
Lighthill's 1952 paper \On sound generated aerodynamically" formed the theoretical

foundation of modern aeroacoustics. In particular, Lighthill (1952) established an exact

theory on the generation of sound by a small patch of turbulence within a very much

larger but quiescent volume of 
uid. To estimate the amount of sound generated by this

turbulent motion, information is required concerning mean values of certain 
uctuating

quantities, such as the fourth-order retarded time and space covariance of the Lighthill

stress tensor. It is often convenient to approximate certain types of turbulent 
ow as if it

were isotropic since isotropic turbulence has no preferred direction and requires a minimum

number of quantities to describe its structure and behavior (Hinze, 1959). The estimation

of the sound radiation from isotropic turbulence is an important step in the application of

Lighthill's theory and was done �rst by Proudman (1952). Regarding the turbulence as

incompressible and at very high Reynolds number, Proudman (1952) suggested that the

theory of aerodynamic noise, in the case of isotropic turbulence, is best applied to the case

where the intensity of the turbulence is maintained constant in time during the processes

of generation and radiation of the sound to the far-�eld.

Recently, Sarkar and Hussaini (1993) utilized a hybrid direct numerical simulation

approach which combines direct numerical simulation (DNS) of the turbulent 
ow with

the Lighthill acoustic analogy. They found that the acoustic power in the simulations is

proportional to u8=LC
1
, where u is the characteristic velocity of the energy containing

eddies, L is the integral scale of the turbulence, and C
1
is the ambient speed of the sound.

This is in agreement with the analytical result of Proudman (1952), but the constant of

proportionality � (hereafter, called the Proudman constant) is smaller than found from

the analytical results quoted by Proudman for di�erent turbulent models. The DNS com-

putation has the advantage of being free of any assumption or modeling. Unfortunately,

computing the fourth time derivative of the Lighthill stress tensor requires high orders of

resolution in both space and time, and hence an absolute accuracy cannot be placed on

these DNS results (Lilley, 1993). The DNS result is also restricted to moderate to small

Reynolds numbers.
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Lilley (1993) revisited the original work of Proudman (1952) with particular attention

paid to the Proudman's assumption that for isotropic turbulence in near incompressible


ow the e�ects of retarded time di�erence can be neglected. This approximation replaces

the fourth-order retarded-time and space covariance of Lighthill's stress tensor, Tij , by the

equivalent simultaneous covariance. Lilley demonstrated that although this assumption is

a valid approximation in the evaluation of the two point covariance of @2Tij=@t
2
at low

Mach number, it is not justi�ed when Gaussian statistics are assumed in order to reduce

it to the sum of products of the derivatives of equivalent second-order velocity covariances

(known as the Millionshtchikov hypothesis, see Batchelor 1953). Lilley found that relaxing

this assumption, however, only leads to a small change in the numerical result for the total

acoustic power.

The Millionshtchikov hypothesis (Batchelor, 1953) used by Proudman (1952) four

decades ago is obviously a crude assumption. Applying Lighthill's (1952) theory, Proudman

(1952) found that the total sound power per unit volume in the radiated sound �eld is

ps =
�
1

4�C5
1

Z
Udr (1)

where �
1
is the constant density throughout the turbulent 
ow and in the radiation domain

outside it, and the e�ective acoustic source is

U =

@4

@�4
Pxx;xx(r) (2)

with

Pxx;xx(r) =< (u2Au
2

B� < u2 >2
) > : (3)

Here uA and uB are the components of the velocity at A andB respectively in the direction

of the far-�eld observer at x; and r and � are the separation distance and retarded time

separation. Turbulence is assumed pseudo-stationary. Lighthill (1993) elegantly showed

how to relate the fourth-order retarded time and space covariance to a second order time
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and space covariance. We now brie
y review the derivation in Lighthill (1993). First, one

introduces the two-point correlation coe�cient,

R =

< u(x)u(x+ r) >

< u2 >
;

assuming that both u(x) and u(x+ r) have the same mean square < u2 >. Here R

represents the fraction of the variation of u(x+ r) which follows that of u(x). This suggests

that we may use u(x) as one random variable and introduce

w =

u(x + r)�Ru(x)

(1�R2
)
1=2

as another, but independent, random variable with

< u2(x + r) >= R2 < u2 > +(1�R2
) < w2 >;

so that, < u2 >=< w2 >. Based on these assumptions, we have

< u2(x + r)u2(x) > =< u2(x)[Ru(x) + (1�R2
)
1=2w]2 >

= R2 < u4 > +(1�R2
) < u2 >< w2 >

= R2 < u4 > +(1�R2
) < u2 >2

so that the covariance of u2(x) with u2(x + r) is,

< u2(x)u2(x + r) >�< u2(x) >
2

< u(x)u(x + r) >
2
(�� 1)

= 1; (4)

where the turbulent 
atness factor is

� =

< u4 >

< u2 >2
: (5)

For homogeneous turbulence where u(x) and u(x+ r) have the same mean square

< u2 >, this relationship involves no statistical assumptions, and reduces to the Million-

shtchikov relation when the joint probability function is Gaussian. This remarkable simple

relation provides a crucial step for calculating the e�ciency of the acoustic power output.
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Indeed, one now needs only to provide a correct second-order spatial-temporal covariance

for a given range of Reynolds numbers. Using (4), Lilley (1993) found that

Pxx;xx(r; �; t) = (�� 1) < u2 >2
(f(r; � ) cos2 � + g(r; � ) sin2 �)2 (6)

In (6), � is the angle between the propagation direction x and the vector distance r

separating the points A and B. Moreover, f and g are the second-order longitudinal

and lateral velocity covariance. respectively.

Lilley (1993) further assumed f(r; �; t) is in its self-preserving form, which is indepen-

dent of time during the decay. In particular, the time separation dependence in f(r; �; t)

has been chosen to establish a far-�eld sound spectrum found in DNS. This is a plausible as-

sumption based on the realization that the temporal covariance was very dependent on the

large-eddy contribution (Lilley, private communication, 1994). For isotropic turbulence,

f(r) and g(r) are simply related by

f(r) +
r

2

@f(r)

@r
= g(r) (7)

and an experimental veri�cation is given by Von Ka�rma�n and Howarth (1938).

Finally, Lilley (1993) found that the total acoustic power is given by

ps(t) = �
�
1
u8

LC5
1

: (8)

The Proudman constant � is given by

� =

32

15

(�� 1)S4

T� (9)

where the turbulent Strouhal number

ST = 
L=u (10)
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is of order unity. The factor � is dependent on the spatial longitudinal velocity correlation

covariance, f(r=L), and Lilley(1993) found in general,

� =

Z
1

0

x4(
df

dx
)
2 dx: (11)

The turbulent Strouhal number is likely to have values in the range 1:0 to 1:25 (Lilley,

1993). Indeed, the de�nition of the Strouhal number, ST , indicates that it very nearly

equals unity. Since our experimental results only have u and L, we must assume 1=
 = u=L

with ST equal to unity.

Thus, Lilley (1993) concluded that the Proudman constant depends critically on the

shape of the longitudinal velocity correlation, f(r), and the 
atness factor for a given range

of Reynolds numbers.

It is clear that Lilley's direct evaluation of the total acoustic power is a rational

approach for establishing the base-line values for the Proudman constant. Lilley (1993)

stated that in the derivation of the Lighthill relationship no statistical assumptions are

involved. The Lighthill relationship has been con�rmed by Sarkar (private communication,

1994) in his low Reynolds number homogeneous isotropic turbulence simulations. Lilley

(1993) also presented the result of Dubois which indicates the Lighthill relation is also

quite accurate in a low Reynolds number DNS with forcing at small wavenumber modes.

However, the most important application of the Lighthill theory to isotropic turbulence,

of course, is at the high Reynolds numbers. Thus, it is important to validate the Lighthill

relationship and to estimate the Proudman constant using reliable systematic experimental

data at high enough Reynolds numbers. We do so by analyzing a unique data base obtained

from measurements in a large wind tunnel and atmospheric observations.

Measurements in the atmospheric surface layer were taken over a 
at �eld near Car-

penter, Wyoming, in 1990. A description of the experiment can be found in Oncley (1992).

As a part of this experiment, the instantaneous horizontal component of the wind velocity

was measured from a tower at 7 m above ground level. A standard hot-wire anemometer
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was used with a single tungsten wire 5 �m in diameter and 1 mm length at an overheat

ratio of 1.7. An analog di�erentiator was used to produce the velocity time derivative. The

signals from the anemometer and di�erentiator were digitized in real-time at a sampling

frequency of 9.6 kHz and recorded on magnetic tape. The total sampling time is about

600 hours. After preliminary processing, six time series have been chosen from the total

record (Praskovsky and Oncley 1994). The choice was based on two criteria: i) stationary

wind speed and direction, and ii) low turbulence intensity. The quality of the chosen time

series (based on the above criteria) is similar to that of wind tunnel measurements.

The second set of data was obtained in the large wind tunnel of the Central Aero-

hydrodynamic Institute (Moscow, Russia). Longitudinal and lateral velocity components

were recorded in the mixing layer and in the return channel of the wind tunnel. The wind

tunnel has an open working section 24 m long. The mixing layer between a jet issuing

from an elliptical nozzle (14�24 m
2
) and ambient air was studied. Measurements were

taken at a distance 20 m from the nozzle edge directly downstream of the nozzle side wall.

The free jet velocity was equal to 11.8 m/sec. The return channel of the wind tunnel is

175 m long and 22 m wide, and its height rises linearly from 20 m to 32 m. Measurements

were taken from a tower in the plane of symmetry at 5 m above 
oor level. Standard hot-

wire anemometers were used. An X-wire probe, with perpendicular wires, was operated

at an overheat ratio of 1.8. Wires were made of platinum-plated tungsten with diameter

2.5 �m. Both the active length and the distance between the wires were 0.5 mm. Data were

recorded with a sampling frequency of 16 kHz. More details about this experiment and

analysis of the measurement errors can be found in Karyakin et al. (1991), and Praskovsky

et al. (1993).

The main 
ow characteristics of the measurements are listed in Table 1. The abbrevi-

ations RC, ML, and ASL denote the return channel, mixing layer, and atmospheric surface

layer, respectively, and numerals after ASL correspond to the sequence of the time series.

U denotes the mean longitudinal velocity, �� denotes the rms value of any quantity �. The

Taylor microscale �, and the Reynolds number R�, are de�ned with standard formulas:
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� = �u=�@u=@x, R� = �u�=� where � is the kinematic viscosity. Taylor's hypothesis was

used to convert from temporal to spatial coordinates.

It is seen from �gure 1 that measured values of

�(r) =
< u2(x)u2(x + r) >�< u2(x) >

2

< u(x)u(x + r) >
2
(� � 1)

(14)

are quite close to unity for all measurements at very high Reynolds numbers. This re-

sult demonstrates that the Lighthill relation, a remarkable simple expression that de-

pends on the large-scale parameters, can be considered as universal at su�ciently high

Reynolds number. It is well-known that the large-scale turbulence in shear 
ows is strongly

anisotropic. While the deviations from anisotropy of turbulence are present in all other

measured datasets, turbulence in the return channel (RC) is almost isotropic. With its

mean shear almost zero and a huge large-small scale separation, it resembles the ideal grid

turbulence (Karyakin et al. 1991). Fig. 1 shows that the Lighthill relation is indeed very

accurate for the RC data.

It is evident from Table 2 that the values of the 
atness factor from high Reynolds

number experimental data sets are 2:7 � 3:3. The measured velocity 
atness factor is

around 3 in the DNS of Sarkar & Hussaini (1993) at 64
3
and 128

3
resolutions. Lilley

(1993) used � = 3 in his model calculation, based on an earlier experiment of Townsend

(1956).

The spatial longitudinal velocity correlation function f(r) is shown in �gure 2. Also

shown in �gure 2 are the model Gaussian and exponential distributions of f(r). The

Gaussian distributionwas used by Proudman (1952); and it was also chosen by Lilley (1993)

because its fair �t with low Reynolds number DNS at r=L < 1. This �gure shows that,

generally speaking, the exponential distribution seems to be a better �t at high Reynolds

number. Lilley (1993) also remarked that a better choice of f(r) is possibly exponential

distribution, based on the high Reynolds number experimental results of Stewart and

Townsend (1951).
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In fact, these measured values for f(r) o�er an unique opportunity to computing �

and their corresponding values for the Proudman constant numerically. We considered

the contributions from the longitudinal correlation function from r=L � 3 since f(r) at

r=L > 3 is dominated by the large-scale anisotropic structures, and it strongly depends

on the external 
ow conditions. The estimates of the Proudman constant are given in

Table 2 for the very high Reynolds number 
ows of the experiments. The measured values

of � = 0:68 � 3:68 are in broad agreement with that of DNS by Sarkar and Hussaini

(1993), � = 2:6, and that of Lilley (1993), � = 3:6, using a Gaussian distribution model

for the second-order spatial longitudinal velocity correlations. Lilley (1993) noted that if

f(r) = exp(�r=L) is used in place of the Gaussian distribution, the value of � is 3:2.

The large eddy structure in turbulent shear 
ows contaminates the shape of the lon-

gitudinal correlation curve. Although the 
atness factor is fairly constant, there are some

variations in Proudman constant since it depends on the derivative of the longitudinal

correlation function (see Eq. 11). We now show that this contamination does not lead to a

large change to the estimated total acoustic power for r=L � 3. Using f(r) obtained from

the high Reynolds number grid generated isotropic turbulence by Stewart and Townsend

for the same range of r=L (Fig. 3), we repeated our calculation of the Proudman con-

stant. Our calculation yields the values of � = 0:42 and � = 2:32, respectively. These

results lie in the range of values for � and � computed from our data base obtained from

measurements in a large wind tunnel and atmospheric observations (see Table 2).

From a modeling perspective, Lilley (1994, private communication) suggested that all

the ASL data show a two-part structure with relatively large values of f(r) at large values

of r=L (see detailed discussion in Townsend 1956), but falling to zero asymptotically. The

longitudinal covariance could be represented by a choice of values L1 and L2 representing

the contributions to f(r) from the small and large eddies respectively. The small eddy

contribution would follow an exponential law, whereas the larger eddies would follow a

`Gaussian' distribution law.
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Conclusions

We have presented measurements obtained from high Reynolds number experimental

data sets in a large wind tunnel and in the atmospheric surface layer over the range of

2:0�103 � R� � 12:7�103. It is found that the Lighthill (1993) relation, which relates the

fourth-order covariance to the second-order covariance and the turbulent 
atness factor, is

a good approximation. Therefore, Lilley's (1993) direct evaluation of the acoustic power us-

ing the Lighthill relation is supported. Lilley's work identi�ed that the Proudman constant

depends critically on the turbulent 
atness factor and the second-order spatial longitudinal

velocity correlation function. These parameters are determined experimentally in order to

compute the Proudman constant. Our results demonstrate that the turbulent 
atness is

around 2:7 � 3:3. It also appears that the longitudinal velocity correlation is closer to

an exponential distribution than a Gaussian distribution. We evaluated the Proudman

constant numerically from the experimentally measured f(r) and found its values to be

0:68� 3:68.
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Time series ML RC ASL-1 ASL-2 ASL-3 ASL-4 ASL-5 ASL-6

U , m/s 7.87 10.8 3.25 6.58 8.10 7.08 12.9 14.5

�u, m/s 1.67 1.03 0.356 0.693 1.10 1.00 1.82 2.08

L, m 1.3 4.8 47 42 51 81 99 77

�, cm 1.8 4.6 10.2 6.5 9.0 10.6 7.0 8.3

R��10
�3

2.0 3.2 2.8 3.3 6.9 7.1 9.2 12.7

Table 1. Main 
ow characteristics of analysed time series.

Time series ML RC ASL-1 ASL-2 ASL-3 ASL-4 ASL-5 ASL-6

Flatness factor 2.8 3.3 2.8 2.9 2.8 2.9 2.7 2.9

� 0.63 0.75 0.56 0.17 0.21 0.81 0.21 0.33

Proudman constant 2.40 3.68 2.14 0.68 0.79 3.27 0.75 1.32

Table 2. Measured values of the 
atness factor and the Proudman constant.

12



Figure captions

Figure 1. The experimental estimation of the Lighthill relationship

�(r) =
< u2(x)u2(x + r) >�< u2(x) >

2

< u(x)u(x + r) >
2
(�� 1)

= 1

For symbols see Fig. 2.

Figure 2. The experimental second-order spatial longitudinal velocity correlation.

Also included are the Gaussian distribution, f(r) = e�
�

4

�
r

L

�
2

, ����; and the exponential

distribution, f(r) = e�r=L, |||{.

Figure 3. The experimental second-order spatial longitudinal velocity correlation from

the high Reynolds number grid generated isotropic turbulence (Stewart and Townsend

1951). Solid and dashed lines are the same as in Fig. 2.
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