonlinear EP and emphasizes an MG algorithm for a nonlinear

Schr�odinger EP. The algorithm overcomes the mentioned di�culties combining the following techniques: an

MG projection coupled with backrotations for separation of solutions and treatment of di�culties related

to clusters of close and equal eigenvalues; MG subspace continuation techniques for the treatment of the

nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and

with the global constraints. The simultaneous MG techniques reduce the large number of selfconsistent

iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood

where the algorithm converges fast.

Computational examples for the nonlinear Schr�odinger EP in 2D and 3D, presenting special computa-

tional di�culties, which are due to the nonlinearity and to the equal and closely clustered eigenvalues, are

demonstrated. For these cases, the algorithm requires O(qN ) operations for the calculation of q eigenvectors

of size N and for the corresponding eigenvalues. One MG simultaneous cycle per �ne level was performed.

The total computational cost is equivalent to only a few Gauss-Seidel relaxations per eigenvector. An

asymptotic convergence rate of 0.15 per MG cycle is attained.
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Administration under NASA Contract No. NAS1-19480 while the authors were in residence at the Institute for

Computer Applications in Science and Engineering, (ICASE), Mail Stop 132C, NASA Langley Research Center,

Hampton, Virginia, 23681, USA.

i



1 Introduction

Multigrid (MG) techniques for nonlinear problems and for eigenvalue problems (EP) such as many

large scale problems from physics, chemistry and engineering, have often shown to be more e�cient

than single level techniques, [1], [2], [3], [4]. MG techniques can use e�ciently features which are

generally not used by single level techniques, such as: the problems can be approximated on several

discretization levels; the solutions can be well approximated by solutions of coarse level problems;

only a few eigenvalues and eigenvectors are sought; and the solutions are dominated by smooth

components [2]. Moreover, MG techniques have powerful solving capabilities, for example they can

approximate well the e�cient inverse power iteration for eigenvalue problems [5].

MG techniques involve, in general, the processing of the problem on a sequence of discretization

levels. Usually, these levels are �nite dimensional function spaces de�ned on increasingly �ner grids,

[3], [4].

To treat nonlinear problems or systems of coupled problems, as in our case, algorithms often

involve a large number of selfconsistent iterations. The iterations may be ine�cient or may not

converge if the approximated solution is not in a right neighborhood. The treatment of these

di�culties becomes harder when combined with eigenvalue di�culties. Algorithms for eigenvalue

problems face severe di�culties especially when close or equal eigenvalues are present, as usually

in Schr�odinger and in electromagnetism problems. Instead of approximating an eigenvector, pro-

cedures such as relaxations approximate a linear combination of eigenvectors with close or equal

eigenvalues. This we refer as eigenvector mixing. Mixing is especially severe when not all eigenvec-

tors with close eigenvalues are computed, i.e., incomplete clusters of eigenvectors are treated. In

such cases usually, the dominant components of the errors, hard to eliminate, consist of the not-

approximated eigenvectors of the cluster. The nonlinear Schr�odinger eigenvalue problem treated in

the computational examples is ill posed when de�ned on incomplete clusters. Global constraints

imposed on the solutions, such as norms, orthogonality, given average, introduce additional di�cul-

ties in MG algorithms since these constraints are not conserved by inter-level transfers of solutions,

e.g., the transfers alter the norms and orthogonality of solutions.

Other di�culties, not treated in MG algorithms before, result from the fact that the cluster

structures, the multiplicity of eigenvalues, and the levels on which the solutions are poorly repre-

sented, are not known in advance.

The above mentioned di�culties are closely coupled and should be treated together to obtain

robust and e�cient algorithms. Several previous MG methods approached some of the mentioned

di�culties. In no previous approach all of these di�culties were treated together. The treatment
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of the nonlinearity and of the constraints should be done simultaneously with the update of eigen-

vectors, for keeping the approximate solution in a right neighborhood of the exact solution where

the algorithm is e�cient.

This paper focuses on MG techniques for overcoming the mentioned di�culties and presents an

MG robust and e�cient algorithm for the calculation of a few eigenvalues and their corresponding

eigenvectors for a nonlinear Schr�odinger eigenvalue problem.

The problem used for illustration is the computation of the �rst q eigenvectors u1; :::; uq, and the

corresponding smallest eigenvalues (in modulus) �1; :::; �q, of a discretized Schr�odinger Nonlinear

Eigenvalue problem of Hartree-Fock type:
8>>><
>>>:

�ui � (V + �W )ui = �iu
i; i = 1; . . . ; q

�W = �c1
Pq

i=1(u
i)2 + c2

kuik = 1R
W = 0

(1)

Periodic boundary conditions are assumed. Eigenvectors in degenerate eigenspaces are required to

be orthogonal. The problem has to be solved in 2D and 3D. V is a given linear potential operator,

W is a nonlinear potential, also to be calculated, c1; c2; � are constants. If � is zero the problem

is linear else it is nonlinear since the potential W depends on the solutions. It is assumed that the

clusters containing the desired q eigenvectors are complete.

The problem is represented and solved on a sequence of coarse to �ne levels. The algorithm is

based on separation of eigenspaces and of eigenvectors in eigenspaces, simultaneously treated with

the nonlinearity and constraints on all levels. Transfers between levels are used to reduce as much

as possible the heavy computational tasks from �ne levels to inexpensive tasks on coarse levels. The

algorithm may be outlined by three steps: 1) get an approximation of the solution on a coarse level;

2) interpolate the solution to a �ner level; 3) improve the �ne solution by few MG cycles. Repeat

steps 2) and 3) until �nest level is reached. The approximation on the coarse level at step 1) solves

�rst the linear problem ( � = 0 ), then the nonlinear one by a continuation procedure. An MG cycle

at step 3) starts on the �ne level, transfers successively the problem down to coarser levels and

then up, returning to the �ne level. On each level, the eigenvectors and the nonlinear potential are

updated, and on a coarse level, the eigenvectors are separated by projections and backrotations.

The separation of �ne level eigenvectors by transfers coupled with coarse level projections is called

here multigrid projection (MGP) [6], [7].

The simultaneous MG schemes reduce the many selfconsistent iterations to solve the nonlinearity

to a single simultaneous iteration. Due to MGP, the algorithm achieves a better computational

complexity and a better convergence rate than previous MG eigenvalue algorithms which use only

�ne level projections. Increased robustness is obtained due to the MGP coupled with backrotations;
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the simultaneous treatment of eigenvectors with the nonlinearity and with the global constraints.

In an adaptive version of the algorithm, [7], on each new �ne level, clusters are identi�ed,

tested for completeness, completed if necessary and improved by MG cycles using coarser levels.

Robustness tests control the algorithm's convergence and e�ciency. These are done adaptively for

di�erent clusters on di�erent levels.

It will be observed that the presented techniques are applicable to a much larger class of prob-

lems. In particular, the algorithms without the treatment of nonlinearity were used for linear

eigenvalue problems too, see [8].

The computational examples were chosen to include special di�culties such as very close and

equal eigenvalues. The algorithm uses a few (1-4) �ne level cycles, and in each cycle, two �ne

level Gauss-Seidel relaxations per eigenvector are performed. The algorithm yields accurate results

for very close eigenvalues, and accuracy of more than ten decimal places for equal eigenvalues.

Exact orthogonality of �ne level eigenvectors is obtained by the coarse level MGP. A second order

approximation is obtained in O(qN) work, for q eigenvectors of size N on the �nest level. An

asymptotic convergence rate of 0:15 per MG cycle is obtained.

For early works, theory and more references on MG eigenvalue algorithms, see [9], [10], [5],

[2], [3], [11], [4], [12]. The sequential MG algorithm performing the separation on �nest level [2],

combined with a conjugate residual method, is applied to a Hartree-Fock nonlinear eigenvalue

problem in 2D in [13]. A previous version of the results presented here is given in the report [6].

The linear adaptive techniques presented in [14], [7], can be combined with the presented techniques

and are especially useful for the completion of clusters. Algorithms and more references for single

level large scale complex eigenvalue problems can be found in [15]. We refer to [16], [17], [18],

for theory on algebraic eigenvalue problems; and to [19], [20], [21], for aspects of the single level

technique used here, of obtaining a few eigenvectors and their eigenvalues for linear EP.

The MG projection and backrotations were �rst introduced in [22], and in the reports [6], [14].

An outline of a related computational approach presented here is given in [23].

The paper is organized as follows. The next two Subsections 1.1, 1.2, describe the MG discretiza-

tion of the Nonlinear Schr�odinger eigenvalue problem and the general FAS inter-level transfers. Sec-

tion 2 presents the central MG eigenvector linear separation techniques, i.e., the MG-solver-cycle,

the MGP, the backrotations, the MG-combined-cycles, and the linear-cluster-FMG algorithm. Sec-

tion 3 presents the MG nonlinear techniques, i.e., the MG cycle for the nonlinear potential W ,

the simultaneous updating of eigenvectors and potential, the treatment of global constraints, the

subspace continuation procedures, and the FMG nonlinear eigenvalue algorithm. Section 4 presents

computational examples for the nonlinear Schr�odinger problem. Section 5 describes the adaptive
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techniques, i.e., the adaptive-MG-cycle, the cluster-completion, the robustness-tests, the adaptive-

FMG. In Subsection 5.6 are presented computational examples for the linear adaptive algorithm. A

�nal subsection contains details and observations on the linear and adaptive techniques which were

included there to keep the rest of the presentation simpler. Conclusions are presented in Section 6.

1.1 The Discretization of the Nonlinear Schr�odinger Eigenvalue Problem

Assume that 
 is a domain in Rd, and let G1; G2; :::; Gm be a sequence of increasingly �ner grids,

that extend over 
. The space of functions de�ned on grid Gk is called level k. I lk denote transfer

operators from level k to level l, e.g., I lk can be interpolation operators. The discretization of

problem (1), on �nest grid Gk, has the following form:
8>>><
>>>:

�ku
i
k � (Vk + �Wk)u

i
k = �iu

i
k

�kWk = �c1
Pq

i=1(u
i
k)

2 + c2
kuikkk = 1P
W

j
k = 0

(2)

If Gk is not the �nest grid then relations (2) include FAS right hand sides as shown in the next

sections. Here �k is a discrete approximation to the Laplacian. It is desired that, on �nest level, the

eigenvectors in degenerate eigenspaces be orthogonal. Periodic boundary conditions are assumed

for 
 { a box in Rd. The W
j
k denotes the j'th component of Wk on level k, Vk is a transfer of the

�nest level Vm to coarser level k, i.e., Vk = IkmVm.

1.2 FAS Transfers

The following is a general formulation of the FAS, (Full Approximation Scheme [1]), which is applied

to the eigenvalue equations, to the separation of eigenvectors, to the nonlinear equation, and to the

global constraints. Let

FiUi = Ti (3)

be a level i problem, where Fi is a general operator and Ti is a right hand side. The level j problem

FjUj = Tj (4)

is an FAS transfer of the level i problem (3) if

Tj = I
j
i (Ti � FiUi) + FjI

j
iUi (5)

The level j problem (4) is used in solving the level i problem (3). The level i solution Uold
i is

corrected with the level j solution Uj by the FAS correction:

Unew
i = Uold

i + I ij(Uj � I
j
i U

old
i ) (6)
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If Ui is the exact solution of (3) then its transfer to level j, I
j
i Ui, is the exact solution of (4). In

this case the correction (6) does not change the exact solution Ui.

2 On Multigrid Separation Techniques

The introduced algorithm combines MG linear eigenvalue techniques with techniques for nonlinear

problems. This section presents the MG linear eigenvalue techniques, i.e., the MG-solver-cycle,

the MG Projection (MGP), and the Cluster-FMG [7]. The main role of the MG-solver-cycle is to

separate a cluster from the other clusters while the main role of the MGP is to separate the eigenvec-

tors inside a cluster. The MGP is combined with backrotations which prevent undesired rotation,

sign 
ipping, and scaling of eigenvectors. Both separation techniques are used simultaneously in

MG-combined-cycles.

In the rest of this section, the problem

AU = U� (7)

is de�ned on a sequence of levels. The U denotes an eigenvector associated to the eigenvalue �.

The matrix A corresponding to the level i problem is denoted by Ai. For example, Ai may be the

matrices obtained by discretizing a continuous eigenvalue problem, on a sequence of grids.

2.1 Multigrid Solver Cycles

The MG-solver-cycle is a central tool for separating the desired eigenspaces and for separating

eigenvectors when the eigenvalues are di�erent and well enough approximated. It can be regarded

as an approximation of the e�cient inverse power iteration [18].

To motivate the MG-solver-cycle, consider the eigenvalue problem (7), where A is a square

matrix. If �0 approximates well enough the eigenvalue � (with multiplicity 1 for convenience),

corresponding to an eigenvector U , then the inverse power iteration

Un+1 = (A� �0I)�1Un; Un+1 = Un+1=jjUn+1jj (8)

will converge fast (in a few iterations) to U (since the U component in Un will be multiplied at

each iteration by 1=(�� �0) � 1, [18]). For large A it is too expensive to compute (A � �0I)�1,

but one can approximate (8) by solving iteratively:

(A� �0I)Un+1 = Un; Un+1 = Un+1=jjUn+1jj (9)

which is equivalent to During the solution procedure, if Un approximates well enough U , then �0

can be improved, using a Rayleigh Quotient equality

(Un)TAUn = (Un)TUn�0: (10)
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For large A, the iteration (9) is impractical for single level algorithms, but it can be approximated

by MG cycles, which have often shown to be e�cient [2], [3].

Relation (7) can be considered in block form where U is a matrix whose columns are the

eigenvectors corresponding to the eigenvalues of the diagonal matrix �. Relations (5) and (6) can

be considered in block form in the same way. In a simultaneous MG-solver-cycle, the problem (7)

is represented on the di�erent levels in the FAS form:

FiUi := AiUi � Ui�i = Ti (11)

where Tm = 0 on the initial level m (�nest usually) and Tj are computed by (5) for j < m, with

j = i� 1. Equation (11) is relaxed on each level and the solutions are corrected by (6).

An MG-solver-cycle from level m to level l, (l < m here), is de�ned by:

(Um;�) MG-Solver-Cycle (m;Am; Um;�; Tm; l)

For k = m; . . . ; l (step by �1) do:

Uk  Relax (m;Ak; Uk;�; Tk; k; l)

If k > l Transfer:

Uk�1 = Ik�1k Uk,

Tk�1 = Ik�1k (Tk � AkUk) + Ak�1Uk�1

End

For k = l; . . . ; m (step by 1) do:

If (k > l) Correct Uk = Uk + Ikk�1(Uk�1 � Ik�1k Uk)

Uk  Relax (m;Ak; Uk;�; Tk; k; l)

End

Such an MG cycle, where the algorithm goes from �ne to a coarse level and comes back to the

initial �ne level is called V cycle [1]. In this MG-Solver-Cycle, the � is kept constant on all levels.

2.2 Generalized Rayleigh Ritz Projections

This subsection presents a generalization of the Rayleigh Ritz Projection [18], for eigenvalue prob-

lems with right hand side. The Rayleigh Ritz Projection is used to �nd the eigenvectors when only

linear combinations of the eigenvectors are known (separation of eigenvectors).

Consider the eigenvalue relation:

AV = V � (12)
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where � = diag(�1; . . . ; �q) contains on the diagonal the q sought eigenvalues corresponding to the

sought eigenvectors which are the columns of V . Assume that U which satis�es

V = UE (13)

is given instead of V , where E is a q � q invertible matrix to be found. Substituting (13) into (12)

gives

AUE = UE� (14)

An FAS transfer (5) of (14) to another level yields an equation of the form

AUE = UE�+ TE (15)

where the product TE is the FAS right hand side of (15) with known T . Solutions E and � for

(15) can be computed by solving the q � q generalized eigenvalue problem

UT (AU � T )E = (UTU)E� (16)

obtained by multiplying (15) by UT . For T = 0, the usual Rayleigh Ritz Projection is obtained.

The process of obtaining (E;�) given (A;U; T ) is denoted by

(E;�) GRRP(A;U; T ) (17)

and is refered later as the Generalized Rayleigh Ritz Projection (GRRP).

2.3 Multigrid Projections

The solutions E and � of (15) can be obtained by an FAS MG procedure. Consider (15) written

as a level i problem:

AiUiE � UiE� = TiE (18)

Then the FAS transfer of (18) to level j is

AjUjE � UjE� = TjE (19)

where Uj = I
j
i Ui. TjE is computed by (5), and results in

Tj = I
j
i (Ti � AiUi) +AjI

j
iUi (20)

A solution (E;�) of (18) is a solution of (19). The solutions (E;�) of (19) can be obtained by a

GRRP.

Problems (18) and (19) have the same form. Hence problem (19) can be further transferred

in the same FAS way to other levels and to perform the GRRP on the last level, e.g., on coarsest
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level. The process of obtaining (E;�) by transferring the eigenvalue problem to other levels will

be called the MG Projection (MGP). The FAS transfer (20) for the problem (19) is the same as

the transfer used in the MG-solver-cycle for the problem AjUj �Uj� = Tj . This makes possible to

perform the MGP simultaneously with the MG-solver-cycle, in MG-combined-cycles, as presented

in Section 2.5.

2.4 Backrotations

Backrotations are introduced to prevent rotations of solutions in subspaces of eigenvectors with

equal or close eigenvalues, and to prevent permutations, rescalings and sign changing of solutions

during processing. For example, backrotations are used after the computation of (E;�) by an

MGP, since E may permute or mix the eigenvectors in a degenerate eigenspace. Thus, if degener-

ate subspaces are present, the backrotation should bring E to a form close to block diagonal and

having on diagonal blocks close to the identity matrix. Each such block associated to a degenerate

subspace prevents mixing inside that subspace. These motivate the particular backrotation algo-

rithm presented next.

Backrotation

Input (E;�)

1) Sort the eigenvalues of � and

permute the columns of E accordingly

2) Determine the clusters of eigenvalues of �

to be considered degenerate, and

determine the clusters to be considered nondegenerate

3) For each diagonal block in E

associated with a nondegenerate cluster do:

bring to the diagonal the dominant elements of the block

permuting the columns of E,

and the diagonal of � correspondingly.

4) Let F be a block diagonal matrix

whose diagonal blocks are the diagonal blocks of E,

corresponding to the determined clusters.

replace each diagonal block which does not correspond

to a degenerate cluster by the corresponding identity matrix

5) Set E = EF�1.

6) Change the signs of columns of E
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to get positive elements on diagonal.

7) Normalize the columns of E.

Output (E;�)

A backrotation step will be denoted by

(E;�) Backrotation(E;�) (21)

2.5 Multigrid Combined Cycles

An MG-simultaneous-cycle combining an MG-solver-cycle with an MGP is described next. Uk is

the matrix whose q columns are approximate solutions of the level k problem AkUk = Uk� + Tk,

where Tk is obtained by an FAS transfer from the level k+ 1 problem. For level m, Tm = 0. In the

applications, m is the �nest level involved in the cycle, lc is the coarsest level and lp is a level on

which the GRRP and backrotations are performed.

(Um;�; Tm) Solve-MGP (m;Am; Um;�; Tm; lp; lc; q)

For k = m; . . . ; lc do:

Repeat �k1 Times:

If k = lp then (Uk;�; Tk) GRR-BR(m;Ak ; Uk;�; Tk; k; lp)

Uk  Relax (m;Ak; Uk;�; Tk; k; lc)

If k > lc Transfer:

Uk�1 = Ik�1k Uk,

Tk�1 = Ik�1
k

(Tk � AkUk) + Ak�1Uk�1

End

For k = lc; . . . ; m do:

If (k > lc) Correct Uk = Uk + Ikk�1(Uk�1 � Ik�1k Uk)

Repeat �k2 Times

Uk  Relax (m;Ak; Uk;�; Tk; k; lc)

If k = lp then (Uk;�; Tk) GRR-BR(m;Ak ; Uk;�; Tk; k; lp)

End

The GRR-BR separation algorithm used above is the following

(Uk;�; Tk) GRR-BR(m;Ak; Uk;�; Tk; k; lp)

(E;�) GRR(Ak ; Uk; Tk)

(E;�) Backrotation(E;�)
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Uk = UkE

Tk = TkE

The MG-combined-cycle, Solve-MGP, is the central building element of the adaptive algorithms

presented in Section 5.

2.6 The Cluster-FMG Algorithm

The Linear-Cluster-FMG algorithm starts on a coarsest level, for simplicity lp = lc = 1, peforms 


cycles Solve-MGP on each level and interpolates the solutions to the next level. In this way, the

�ne level initial solutions are in a close neighbourhood of the exact solutions, due to the coarser

level solutions computed. In this neighbourhood, the nonlinear algorithm is usually as e�cient as

the linear algorithm.

(Um;�; Tm) Linear-Cluster-FMG (m;Am; Um;�; Tm; l1; l1; q)

For k = 1; . . . ; m do:

Repeat 
 Times:

(Uk;�; Tk) Solve-MGP (k; Ak; Uk;�; Tk; l1; l1; q)

If k < m Transfer:

Uk+1 = Ik+1
k Uk,

End
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3 MG Techniques for the Treatment of the Nonlinearity

The central techniques for nonlinear problems are illustrated on the nonlinear Schr�odinger

eigenvalue problem (1). The treatment of the nonlinearity is performed by updating the nonlinear

potential W simultaneously with the eigenvectors as well as with the global constraints. The

following MG techniques are presented: an MG-Potential-Solver cycle for W , a Simultaneous-FAS

cycle for W and eigenvectors, the treatment of the global constraints, the subspace continuation

procedures and the Simultaneous-Nonlinear-FMG algorithm.

3.1 An MG Solver Cycle for the Nonlinear Potential

In an MG cycle for updating W , we have two options: 1) to keep the uis �xed, and 2) to update

also the uis. The �rst case leads to sequential cycles where separate cycles are performed forW and

for u. The second case leads to simultaneous cycles. The two cases lead to di�erent FAS transfers.

In this section the uis are considered �xed, while in Section 3.2 the uis are updated together with

W . The equation to be solved for the nonlinear potential W is:

�kWk = pk (22)

Here, for k < m, pk is the FAS right hand side of (22)

pk = Ikk+1(pk+1 ��k+1Wk+1) + �kI
k
k+1Wk+1 (23)

On �nest level, k = m,

pk = �c1

qX
i=1

(uik)
2 + c2 (24)

An MG-Potential-Solver cycle for W , is:

(Wm) MG-Potential-Solver (m;Wm; pm; l)

For k = m; . . . ; l (step by �1) do:

Wk  Relax (m;Wk; pk; k; l)

If k > l Transfer:

Wk�1 = Ik�1
k

Wk,

pk�1 = Ik�1k (pk ��kWk) + �k�1Wk�1

End

For k = l; . . . ; m (step by 1) do:
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If (k > l) Correct Wk = Wk + Ikk�1(Wk�1 � Ik�1k Wk)

Wk  Relax (m;Wk; pk; k; l)

End

This is a usual V type cycle from �ne level m to coarse level l. Other cycles can be de�ned as

well which involve a di�erent sequence of visiting the levels. The work involved by such a cycles is

several times (about 4 times) the �nest level relaxation work. Such a cycle can be used in the next

algorithms instead relaxations for W , but in the numerical tests this was not necessary. Similar

solver cycles can be de�ned for the ui.

3.2 The MG Simultaneous Updating of Nonlinear Potential and Eigenvectors

In the MG-Potential-Solver, the uis are �xed. An MG Simultaneous-FAS cycle is obtained by

combining the updating of uis with the updating of W . The nonlinear equations in FAS form are:

�ku
i
k � (Vk + �Wk)u

i
k � �iu

i
k = � ik (25)

�kWk + c1

qX
i=1

(uik)
2 � c2 = pk (26)

Denote by Lk the operator

Lk = �k � Vk � �Wk � �i (27)

Both Wk and uk are considered variables. The � ik and pk, in (25) and (26), are zero on the �nest

level and equal to the FAS right hand sides on the other levels, namely:

� ik = Ikk+1(�
i
k+1 � Lk+1u

i
k+1) + LkI

k
k+1u

i
k+1 (28)

pk = Ikk+1(pk+1 ��k+1Wk+1 � c1

qX
i=1

(uik+1)
2) + �kI

k
k+1Wk+1 + c1

qX
i=1

(Ikk+1u
i
k+1)

2 (29)

The uik 's are updated by relaxations, using (25) while Wk is considered constant. Wk is updated by

relaxations using (26) while u1k; :::; u
q
k are considered constants. The u

i
k's are updated by projections

and backrotations on coarse levels. The Simultaneous-FAS cycle in Section 3.5 describes this

algorithm.
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3.3 The MG Treatment of Global Constraints

The FAS treatment of global constraints are needed to keep the approximate solutions in a right

neighborhood of the exact solutions, where the algorithm is e�cient. Keeping the solutions in a

right neighborhood is accomplished in conjunction with the simultaneous techniques, the subspace

continuation techniques, and the FMG algorithm. The solutions should satisfy several global con-

straints. The parameter c1 is set arbitrarily to c1 = 1 but it can be also used as a parameter in a

continuation technique. The potential V is periodic and the solutions uik are periodic. Thus W is

periodic, therefore Z
�W = 0 (30)

The integral is computed ower the whole domain. Discretizing (30) and using (26), c2 must satisfy

on the current �nest grid:

c2 =

NmX
j=1

qX
i=1

(uim;j)
2=Nm (31)

where Nm is the number of nodes on grid m. Since on current �nest level

kuimk = 1 (32)

c2 results independent of u and it is kept constant on all levels.

IfW is a solution then for any constant C, theW+C is also a solutions for the same eigenvectors

and the eigenvalues �i � C. The constant C is �xed by the condition on W :

Z
W = 0 (33)

The FAS formulation of the discretized condition (33) is

NmX
j=1

W j
m = 0 (34)

on all levels, if the �ne to coarse grid transfers conserve zero sums, e.g., as the full weighting transfer

which is often used. Else the appropriate FAS condition should be set using (5).

The FAS formulation of the norm condition kukk = 1 becomes

kuk�1k = �k�1 := kI
k�1
k ukk+ �k � kukk (35)

The norms are set to 1 after interpolating �rst time the solution to a current �nest level and are

set to the �k values, on coarsest levels, at the end of the backrotations. In (35) the same norm

notation has been used for the di�erent norms on the di�erent levels.
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3.4 MG Subspace Continuation Techniques

The central idea of the subspace-continuation techniques is to use a stable subspace of solutions of a

given eigenvalue problem to approximate the subspace of solutions of the problem perturbed. It is

important that the subspace of the perturbed problem is well approximated and not the solutions

of the perturbed problem. The solutions inside the stable subspace may be very sensitive to

perturbations. Subspace continuation procedures can depend on one, on several, or on a continuum

of parameters, e.g., the continuation can be performed by the parameter � varied from 0 to 1 for

�W ; or by two parameters �; � for �V + �W ; or the parameters may be the elements of W .

The continuation process on coarsest level which we used most in our tests is the following. First

the linear problem is solved by a sequence of relaxations, orthogonalizations and projections for

W = 0 �xed. This is to approximate �rst the subspace of the eigenvectors and not the eigenvectors

themselves. Then the problem with the potential

V1 = V + �W (36)

is considered, where � is a parameter. In the continuation procedure, the � increases in steps,

from 0 to �. At each step, the linear problem is resolved, considering W �xed, and afterwards W

is recomputed. Thus the subspace is updated �rst. This would mean to perform the continuation

on �W . A continuation using two parameters is to solve �rst the linear problem for V = 0, then

perform a continuation on �W until � = � is reached and only after that to start a continuation

process on the linear part of the potential �V . The justi�cation to do these comes from the fact

that V may split degenerate eigenspaces in clusters with very close eigenvalues. The continuation

having all elements of W as parameters, consists in the selfconsistent iterations in which the linear

problem is solved in turns with the updating of W .

The single level continuation procedures described above can be performed in an MG way,

leading to MG sequential-selfconsistent-schemes, as the one used in [13]. A more general MG

sequential-selfconsistent-scheme is the following MG-Sequential-Continuation algorithm, which it-

erates the simultaneous updating of the eigenvectors by MG cycles with the updating of W by MG

cycles:

(Um;Wm;�)  MG-Sequential-Continuation(Um ;Wm;�)

Set � = 0

While 0 � � � � do :

solve until convergence:

1) Solve the linear problem for �xed Wm and potential Vm + �Wm
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(Um;�; �m) U-Simultaneous-FAS(m; q; Um;Wm;�; Lm; �m; �1; �2)

2) Solve for Wm keeping Um, � �xed:

(Wm) MG-Potential-Solver (m;Wm; pm; l)

Update Wm such that:
PNm

j=1W
j
m = 0

Increase �

The above U-Simultaneous-FAS algorithm is obtained by removing from the Simultaneous-FAS

algorithm presented in Section 3.5 the updating of W; p; �. This is an algorithm for updating

simultaneously the eigenve ctors, which separates the eigenvectors by projection on a coarse level.

The di�erent MG cycles for the eigenvectors and potential may have di�erent coarsest levels.

3.5 The Simultaneous Nonlinear FMG Eigenvalue Algorithm

Assume for simplicity, in this section, that on coarsest level k = 1, all eigenvectors can be well ap-

proximated. Denote by Uk = (u1k; :::; u
q
k) the matrix on level k having columns the approximations

of the desired q eigenvectors, corresponding to the eigenvalues of � = diag(�1; :::; �q). Assume the

same type of vector notations for �k; pk; �k The Simultaneous-Nonlinear-FMG algorithm for q

eigenvectors, m levels, reads:

Simultaneous-Nonlinear-FMG(m; q; Um;Wm;�; Lm; �m; �m; pm; �1; �2; 
)

Set U1 random, � = 0;W1 = 0

For k = 1 until m do:

1) If k = 1 get:

(Uk;Wk;�) Continuation(Uk ;Wk;�)

If k < m then: k = k + 1

2) Interpolate

Uk = Ikk�1Uk�1 ,

Wk = Ikk�1Wk�1

3) Set �k = 0, �k = 1, c2 =
PNk

j=1

Pq
i=1(u

i
k;j)

2=Nk ; pk = 0

kuikk = 1 ; �i =< (�k � Vk � �Wk)u
i
k ; u

i
k >

4) Do 
 times :

(Uk;Wk;�)  Simultaneous-FAS(k; q; Uk ;Wk;�; Lk; �k; �k; pk; �1; �2)

endif
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Continuation(Uk ;Wk;�)

Set � = 0

While 0 � � � � do :

If � = 0 get Uk; � by Relaxations, Orthogonalizations and Projections

else solve until convergence steps 1, 2:

1) Solve the linear problem for Uk ; � by Relaxations and Projections.

2) Solve for Wk : �kWk + c1
Pq

i=1(u
i
k)

2 = c2,
PNk

j=1W
j
k = 0

endif

Increase �

Simultaneous-FAS(k; q; Uk;Wk;�; Lk; �k; �k; pk; �1; �2)

For k = m; . . . ; 1 step �1 do:

If k = 1 do:

1) (Uk;Wk;�) CoarseLevel(k; q; Lk; Uk;Wk;�; �k; �k; pk)

Else

2) Relax �1 times with initial guess Uk ;Wk :

�kWk + c1
Pq

i=1(u
i
k)

2 � c2 = pk;
PNk

j=1W
j
k = 0

LkUk = �k

3) Compute the residual rk = �k � LkUk

4) Restrict �k�1 = Lk�1I
k�1
k Uk + Ik�1k rk

5) Set pk�1 = �k�1I
k�1
k Wk +

Pq
i=1(I

k�1
k uik)

2 + Ik�1k (pk ��kWk �
Pq

i=1(u
i
k)

2)

6) Set �k�1 = kI
k�1
k Ukk+ �k � kUkk

7) Restrict :

Uk�1 = Ik�1k Uk ;

Wk�1 = Ik�1k Wk

endif

For k = 2; . . . ; m step 1 do:

9) If k < m Interpolate and FAS correct:

Uk = Uk + Ikk�1(Uk�1 � Ik�1k Uk)

Wk = Wk + Ikk�1(Wk�1 � Ik�1k Wk)

endif

10) Relax �2 times:

LkUk = �k
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�kWk + c1
Pq

i=1(u
i
k)

2 � c2 = pk;
PNk

j=1W
j
k = 0

CoarseLevel(k; q; Lk; Uk;Wk;�; �k; �k; pk)

Do until convergence :

1) Update (Uk; �) by Projection and Backrotation

2) Solve for W :

�kWk + c1
Pq

i=1(u
i
k)

2 � c2 = pk;
PNk

j=1W
j
k = 0

3) Relax LkUk = �k

The constant 
 is the number of cycles performed on each level. The �1, (�2) is the number

of relaxations performed in the simultaneous cycle, on each level in the path from �ne to coarse,

(coarse to �ne). Such a V cycle will be denoted V (�1; �2) and the FMG with 
 cycles as above will

be denoted by 
 � FMG � V (�1; �2).

If all desired eigenvectors cannot be well approximated on coarsest level then the Nonlinear-

FMG algorithm can be used in an adaptive version in which the Nonlinear-FMG is performed

for clusters of close or equal eigenvalues, each cluster having its own coarsest level. The single

di�erence is that in the computations of p, the sums for the eigenvectors are performed not only for

the eigenvectors in the cluster but for all eigenvectors in the other approximated clusters, on the

common levels, (else a restriction of W can be used). The clusters of close and equal eigenvalues

have to be completed in order to obtain robustness and e�ciency. The constants 
; �1; �2 and the

coarse level on which to perform the projection e�ciently can be found adaptively. For these the

adaptive techniques presented in [7] can be used.

3.6 Storage, Work and Accuracy

In the algorithm presented in the previous section, storage is required for the q eigenvectors uik of

size N on �nest grid, the potentials and the corresponding right hand sides, on all levels, giving an

overall estimate of memory of order O(3(N + 3)) for problems in 2-D and 3-D. The work requires

O(N) operations per eigenvector and O(N) operations for the nonlinear potential. The work

performed on coarsest grids should be added to these estimates. Usually this work does not change

the complexity of the algorithm, being only a part of the �ne level work. In the case of degenerate

or clustered eigenvalues, if zero scalar products are needed on �nest levels, inside the degenerate or

clustered eigenspaces, then orthonormalizations may be required within these eigenspaces on the

�nest level. However, as can be seen in the computational examples, accurate orthogonality inside

degenerate clusters may be obtained by coarse level separation also. The schemes presented O(h2)
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accuracy for the 5-point in 2-D and 9-point in 3-D Laplacian, for an 1-FMG-V(1,1) algorithm, as

seen in the outputs.

4 Computational Results

The Tables 1, 2, 3 present results for the 2D, nonlinear eigenvalue problem (1) with the potential

V (x; y) = 14� (2�=a)2f(x; y)=(7+ f(x; y)). Here f(x; y) = sin(10x+ 10y) + cos(10x+ 10y),

( a = 2�=10 is the size of the domain in both directions ). V is chosen so in order to determine a

cluster consisting of two clusters of two equal eigenvalues. An 1-FMG-V(1,1) algorithm was used

to show that one V (1; 1) cycle per level is enough to obtain a second order convergence towards

the continuous solution. See for this the residuals at the beginning of the �rst V cycle on each level

decreasing with a factor about 4 from one level to the next �ner level. (The mesh size decreases

with a factor of 2 from one level to the next �ner one.) Seven V cycles were performed on �nest

level 6, to show the convergence rate for eigenvectors and potential, better than 0:15 in all cycles.

The convergence rate is the same for all eigenvectors in the cluster, of order 0:15 in all cycles from 3

to 7. For the potential W , three relaxations were used, but an MG cycle for W could be employed

as well instead (this was not needed in the tests performed). The separation by projection is

performed on level 2 instead of 1 and the eigenvalue systems were solved exactly on coarsest level.

The eigenvectors are normalized to 1 on �nest level. The eigenvalues presented are computed by

Rayleigh quotients on �nest levels. (Generally, the �ne level Rayleigh quotients are not necessary,

the coarse level projection providing the accurate eigenvalues, but showed to improve the e�ciency

of at least the �rst cycle on each level. In the �rst cycle, the eigenvalues are improved by the

quotients and used on the path down before they are recomputed by the projection. This �rst

cycle is generally su�ciently e�cient for obtaining a second order scheme so that additional cycles

are not necessary at least until �nest level where one may desire accurate converged solutions, thus

would employ several more cycles.) The degenerate eigenvalues come out with 11 to 14 equal digits.

The convergence rate of the nonlinear potential is also about 0:15 per cycle, as for the eigenvectors,

see Table 2. Accurate separation is obtained in the cluster and in degenerate eigenspaces, although

the separation was performed on the coarse level 2, the scalar products on level 6 being of order

10�12, see Table 3.

The Tables 3 to 7 present results for problems in 3D which are similar with the 2D results. The

�rst seven eigenvectors were sought. The problems were discretized on three levels. The cycles

were V (1; 1) and the projections were performed on second level.

The potential V (x; y; z) = 14�100sin(10x+10y+10z)=(30+sin(10x+10y+10z)), provides a

cluster of six degenerate eigenvalues, presented in Table 4. The approximations of the degenerate
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eigenvalues present 13 equal digits, on levels 2 and 3. The results in Table 5 are for the same problem

with nonsymmetric V , V (x; y; z) = 14�100sin(30x+20y+10z)=(30+sin(30x+20y+10z)). On �rst

level, V splits the previous cluster of six eigenvalues into two degenerate clusters of two and four

eigenvalues. On levels 2 and 3, the cluster of four degenerate eigenvalues splits into two clusters of

two degenerate eigenvalues. The degenerate eigenvalues present 14 equal digits. The six clustered

eigenvalues have the �rst 5 digits equal. On level 3, the eigenvectors come out exactly orthogonal,

their scalar products are presented in Table 6. Table 7 shows the residuals of the nonlinear potential

W . The fact that the cluster structure di�ers on di�erent levels introduces special computational

di�culties. The problem has to be de�ned on complete clusters of eigenvectors and the clusters

have to be completed. These di�culties can be detected and treated by the adaptive techniques

[7].

19



cycle vector start res. end res. eigenvalue

L E V E L 1

5 1 0.37E-13 0.46E-13 -0.15528834591395E+02

2 0.12E-12 0.84E-13 -0.90047054014218E+02

3 0.85E-13 0.79E-13 -0.90047054014218E+02

4 0.74E-12 0.26E-12 -0.10369602966161E+03

5 0.12E-11 0.45E-12 -0.10369602966161E+03

L E V E L 2

1 1 0.44E+01 0.50E-03 -0.15182335042395E+02

2 0.30E+02 0.22E-01 -0.10144043667188E+03

3 0.30E+02 0.22E-01 -0.10144043667188E+03

4 0.32E+02 0.47E-01 -0.12014770030904E+03

5 0.32E+02 0.47E-01 -0.12014770030904E+03

3 1 0.17E-05 0.60E-08 -0.15182335072480E+02

2 0.43E-04 0.88E-07 -0.10144043560798E+03

3 0.43E-04 0.88E-07 -0.10144043560798E+03

4 0.19E-03 0.84E-06 -0.12014769418108E+03

5 0.19E-03 0.84E-06 -0.12014769418108E+03

L E V E L 3

1 1 0.13E+01 0.59E-01 -0.15069813064192E+02

2 0.11E+02 0.46E-01 -0.10444903871181E+03

3 0.11E+02 0.46E-01 -0.10444903871181E+03

4 0.12E+02 0.88E-01 -0.12465344903258E+03

5 0.12E+02 0.88E-01 -0.12465344903258E+03

L E V E L 4

1 1 0.36E+00 0.22E-01 -0.15039575054851E+02

2 0.31E+01 0.32E-01 -0.10521096070648E+03

3 0.31E+01 0.32E-01 -0.10521096070648E+03

4 0.33E+01 0.19E-01 -0.12580555034765E+03

5 0.33E+01 0.19E-01 -0.12580555034763E+03

L E V E L 5

1 1 0.95E-01 0.65E-02 -0.15031924453065E+02

2 0.79E+00 0.13E-01 -0.10540212079295E+03

3 0.79E+00 0.13E-01 -0.10540212079291E+03

4 0.85E+00 0.85E-02 -0.12609530927232E+03

5 0.85E+00 0.85E-02 -0.12609530927231E+03

L E V E L 6

1 1 0.24E-01 0.17E-02 -0.15030004902969E+02

2 0.20E+00 0.39E-02 -0.10544995104364E+03

3 0.20E+00 0.39E-02 -0.10544995104306E+03

4 0.21E+00 0.28E-02 -0.12616785302342E+03

5 0.21E+00 0.28E-02 -0.12616785302487E+03

3 1 0.17E-03 0.18E-04 -0.15030004885985E+02

2 0.46E-03 0.55E-04 -0.10544995101300E+03

3 0.46E-03 0.55E-04 -0.10544995101134E+03

4 0.34E-03 0.42E-04 -0.12616785302509E+03

5 0.34E-03 0.42E-04 -0.12616785302485E+03

7 1 0.29E-07 0.88E-08 -0.15030004896583E+02

2 0.92E-07 0.11E-07 -0.10544995101183E+03

3 0.92E-07 0.11E-07 -0.10544995101118E+03

4 0.80E-07 0.11E-07 -0.12616785302732E+03

5 0.80E-07 0.99E-08 -0.12616785302532E+03

Table 1: The residuals and eigenvalues of the �rst 5 eigenvectors of the discretized Nonlinear

Schr�odinger eigenvalue problem in 2D, on 6 levels, computed by an 1-FMG-V(1,1) simultaneous

algorithm. On �rst level 5 cycles were performed and on second level 3 cycles. The projection

was performed on level 2. Seven cycles were performed on �nest level to illustrate a constant

convergence rate per MG cycle of 0:15. The residuals are computed at start and the end of the

V (1; 1) cycles; and the eigenvalues at the end of the cycles by Rayleigh Quotients. The decrease of

the residuals by a factor of four from one level to the next (the start residuals in the �rst cycle, on

�ne levels) indicate a second order convergence towards the di�erential solution for the eigenvectors.
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cycle start res. end res.

L E V E L 1

1 0.11E-09 0.10E-13

7 0.69E-14 0.70E-14

L E V E L 2

1 0.35E+00 0.16E-03

2 0.16E-03 0.59E-06

3 0.59E-06 0.23E-08

L E V E L 3

1 0.36E-01 0.13E-03

L E V E L 4

1 0.69E-02 0.11E-03

L E V E L 5

1 0.17E-02 0.37E-04

L E V E L 6

1 0.44E-03 0.11E-04

2 0.11E-04 0.86E-06

3 0.86E-06 0.98E-07

4 0.98E-07 0.12E-07

5 0.12E-07 0.14E-08

6 0.14E-08 0.16E-09

7 0.16E-09 0.21E-10

Table 2: The residuals of the nonlinear potential W of the discretized Nonlinear Schr�odinger

eigenvalue problem in 2D, on 6 levels, computed by an 1 -FMG-V(1,1) simultaneous algorithm.

Three relaxations were performed forW . On �rst level 5 cycles were performed and on second level

3 cycles. Seven cycles were performed on �nest level to illustrate a constant convergence rate per

MG cycle of 0:15. The residuals are computed at start and the end of the MG cycles. The decrease

of the residuals by a factor of four from one level to the next (the start residuals in the �rst cycle,

on �ne levels) indicate a second order convergence towards the di�erential solution for W .
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Vector 1 Vector 2 Scalar Product

1 1 0.10E+01

1 2 0.82E-14

1 3 -0.14E-12

1 4 0.12E-12

1 5 -0.30E-14

2 2 0.10E+01

2 3 0.12E-13

2 4 -0.12E-13

2 5 0.18E-13

3 3 0.10E+01

3 4 -0.17E-13

3 5 -0.86E-14

4 4 0.10E+01

4 5 0.14E-13

5 5 0.10E+01

Table 3: The scalar products of the �rst 5 eigenvectors of the discretized Nonlinear Schr�odinger

eigenvalue problem in 2D, on level 6, at the end of cycle 7. The projection was performed on level

2.

5 Adaptive Multigrid Algorithms

The techniques presented in this section were used �rst for linear eigenvalue problems, as we show

in [14], [7]. They can be used for the nonlinear eigenvalue problem in two ways: 1) use them to

solve the linear eigenvalue problems in an MG continuation procedure; and 2) use them directly as

nonlinear algorithms by replacing the linear MG cycle with a nonlinear MG cycle, e.g., with the

Simultaneous-FAS cycle. Their central task, to detect the cluster structure and the parameters of

the algorithms is easily solved treating the linear problem �rst, i.e., � = 0 for �W . Then the found

parameters can be used for the presented Simultaneous-Nonlinear-FMG algorithm, as shown in the

computational examples in Section 4. (Note that for those examples the cluster structure had to

be known in advance as well as several parameters as number of relaxations and level on which the

projection should be performed e�ciently. These are found by the techniques presented further.)

These adaptive techniques are used mainly on coarse levels, at initial stages of the algorithm, until

the cluster structure gets stabilised. It is often su�cient to use them only for the linear problem.

5.1 Motivation, Central Di�culties

The construction of adaptive MG techniques for eigenvalue problems is motivated by two types

of di�culties. The �rst type is related to the problems while the second type is related to the

algorithms involved. Di�culties related to the problems are: existence of close and equal eigen-

values; unknown cluster structure; di�erent cluster structures on di�erent levels; inter-level cross

correspondence of eigenvalues; and poor approximation of �ne level eigenvalues and eigenvectors

by coarse level eigenvalues and eigenvectors. Additionally, the eigenvectors may be highly sensitive

with respect to some data, and the transfers may not conserve the dimensions of the eigenspaces.

The nonlinear eigenvalue problem is ill posed on incomplete degenerate subspaces.

Some of the central di�culties related to the algorithms are due to: incompleteness of clusters;

mixing of solutions; nonlinearity; global constraints; and unknown parameters of the algorithms,

22



cycle vector start res. end res. eigenvalue

L E V E L 1

7 1 0.89E-13 0.76E-13 -0.14048591304840E+02

2 0.93E-09 0.38E-09 -0.95098529109559E+02

3 0.93E-09 0.38E-09 -0.95098529109559E+02

4 0.93E-09 0.38E-09 -0.95098529109559E+02

5 0.93E-09 0.38E-09 -0.95098529109559E+02

6 0.93E-09 0.38E-09 -0.95098529109559E+02

7 0.93E-09 0.38E-09 -0.95098529109559E+02

L E V E L 2

1 1 0.90E+00 0.33E-02 -0.14040128427761E+02

2 0.30E+02 0.18E+00 -0.10899132948707E+03

3 0.30E+02 0.18E+00 -0.10899132948707E+03

4 0.30E+02 0.18E+00 -0.10899132948707E+03

5 0.30E+02 0.18E+00 -0.10899132948707E+03

6 0.30E+02 0.18E+00 -0.10899132948707E+03

7 0.30E+02 0.18E+00 -0.10899132948707E+03

4 1 0.22E-07 0.17E-08 -0.14040128424469E+02

2 0.30E-03 0.23E-04 -0.10899126009610E+03

3 0.30E-03 0.23E-04 -0.10899126009610E+03

4 0.30E-03 0.23E-04 -0.10899126009610E+03

5 0.30E-03 0.23E-04 -0.10899126009610E+03

6 0.30E-03 0.23E-04 -0.10899126009610E+03

7 0.30E-03 0.23E-04 -0.10899126009610E+03

L E V E L 3

1 1 0.25E+00 0.46E-01 -0.14036829480230E+02

2 0.11E+02 0.69E+00 -0.11274758485900E+03

3 0.11E+02 0.69E+00 -0.11274758485900E+03

4 0.11E+02 0.69E+00 -0.11274758485900E+03

5 0.11E+02 0.69E+00 -0.11274758485900E+03

6 0.11E+02 0.69E+00 -0.11274758485900E+03

7 0.11E+02 0.69E+00 -0.11274758485900E+03

4 1 0.58E-03 0.65E-04 -0.14036815617277E+02

2 0.20E-02 0.30E-03 -0.11274310146319E+03

3 0.20E-02 0.30E-03 -0.11274310146319E+03

4 0.20E-02 0.30E-03 -0.11274310146319E+03

5 0.20E-02 0.30E-03 -0.11274310146319E+03

6 0.20E-02 0.30E-03 -0.11274310146319E+03

7 0.20E-02 0.30E-03 -0.11274310146319E+03

Table 4: The residuals and eigenvalues of the �rst 7 eigenvectors of the discretized Nonlinear

Schr�odinger eigenvalue problem in 3D, on 3 levels, computed by an 4-FMG-V(1,1) simultaneous

algorithm. The linear potential is V (x; y; z) = 14� 100sin(10x+10y+10z)=(30+ sin(10x+10y+

10z)). On �rst level 7 cycles were performed. The projection was performed on level 2. The

residuals are computed at start and end of the V (1; 1) cycles; and the eigenvalues at the end of the

cycles. Observe the 6 accurately equal eigenvalues.
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cycle vector start res. end res. eigenvalue

L E V E L 1

7 1 0.52E-12 0.23E-12 -0.14055580293076E+02

2 0.19E-07 0.11E-07 -0.95112505605267E+02

3 0.23E-07 0.59E-08 -0.95112505605267E+02

4 0.47E-08 0.14E-07 -0.95112516406102E+02

5 0.44E-07 0.12E-07 -0.95112516406102E+02

6 0.43E-08 0.75E-09 -0.95112516406102E+02

7 0.54E-08 0.64E-09 -0.95112516406102E+02

L E V E L 2

1 1 0.13E+01 0.13E-04 -0.14053758492811E+02

2 0.30E+02 0.17E+00 -0.10901746968777E+03

3 0.30E+02 0.17E+00 -0.10901746968777E+03

4 0.30E+02 0.17E+00 -0.10901758164786E+03

5 0.30E+02 0.17E+00 -0.10901758164786E+03

6 0.30E+02 0.17E+00 -0.10901781869743E+03

7 0.30E+02 0.17E+00 -0.10901781869743E+03

4 1 0.35E-10 0.12E-10 -0.14053758492812E+02

2 0.38E-05 0.21E-07 -0.10901741800157E+03

3 0.38E-05 0.21E-07 -0.10901741800157E+03

4 0.17E-04 0.83E-06 -0.10901752982146E+03

5 0.17E-04 0.83E-06 -0.10901752982146E+03

6 0.37E-05 0.17E-07 -0.10901776702773E+03

7 0.37E-05 0.17E-07 -0.10901776702773E+03

L E V E L 3

1 1 0.13E+01 0.25E+00 -0.14051499340829E+02

2 0.11E+02 0.75E+00 -0.11277655294003E+03

3 0.11E+02 0.75E+00 -0.11277655294003E+03

4 0.11E+02 0.75E+00 -0.11277700995289E+03

5 0.11E+02 0.75E+00 -0.11277700995289E+03

6 0.11E+02 0.74E+00 -0.11277731911554E+03

7 0.11E+02 0.74E+00 -0.11277731911554E+03

4 1 0.29E-02 0.32E-03 -0.14051251375940E+02

2 0.64E-02 0.96E-03 -0.11277176295116E+03

3 0.64E-02 0.96E-03 -0.11277176295116E+03

4 0.92E-02 0.17E-02 -0.11277225319175E+03

5 0.92E-02 0.17E-02 -0.11277225319175E+03

6 0.55E-02 0.80E-03 -0.11277260890858E+03

7 0.55E-02 0.80E-03 -0.11277260890858E+03

Table 5: The residuals and eigenvalues of the �rst 7 eigenvectors of the discretized Nonlinear

Schr�odinger eigenvalue problem in 3D, on 3 levels, computed by an 4-FMG-V(1,1) simultaneous

algorithm. The linear potential is V (x; y; z) = 14� 100sin(30x+20y+10z)=(30+ sin(30x+20y+

10z)). On �rst level 7 cycles were performed. The projection was performed on level 2. The

residuals are computed at start and the end of the V (1; 1) cycles; and the eigenvalues at the end

of the cycles. Observe the 6 eigenvalues with 6 common digits in the cluster of 6 consisting in 3

degenerate clusters.
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Vector 1 Vector 2 Scalar Product

1 1 0.10E+01

1 2 0.13E-16

1 3 0.15E-15

1 4 0.59E-15

1 5 0.28E-15

1 6 -0.20E-13

1 7 0.12E-13

2 2 0.10E+01

2 3 -0.24E-15

2 4 0.51E-14

2 5 0.23E-14

2 6 -0.12E-14

2 7 -0.26E-14

3 3 0.10E+01

3 4 -0.84E-14

3 5 0.43E-13

3 6 -0.11E-14

3 7 0.44E-14

4 4 0.10E+01

4 5 -0.26E-14

4 6 0.11E-14

4 7 -0.16E-14

5 5 0.10E+01

5 6 0.60E-14

5 7 0.86E-14

6 6 0.10E+01

6 7 -0.43E-14

7 7 0.10E+01

Table 6: The scalar products of the �rst 7 eigenvectors of the discretized Nonlinear Schr�odinger

eigenvalue problem in 3D, on level 3, at the end of cycle 4. The projection was performed on level

2.
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cycle start res. end res.

L E V E L 1

7 0.49E-10 0.20E-10

L E V E L 2

1 0.38E+00 0.13E-04

2 0.13E-04 0.72E-07

3 0.72E-07 0.20E-08

4 0.20E-08 0.99E-10

L E V E L 3

1 0.30E-01 0.39E-03

2 0.39E-03 0.52E-04

3 0.52E-04 0.72E-05

4 0.72E-05 0.10E-05

Table 7: The residuals of the nonlinear potential W of the discretized Nonlinear Schr�odinger

eigenvalue problem in 3D, on 3 levels, computed by an 4 -FMG-V(1,1) simultaneous algorithm.

Three relaxations were performed for W . The residuals are computed at start and the end of the

MG cycles.

such as iteration numbers, relaxation parameters, step sizes in continuation procedures, and levels

on which to apply a given procedure.

These central di�culties can be further grouped in di�culties related to a) clusters, mixing and

nonlinearity, and b) unknown parameters of subroutines. The techniques introduced for treating

the di�culties related to clusters, mixing and nonlinearity are the adaptive separation and com-

pletion of clusters on di�erent levels, the simultaneous processing of clusters, the MG projections

and backrotations, the subspace continuation technique, the treatment of global constraints and

the simultaneous cycles. The techniques introduced for treating the di�culties related to unknown

parameters are the robustness tests. These techniques are incorporated in the following adap-

tive algorithms: the Adaptive-MG-Cycle, the Cluster-Completion, the Robustness-Tests, and the

Adaptive-FMG.

5.2 Adaptive Multigrid Cycles

E�ciency and convergence considerations require that the GRRP should be done for di�erent

clusters on di�erent levels in MG cycles. The coarsest level used to treat a given cluster may not

coincide with the level on which the GRRP is done. Other parameters such as the number of

relaxations in an MG cycle, may vary too.

Following is a description of a basic adaptive MG cycle which invokes di�erent projection levels

for di�erent clusters. Moreover, the coarsest levels used for di�erent clusters are di�erent.

Let q eigenvectors be approximated by j clusters on level k:

Uk = (U1
k ; . . . ; U

j

k
) (37)

where as before, each U i
k approximates the solution of Ak

�U i
k = �U i

k�
i + T i

k i = 1; . . . ; j. For

each cluster U i
k let lip be the level on which the GRR-BR projection is done, and let lic be the

coarsest level used in the MG process for this cluster. Here it is assumed that lic � lip. Denote

lp = (l1p; . . . ; l
j
p), lc = (l1c ; . . . ; l

j
c) and by � = diag(�1; . . . ;�j). Usually, on the �nest level, k = m,
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Tk = (T 1
k ; . . . ; T

j
k) = (0; . . . ; 0). An MG cycle consisting of a sequence of cycles for each cluster in

turn, for improving a given approximation (Um;�; Tm), is:

(Um;�; Tm) Adaptive-MGP (m;Am; Um;�; Tm; lp; lc; q)

For i = 1; . . . ; j do:

(U i
m;�

i; T i
m) Solve-MGP (m;Am; U

i
m;�

i; T i
m; l

i
p; l

i
c; q

i)

End

The choice of the di�erent parameters of the algorithm is done by robustness tests discussed in

Subsection 5.4. Other Adaptive-MGP algorithms are obtained by replacing the Solve-MGP with

other cycles. For example a nonlinear algorithm is obtained using the more general Simultaneous-

FAS instead of Solve-MGP. On coarse levels on which W cannot be properly de�ned, (e.g., the sums

are not de�ned since the corresponding eigenvectors are not de�ned on that levels), restrictions of

a �ne level W to coarse levels can be used instead. The further algorithms are for the linear case

but they have the same form for the nonlinear case since Adaptive-MGP is their basic element.

5.3 Cluster Completion Algorithm

When a procedure acts on an incomplete cluster then the dominant error components of the so-

lutions usually are formed of the nontreated eigenvectors of the completed cluster. It is hard to

eliminate these error components. This suggests to complete the clusters and to treat simultane-

ously all solutions belonging to the complete cluster. Simultaneous techniques can be easier coupled

with separation techniques at any stage of the algorithm. Since sequential techniques cannot invoke

separation at an arbitrary stage and hardly avoid di�culties due to mixing, better e�ciency and

versatility is obtained for simultaneous techniques, as for sequential techniques.

The completion of a cluster is done by adding in turns a new vector u and improving it by MG

cycles. The separation of u from the other eigenvectors is performed by a GRR-BR. An approximate

eigenvalue is computed for this eigenvector, by a Rayleigh quotient. If the eigenvalue is close to

the cluster then the new vector is added to the cluster. If it does not belong to the cluster then the

cluster is considered complete. The convergence of the additional eigenvector is not sought. At the

end, the complete cluster is improved by several Adaptive-MGP cycles.

Denote by dj the current dimension of the cluster U
j

k
. The cluster completion and cluster ad-

dition algorithms are given by:

(U
j
k ;�

j ; T
j
k ; q) Cluster-Completion(j; Ak ; U

j
k ;�

j; T
j
k ; l

j
p; l

j
c; q)

Until (Cluster-Completion-Test = TRUE) Do

Choose random u

Until < Aku; u > = < u; u > and residuals stabilize Do:

(u;�j
max; T

j
k) Adaptive-MGP(k; Ak ; u;�

j
max; T

j
k ; 0; l

j
c; 1)

Separate u from (U1
k ; . . . ; U

j
k)

Set � =< Aku; u > = < u; u >

U
j
k  (U

j
k ; u)

�j  diag(�j ; �)

q = q + 1, dj = dj + 1

End

Perform

(U
j
k ;�

j; T
j
k) Adaptive-MGP(k; Ak; U

j
k ;�

j; T
j
k ; l

j
p; l

j
c; dj)
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(j; Uk;�; Tk; q) Add-Cluster(j; Ak ; Uk;�; Tk; lp; lc; q)

Set j = j + 1

(U
j
k ;�

j; T
j
k ; q) Cluster-Completion(j; Ak ; U

j
k ;�

j; T
j
k ; l

j
p; l

j
c; q)

Set Uk = (U1
k ; . . . ; U

j
k), � = (�1; . . . ;�j)

Observe in the nonlinear example from Table 1 that the cluster of four eigenvalues �2 � �5
consists of two well enough separated eigenvalues. The four corresponding eigenvectors should be

treated together since they mix during the processing. They derive from a degenerate cluster (for

V = 0, � = 0) and have in a sense (of dominant Fourier components) the same smoothness. For

this example, the criteria which de�nes the clusters based on close eigenvalues does not work. The

complete cluster should include all eigenvectors which get mixed by the used procedures, in our

case for which the MG cycle is e�cient. When accuracy improves, a cluster may split in several

clusters.

5.4 Robustness Tests

Robustness tests are techniques which �nd the values of parameters to be used in a procedure,

such that the procedure will be e�cient for a given input. They are essential for robustness and

e�ciency. The values of the parameters are obtained by optimization which is usually performed on

coarse levels, by a search, testing the procedure over a set of values of the parameters, and choosing

the values for which the procedure performs best, e.g., has best convergence rate. Previous results

are used to reduce the work involved in testing.

For a simple illustration, the robustness test which provides the values of the parameters (lp; lc)

for the Adaptive-MGP cycle is presented. It is assumed that during the FMG for a given cluster

these parameters will stabilize as the levels become �ner.

A complete cluster on level L is called stabilized, if it corresponds to a complete cluster from level

L�1 or L+1 in the sense of the number of eigenvectors in the cluster, the values of the eigenvalues

and the eigenvectors approximation. To reduce the work required by a �ne level robustness test,

it is assumed that corresponding stabilized clusters, will require the same parameters lc; lp. Thus,

robustness tests are applied on coarse levels until clusters get stabilized. For non-stabilized clusters,

which would usually exist on coarse levels only, a search is performed for obtaining best values

for lc; lp. Such tests are inexpensive when performed on coarse enough levels, and often lead to

signi�cant �ne level work savings.

Denote by lp;m; lc;m the lp and lq parameters, for an MG cycle for a given cluster, (Um;�), on

level m, and by �(lp;m; lc;m) := �(Adaptive�MGP (m;Am; Um;�; Tm; lp;m; lc;m; q)) the convergence

rate (measured by the residual decrease) of the Adaptive-MGP cycle for the cluster (Um;�), using

the parameters (lp;m; lc;m). The following algorithm updates (lp;m; lc;m):

(lp;m; lc;m) Robustness-Test (m;Am; Um;�; Tm; lp; lc; q)

If (jj�m�1 � �m�2jj � � )

then

(lp;m; lc;m) = (lp;m�1; lc;m�1)

else

If (jj�m � �m�1jj � � ) or if �m is not computed

then

Solve for (lp;m; lc;m):

minlP ;lC �(lP ; lC); lC � lP � m,

else
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(lp;m; lc;m) = (lp;m�1; lc;m�1)

endif

endif

Convergence Remark Convergence of the Adaptive-MGP is always attained using the values

found by the robustness test since at least the single level cycle converges, being a subspace iteration

algorithm (for lc = lp = m when � < 1). This was not proved for the nonlinear algorithm.

The minimization search is performed just for a few choices of parameters, since on coarse levels

only a few combinations of coarse level values of parameters exist. Similar algorithms are used for

determining the types, parameters and numbers of relaxations in MG cycles.

For the nonlinear algorithm parameters have to be found for the continuation procedures, e.g.,

the continuation steps need often to be small at initial stages but becomes larger when the solution

to the nonlinear problem becomes better approximated. The number of iterations decreases in

these cases as the e�ciency of the cycles increases and tends to rich the e�ciency of the linear

algorithms. When this e�ciency is reached, one may consider that the approximate solution is in

a right neighborhood and may continue the FMG to next levels.

5.5 The Adaptive FMG Algorithm

During the FMG, coarse levels approximate the desired subspaces and the clusters of eigenvalues.

Coarse levels are also used to optimize the algorithm and to check the convergence of the sequence

of discrete solutions obtained on the sequence of levels towards the di�erential solution.. The full

MG algorithm uses as building blocks the Adaptive-MGP, Add-Cluster, Cluster-Completion and

Robustness-Test algorithms described before.

The full MG solver described below starts on coarsest level. The solutions found there are used

as initial approximation for �ner level solutions where more eigenvectors are added if needed. The

cluster completion is tested on all new �nest levels and performed on several levels until the clusters

are stabilized.

Adaptive-FMG(m; q; A)

Set k = 1; q0 = 0; j = 0, lp = k, lc = k

Until (q0 � q or q0 � � dimk) Perform

(j; Uk;�; Tk; q
0) Add-Cluster(j; Ak ; Uk;�; Tk; lp; lc; q

0)

(Uk;�; Tk) Adaptive-MGP(k; Ak ; Uk;�; Tk; lp; lc; q
0)

Until k � m Do:

If k < m then:

Set k = k + 1, Uk = Ikk�1Uk�1, Tk = 0

endif

(lp; lc) Robustness-Test (k; Ak; Uk;�; Tk; lp; lc; q
0)

If (q0 � q) then:

If (Cluster-Completion-Test=TRUE ) then:

(Uk;�; Tk) Adaptive-MGP(k; Ak ; Uk;�; Tk; lp; lc; q
0)

Else

(U
j
k ;�

j; T
j
k ; q

0) ClusterCompletion(j; Ak ; U
j
k ;�

j; T
j
k ; l

j
p; l

j
c; q

0)

(Uk;�; Tk) Adaptive-MGP(k; Ak ; Uk;�; Tk; lp; lc; q
0)

endif

Else

Until (q0 � q or q0 � � dimk) Perform
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(j; Uk;�; Tk; q
0) Add-Cluster(j; Ak ; Uk;�; Tk; lp; lc; q

0)

(Uk;�; Tk) Adaptive-MGP(k; Ak ; Uk;�; Tk; lp; lc; q
0)

endif

Endo

The notation k-FMG-V(�i ; �j) denotes an FMG algorithm in which k cycles, type V , V (�i; �j),

are performed per level, besides the adaptive computations (Cluster-Completion, Add-Cluster and

Robustness-Tests).

Our MG approach di�ers from previous MG approaches [9],[10], [5], [2], [13], [3], [11], [4], [12],

mainly by: the emphasis on robustness, the adaptive and simultaneous cluster processing, the MG

projection and backrotations, the treatment of eigenvector mixing, and the treatment of close and

equal eigenvalues.

5.6 Computational Example for the Adaptive Algorithm for the Linear

Schr�odinger Problem

This section presents a numerical example illustrating the adaptive algorithm for the linear

Schr�odinger eigenvalue problem, shown in [7]. In this case we have � = 0. The example demonstrates

the central di�culties related to clusters and mixing, and illustrates the e�ciency of the presented

techniques in overcoming these di�culties. The following di�culties are present: existence of

clusters with very close and equal eigenvalues; the cluster structure is not the same on the di�erent

levels; and the coarse level representation of the solutions is poor. The adaptive FMG algorithm is

described in detail for this case.

The Schr�odinger eigenvalue problem

(�� V )u = �u (38)

with periodic boundary conditions, de�ned on 
 = [0; a]d, (d=2 or 3), where a = 2�=10, is consid-

ered. The i'th eigenvalue and eigenvector will be denoted next by �i and vi. The potential V is

chosen such that distributions of eigenvalues with special di�culties are obtained. The usual second

order �nite di�erence discretization of the Laplacian on rectangular grids is used, although higher

order discretizations could be used as well. Richardson type extrapolations based on the sequence

of solutions obtained on the di�erent levels could be used to obtain higher order accuracy. During

the MG cycles, linear interpolation is used, while in the FMG, when passing to the next new �nest

level, local cubic interpolation is used. Gauss-Seidel type relaxations in red-black ordering are used

during the cycles, and Kaczmarz and Richardson relaxations are used on coarsest levels.

The potential V (x; y) = 5 + 3sin(10x) was considered. The �rst q = 12 eigenvalues were re-

quired, and have been approximated using an adaptive 1-FMG-V(1,1) algorithm where the coarsest

level was a 4� 4 grid. The results are presented in Tables 8 and 9.

The boxes in Table 8 show the clusters of close or equal eigenvalues (with minus sign) found by

the algorithm (the formats are chosen to outline the equal digits in clusters). The cluster structure

on the di�erent levels is not the same, i.e., the level 2 cluster structure di�ers from the level 1

cluster structure. The cluster of 6 eigenvalues on level 1 f�6 � �11g, with multiplicities 1 - 4 - 1,

has no correspondence on level 2. The �rst level eigenvalues are poor approximations of the second

level eigenvalues. The eigenvalue �16 on �rst level is very close to the eigenvalues f�10��13g on the

second level. Such cross correspondences give rise to serious convergence di�culties for algorithms

which do not treat them. The coarse level eigenvectors are poor approximations of the �ne level

eigenvectors.

The algorithm described in Section 5.5 is used. To clarify the adaptive 
ow of the algorithm, a

full history of the run is given.

30



The algorithm started on level 1 adding eigenvectors until the cluster containing �12 was com-

pleted. The last eigenvalue found, �16, belongs to the next cluster, con�rming the completeness of

the last sought cluster. On level 1, �12 belongs to a cluster consisting of two degenerate subspaces,

each of dimension 2, and the eigenvalues corresponding to these degenerate subspaces are close to

within O(10�4) relative di�erence.

The relevant eigenvectors fv1; . . . ; v15g were interpolated to level 2 where they provided initial

guesses for the level 2 problem. Here the completion of clusters restarted but this time working with

the cluster structure from level 1 and using two level cycles. A test was done for the e�ciency of a

simultaneous cycle with �ne level projection. The cycle was performed to provide �rst approxima-

tions of the level 2 eigenvalues. The cluster structure and eigenvalues obtained were compared with

the ones of level 1. Since the agreement was not satisfactory, except for v1, a cluster completion

algorithm started with v2. The completion continued until the complete cluster containing the last

sought eigenvector was obtained, (e.g., for level 2, the desired v12 belongs to the cluster fv10�v13g,

the completion was ensured by the far value of �14). Then the relevant eigenvectors were updated

by a few cycles.

The solution obtained on level 2 was interpolated to level 3 where a cluster completion test

was satis�ed only by the �rst cluster, v1. The cluster completion algorithm was applied to the

remaining eigenvectors (using robustness-tests and the cluster completion tests). These resulted

in a few cycles per eigenvector. The parameters lc and lp were found in the following way: 1) for

�rst cluster fv1g, the values were obtained from previous level since this cluster was stabilized from

level 2; 2) for cluster 2 and 3 fv6� v9g and fv10� v13g, lc and lp were taken from level 2 since these

clusters resulted stabilized after the cluster completion on level 3; 3) robustness-tests were used for

cluster 4 since the eigenvalues f�10 � �13g on level 3 and the the corresponding ones from level 2

were not close enough. Then one cycle V(1,1), was performed for each cluster.

On level 4, the �rst 3 clusters, eigenvectors fv1 � v9g resulted stabilized, and their parameters

were taken from level 3. The cluster completion algorithm was applied to cluster 4, fv10 � v13g,

where a few cycles were su�cient, and the parameters were taken from level 3 since the cluster

resulted stabilized after the cycles.. Then a V(1,1) cycle was performed for each cluster.

On level 5, the cluster completion test was satis�ed by all relevant eigenvectors fv1 � v13g, all

clusters being stabilized from previous levels. A V(1,1) cycle was performed for each cluster. The

lc and lp for the separate clusters, in the �nal cycles, on levels 3, 4, 5, were found as follows: for

fv1g: lc = lp = 1, for the other clusters, containing fv2; . . . ; v13g, lc = lp = 2 were obtained, (a test

for the asymptotic convergence rate, for cluster fv10 � v13g, may lead to lc = lp = 3, but such a

test was not used in this run).

The additional last eigenvector obtained in the cluster completion test, used just to ensure

that the previous cluster was complete, was not needed and not used in further steps. Usually

its convergence was poor since the algorithm didn't separate it from the next eigenvectors in its

cluster, e.g., on level 2, �14 was not separated from the next 7 eigenvectors with close eigenvalues.

The left columns, in Table 9, show the residuals after the cubic interpolation in the FMG.

These residuals decrease with a factor of four (for �ne levels) from one level to the next, indicating

a second order convergence towards the di�erential solution. The right columns, for each level in

Table 9, show the residuals at the end of the cycle in the 1-FMG, on each level, demonstrating a

convergence factor of order 10�2 for the �rst cycle on �ne levels 4 and 5.

A simultaneous cycle for all clusters with separation on the coarsest common level for all clusters

(here level 2) would improve the e�ciency of the �rst cycle but this was not needed. (This also

would improve the scalar products which resulted of order 10�4 after �rst cycle in the FMG, in

this case. Accurate orthogonality is obtained by the algorithm described in the next example).

This algorithm is of order O(qN) if one does not use �ne level separation inside the clusters.
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The adaptive coarse level work on levels 1, 2, took approximately 1/6 of the total computer time

and on levels 1, 2, 3, approximately 1/4 of the total computer time. This is a �xed time and it

would be equivalent to 1/16 of the total computer time if level 6 would be employed too.
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E level 1 level 2 level 3 level 4 level 5

1 .496347395806E+1 .495721389176E+1 .495552134150E+1 .495509317773E+1 .495498173425E+1

2 .860204208719E+2 .999213342469E+2 .103677004418E+3 .104634633842E+3 .104874695012E+3

3 .860204208719E+2 .999213342469E+2 .103677004418E+3 .104634633842E+3 .104874695012E+3

4 .860569469139E+2 .9995 E+2 .10371 E+3 .1046 E+3 .10491 E+3

5 .860569469139E+2 .99998 E+2 .10375 E+3 .1047 E+3 .10495 E+3

6 .1670 E+3 .194919376181E+3 .202435153808E+3 .204351758395E+3 .204831900326E+3

7 .167113893828E+3 .194919376181E+3 .202435153808E+3 .204351758395E+3 .204831900326E+3

8 .167113893828E+3 .194962161804E+3 .202479632146E+3 .204395 E+3 .204876918643E+3

9 .167113893828E+3 .194962161804E+3 .202479632146E+3 .204396 E+3 .204876918643E+3

10 .167113893828E+3 .329185001547E+3 .384812002762E+3 .399841022256E+3 .403673103803E+3

11 .16715 E+3 .329185001547E+3 .384812002762E+3 .399841022256E+3 .403673103808E+3

12 .248170840742E+3 .329227787655E+3 .3848590736 E+3 .399888846 E+3 .403720980600E+3

13 .248170840742E+3 .329227787656E+3 .3848590739 E+3 .399888846 E+3 .403720980600E+3

14 .248207366784E+3 .424191908011E+3 .483580557031E+3 .499567983067E+3

15 .248207366784E+3 .424295844705E+3

16 .329264313697E+3

Table 8: The �rst 16 eigenvalues (E) of the discretized Schr�odinger eigenvalue problem in 2D, on

5 levels, computed by an 1-FMG-V(1,1) adaptive algorithm. The boxes represent the clusters of

eigenvalues obtained on each level at the end of the last MG cycle. The di�erent formats show the

equal digits of eigenvalues in each cluster.

E level 1 level 2 level 3 level 4 level 5

1 .48E+2 .37E-13 .69E+0 .97E-13 .22E+0 .30E-12 .60E-1 .64E-04 .15E-1 .14E-04

2 .53E+2 .44E-13 .30E+2 .14E-12 .11E+2 .35E-12 .30E+1 .86E-03 .76E+0 .73E-04

3 .61E+2 .38E-13 .30E+2 .80E-13 .11E+2 .29E-12 .30E+1 .86E-03 .76E+0 .73E-04

4 .66E+2 .68E-13 .30E+2 .17E-12 .11E+2 .30E-12 .30E+1 .54E-02 .76E+0 .11E-02

5 .55E+2 .39E-13 .30E+2 .24E-12 .11E+2 .45E-12 .30E+1 .54E-02 .76E+0 .11E-02

6 .52E+2 .12E-12 .11E+3 .32E-12 .16E+2 .35E-12 .44E+1 .42E-02 .11E+1 .82E-03

7 .59E+2 .31E-12 .45E+2 .54E-11 .16E+2 .32E-12 .44E+1 .42E-02 .11E+1 .82E-03

8 .61E+2 .20E-12 .45E+2 .57E-11 .16E+2 .41E-12 .44E+1 .39E-02 .11E+1 .83E-03

9 .62E+2 .17E-12 .45E+2 .71E-11 .16E+2 .33E-12 .44E+1 .16E-02 .11E+1 .93E-03

10 .73E+2 .13E-12 .45E+2 .15E-09 .12E+3 .30E-09 .43E+2 .72E-08 .12E+2 .33E-02

11 .58E+2 .34E-12 .11E+3 .41E-09 .12E+3 .16E-09 .43E+2 .20E-08 .12E+2 .33E-02

12 .54E+2 .39E-12 .12E+3 .81E-11 .12E+3 .26E-09 .43E+2 .21E-05 .12E+2 .29E-01

13 .51E+2 .70E-12 .12E+3 .50E-04 .12E+3 .50E-09 .43E+2 .16E-05 .12E+2 .29E-01

14 .44E+2 .96E-12 .12E+3 .19E-05 .12E+3 .17E-06 .44E+2 .34E-02

15 .53E+2 .16E-12 .12E+3 .55E+01

16 .69E+2 .19E-06

Table 9: The residuals of the 16 eigenvectors (E) of the discrete Schr�odinger eigenvalue problem

in 2D, on 5 levels, computed by an 1 -FMG-V(1,1) adaptive algorithm. The residuals in the left

column are computed after the interpolation to the new �ne level, and the residuals in the right

column are computed at the end of work on each level, during the FMG. The decrease of the

residuals by a factor of four from one level to the next (on �ne levels, left column) indicate a second

order convergence towards the di�erential solution. The left columns show the convergence factor

of order 10�2 for the �rst �ne level V(1,1) cycle.
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5.7 Observations on the Algorithms

Observations and details of the algorithms, not introduced before in order to keep the exposition

simpler, are mentioned in this section.

1) When the operators Ai are obtained by discretizing di�erential problems, it is not needed

to compute and store Ai.

2) In the shown examples, only local operations are needed in relaxations, transfers and cor-

rections, operations which involve only the unknown at each point and its neighbours.

3) Di�erent relaxations can be used in the algorithms, like damped Jacobi, SOR, Richardson,

Kaczmarz, block relaxations, see for example [1]. We consider two types of relaxations 1) power

type iterations ( with shifts), e.g. Richardson relaxations for operator H :

un+1 = (I � !(H � �I))un (39)

and 2) solver type relaxations like Kaczmartz or Gauss-Seidel.

To approximate eigenspaces, at the initial stages when eigenvalues are poorly approximated,

one can use power relaxations which are generally slow but safe. If the eigenvalues are enough

separated and well approximated then solver relaxations may separate the eigenvectors. Gauss-

Seidel relaxations are generally faster than power relaxations but can be unsafe, e.g. amplifying

unwanted eigenvectors if the eigenvalues are not accurate. In the numerical presented tests, the

red-black ordering Gauss-Seidel relaxations were performed.

On the GRRP

1) For the GRRP, the matrix A is not needed, but it is enough to provide a procedure that

calculates AU . No operations are performed on the matrix A, e.g., to precondition or bring A to

a special form.

2) The vectors UT in (16) can be replaced by a more general set of vectors Y T .

3) Solutions (E;�) of (15) may not exist. However, as in the usual Rayleigh Ritz Projection,

an E and a � can be found such that the projection of the residual of (15) on the columns of U is

minimized, i.e., performing GRRP.

4) The complexity of solving the generalized eigenvalue problem in GRRP on the coarsest level,

for q vectors, is of order O(q3) which is often much smaller than O(q2N), the cost of computing E

and � on a �ne level. By this procedure the �ne level eigenvalues are computed on coarse levels.

The coarse level updated eigenvalues enhance the e�ciency of MG cycles.

On MG Solver Cycles

1) In the presented form, the MG solver cycles update the solutions simultaneously but MG

solver cycles can be performed sequentially, in turns for each eigenvector or for each cluster.

2) Other types of solver cycles can be de�ned in the same way, incorporating di�erent sequences

of visiting the levels, e.g., W type cycles [1]. The usage of W cycles was generally not needed in

algorithms, although in some cases the convergence rate for W cycles was better, but also the work

increased by W cycles. Sometimes W cycles increase the mixing of solutions.

3) Additional procedures can be performed during the MG cycles, like updating the eigenvalues

by Rayleigh Ritz quotients.

On MG Combined Cycles

1) At di�erent stages of the MG combined cycle, for example on the coarsest level only, the

solutions can be normalized using an FAS normalization, i.e., setting jjU jj = T where T is a scalar

computed like in (5) where FU is replaced by jjU jj. This can be done after the backrotations but

normalization of solutions can be performed also on the �nest level. Accurate normalization, if

needed, can be performed as the last step on the �nest level, e.g., in the last cycle of the FMG.

This does not change the complexity of the algorithm.
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2) The MGP is also in agreement with the general principle of performing global steps on coarse

levels.

On Adaptive FMG Algorithms

1) On coarse levels, only a part of the sought eigenvectors may be approximated, e.g., if the

coarse levels cannot approximate more eigenvectors. More eigenvectors can be added and processed

on �ner levels.

2) Transfers from �ne to coarse levels may not conserve the dimensions of the transferred

subspaces. This di�culty is handled by robustness tests (which do not detect the loss of dimension

but the ine�ciency of the MG cycles in such situations).

3) The separation of solutions Uj = UjE cannot be combined for any E with the usual FAS

correction of Ui, (6), since this would usually destroy an exact solution Ui, e.g., if E is not the

identity but a permutation matrix. To overcome this di�culty we propose a backrotation FAS

correction:

Ui = UiE + I ij(Uj � I
j
i UiE); Ti = TiE; (40)

In this correction the right hand side T is updated also. In (40) the multiplication UiE is of the

same order of work as needed for an Rayleigh Ritz separation for Ui. Still, the cheaper correction

(6) can be used instead of (40) when solution are su�ciently accurate and using backrotations.

This is shown by the computational examples too. The correction (40) can be used on coarse levels

and when the solutions are not well enough approximated.

4) Computational di�culties may occur for degenerate subspaces when any matrix E is a

solution ofGRRP . In such cases, during an MG combined cycle, E will mix the coarse solutions and

destroy the �ne ones after interpolation, (see, for example, that orthogonality will be destroyed).

Similar or worse di�culties are obtained for clusters of eigenvalues since the algorithms act on

approximated clusters as on degenerate spaces, i.e., mixing solutions. These di�culties are treated

by the backrotations, as shown in the computational examples.

5) In Adaptive-MGP the clusters are treated sequentially and within each cluster the solutions

are treated simultaneously by a combined MG cycle Solve-MGP.

6) A simultaneous cycle for several clusters is obtained by grouping the clusters into a single

larger cluster and applying Adaptive-MGP to it. This can be used to improve the separation

between clusters and it is particularly useful on coarse levels at initial stages of the FMG when

clusters are not separated well enough.

7) If for each cluster the GRR-BR projection is performed on �nest level, the algorithm still

requires less work than an algorithm performing the �ne level projection for all clusters simultane-

ously.

8) If mixing occurs on coarse levels, (as often happens since here the solutions are poorly

represented), one may expect an algorithm using �ne level separation to have a poor e�ciency

or even not converge. A coarse level separation usually restores the convergence or improves the

e�ciency in such cases.

9) For well separated eigenvalues the projection may not be needed except at initial coarse

level stages of the FMG, later the eigenvalues determine the separation of eigenvectors via the

MG-Solver-Cycles. The same holds for well separated clusters which do not need a simultaneous

separation. This is especially useful for a larger number of eigenvectors, belonging to well separated

clusters, (e.g., already for 10 eigenvectors the improvement can be noticeable).

10) The number of relaxations can vary with level and cluster. In the computational tests one

or two relaxations per �ne level passing were performed.

11) In particular cases, parameters of subroutines such as number of relaxations and parameters

of relaxations can be obtained by Fourier analysis. Robustness tests allow to �nd such parameters
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in general cases.

6 Conclusions

An MG simultaneous algorithm for a nonlinear Schr�odinger eigenvalue problem is presented. The

algorithm combines the following techniques: the MG projection and backrotations; the MG sub-

space continuation technique; the FAS treatment of global constraints; the simultaneous processing

of eigenvectors, nonlinear potential and global constraints. In the computational examples, the

simultaneous MG technique reduced the large number of sequential selfconsistent iterations to one

MG simultaneous iteration (1-FMG here). One simultaneous cycle involves less computations than

one sequential cycle (updating eigenvectors sequentially and separating them on �nest level) due to

the cheap coarse level separation by the MGP and backrotations. The MG subspace continuation

techniques, coupled with the simultaneous processing on all levels helped keeping the approximated

solution in a right neighborhood where the algorithm is e�cient. MG projections and backrotations

are used to separate the eigenvectors by coarse level work and to overcome di�culties due to close

or equal eigenvalues. Robustness is obtained from the adaptive completion of clusters and from

tests which monitor the algorithm's convergence and e�ciency.

Computational examples for the nonlinear Schr�odinger eigenvalue problem in 2D and 3D hav-

ing special computational di�culties, which are due to equal and closely clustered eigenvalues,

are presented. For these cases, the algorithm requires O(qN) operations for the calculation of q

eigenvectors of size N . The algorithm achieved the same accuracy, using the same amount of work

(per eigenvector), as the Poisson MG solver. A second order approximation is obtained using the

5-point in 2D and 9-point in 3D discretized Laplacian, by 1-FMG-V(1,1) in O(qN)work. The work

was of order of a few (about 8) �ne level Gauss-Seidel relaxations per eigenvector. Constant conver-

gence rate per cycle of 0:15 was obtained for the presented cases. The robustness of the algorithm

has been demonstrated on problems with eigenvalue distributions that present special di�culties.

The numerical tests showed that an accurate �ne level separation was obtained by the coarse level

projection, even for problems with very close or equal eigenvalues. This reduced the expensive �ne

level separation work of order O(q2N) of previous algorithms, to coarse level work of order O(qN).
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