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Abstract

We explore the praticability of optimal shape design for 
ows modeled by the

Euler equations. We de�ne a functional whose minimum represents the optimality

condition. The gradient of the functional with respect to the geometry is calculated

with the Lagrange multipliers, which are determined by solving a costate equation.

The optimization problem is then examined by comparing the performance of several

gradient-based optimization algorithms. In this formulation, the 
ow �eld can be

computed to an arbitrary order of accuracy. Finally, some results for internal 
ows

with embedded shocks are presented, including a case for which the solution to the

inverse problem does not belong to the design space.
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1 Introduction

A classical problem in engineering is to de�ne the shape of a vehicle to achieve a required

performance. In 
uid dynamics, techniques have been developed to solve the following

inverse problem: given a pressure or a velocity distribution over an aerodynamic body,

determine the corresponding geometry. See, for example, reference [8]. A broader category

of problems can be solved by means of optimization, provided that one is ready to accept

the necessity of computing the 
ow �eld hundreds of times. In using models of increased

complexity to describe the 
ow �eld, the development of new algorithms is necessary in

many cases to reduce the computational load. In this paper, we investigate one method for

achieving this reduction. The variational technique that is applied in this work has been

used since before complex 
ows could be integrated numerically. See, for example, refer-

ence [1]. Jameson [4] was the �rst to apply this technique to computational 
uid dynamics.

With this approach, a functional or cost function is determined such that its minimum
represents an optimal solution. By introducing a set of Lagrange multipliers, the gradient
of the functional can be calculated with respect to the geometry by computing the 
ow

�eld only once for each gradient evaluation. For incompressible irrotational steady 
ows, a
further reduction in the computational e�ort is possible. (See [10].) The formulation devel-
oped in this work is more suited to a correct analysis. In fact, this formulation eliminates
the need to consider the 
ow �eld variables dependent on the geometry. In the present
work, we extend the work presented in reference [5]. In reference [5], an exact gradient

of the functional with respect to the design variables was obtained on the discrete level,
which can be a limitation for compressible 
ows because in presence of shocks the discrete
functional can present discontinuities. In considering compressible 
ows with embedded
shocks, we derive the gradient on a continuous level. Furthermore, we provide a method
for calculating the conditions that the Lagrange multipliers must satisfy at the boundaries

and at the shock. Finally, we point out that our formulation can be used with complex

ow solvers because the di�erentiability of the solver is not requested.

2 Problem Statement

The Euler equations are given by

Ut + Fx +Gy = 0 (1)

where

U =

0
BBB@

�

�u

�v

�e

1
CCCA F =

0
BBB@

�u

p + �u2

�uv

u(�e+ p)

1
CCCA G =

0
BBB@

�v

�uv

p+ �v2

v(�e+ p)

1
CCCA

with

� = density
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u = x component of velocity vector

v = y component of velocity vector

e = speci�c total energy

p = pressure

a = speed of sound


 = speci�c heats ratio

� =

 � 1

2

and p = ��(2e� u2 � v2): Furthermore,

F =
@F

@U
U = A(U)U (2)

and

G =
@G

@U
U = B(U)U (3)

where A and B are given in app. I.
We assume that these equations are de�ned on a physical space �. In this space is included
a subdomain 
 whose boundary is denoted by �: On the boundary, we de�ne a curvilinear
coordinate s and a normal n = (nx; ny) that points outward. (See �g. 1.)

The optimization problem studied here is de�ned as the minimization of the functional
E =

R
� �(p; �; u; v;�)ds over all admissible shapes of the subdomain 
, subject to the

steady-state Euler equations with proper boundary conditions on �:
Although the method we present is general, we focus on the following model problem. The
subdomain 
 is represented by a nozzle. (See �g. 2). At the inlet, total pressure, total

temperature, and the ratio � = v=u are �xed. At the outlet, if the 
ow is subsonic, the
static pressure is �xed, and at the solid walls the impermeability condition unx + vny =
0 is enforced. The upper wall is kept �xed. The lower wall � is represented by the
parameterization

y(�) =
X
i

�ifi(x) (4)

where the functions fi(x) are some shape functions and � = (�1; :::; �i; :::) is the corre-
sponding set of shape coe�cients. Given a desirable lower wall pressure distribution p�(x)

and the actual pressure distribution on the lower wall pw(x), the optimization problem

consists in �nding a set of shape coe�cients �i such that the functional

E =
1

2

Z b

a
(pw � p�)2dx (5)

is minimized.
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3 Lagrange Multipliers and Optimality

The problem of achieving the minimum is addressed by introducing a set of Lagrange

multipliers. Consider the augmented functional

L(U; �;�; �) = E +
Z



t
�(AUx +BUy)d
 +

Z
�

��V � nds (6)

where V = (u; v): The vector �(x; y) = t(�1; �2; �3; �4) and the scalar �(s) are the contin-

uous equivalents of the Lagrange multipliers.

We calculate the variation of the functional L with respect to the variation of the functions

U, �, and � and the parameters �i, respectively. When U(x; y) is increased by a function

"fU(x; y); the functional L increases by an amount "�LU : In the same way, �(x; y) is

increased by " e�(x; y); �(s), by "~�(s); and each �i, by " ~�i:

If we follow the derivation in app. II and take

�L = �LU + �L� + �L� + �L�

then we obtain

�LU =
Z b

a

@p

@U

�����
�

(pw � p�)fUdx+ Z
�

t
�(Anx +Bny)fUds+

�

Z



(t�xA+ t
�yB)fUd
 +

Z
�

�n
@�V

@U
fUds (7)

where

@p

@U
= 2k

 
u2 + v2

2
;�u;�v; 1

!
and

@�V

@U
=

 
0 1 0 0
0 0 1 0

!

Furthermore,

�L� =
Z



t e
�(AUx +BUy)d
 (8)

�L� =
Z
�

~��V � nds (9)

�L� =
X
i

"Z b

a

dp

dy

�����
�

(pw � p�) fi dx+
Z
�

t
�(AUx +BUy) fi cos � ds

+
Z
�

�
@(�V)

@y
� n fi ds �

Z
�

��V � t
dfi

dx
cos2 � ds

+
Z
�

��V � n
dfi

dx
sin � cos � ds

#
~�i (10)

where � is the angle between the normal n and the y-axis and t = (�ny; nx):
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At the minimum of the functional, we have �L = 0 for all possible choices of the functionsfU; e�; and ~� and of the parameters ~�: This condition is reached when

�LU = �L� = �L� = �L� = 0 (11)

Note that because of the necessary conditions (eqs. (11)) the unconstrained minimum of the

functional L(U; �;�; �) corresponds to the constrained minimum of the functional E(�):

In fact, we have

�L� = 0 ) AUx +BUy = 0 and �L� = 0 ) �V � n = 0

which means that U must satisfy the Euler equations with boundary conditions. In addi-

tion, for the minimum of L we have �LU = 0; which leads to

t
A�x +

t
B�y = 0 on 
 (12)

@p

@U

�����
�

(pw � p�) cos � + t
�(Anx +Bny) + �n

@�V

@U
= 0 on �: (13)

At the inlet, outlet, and upper wall,

t
�(Anx +Bny)fU = 0 (14)

Given U and the set of costate eqs. (12) and (14), we can determine uniquely � in 
 and
� on �. (See app. III).
Finally, given � and given U and � from the above equations, we can calculate from eq.
(10)

@L

@�i
=

Z b

a

dp

dy

�����
�

(pw � p�) fi dx+
Z
�

t
�(AUx +BUy) fi cos � ds

+
Z
�

�
@(�V)

@y
� n fi ds�

Z
�

��V � t
dfi

dx
cos2 � ds

+
Z
�

��V � n
dfi

dx
sin � cos � ds (15)

In cases for which shock occurs in the 
ow �eld, we split the domain of integration by

means of a curve � that coincides with the shock where it exists. Then, we follow the same
derivation so far on each of the two subdomains, with � as a boundary. (See app. III.)

The strategy that we use to achieve the minimum of L is as follows:

1. Start with a set � of shape coe�cients.

2. Enforce �L� = 0 and �L� = 0 by �nding U such that it satis�es the steady-state

Euler equations and boundary conditions.

3. Enforce �LU = 0 by �nding � such that it satis�es the costate equations and

boundary conditions.

4



4. Calculate r�L: If r�L = 0 then we have determined the minimum; otherwise

continue to steps 5 and 6.

5. Update � with criteria based on r�L.

6. Restart from step 2.

4 Discrete Problem

We introduce a discrete grid that is de�ned as (xl; ym) = (xo + l�x; y(�) +m�y), where

�x is constant and �y is a constant fraction of the local height of the nozzle. (See �g. 3.)

The steady solution of the Euler equations is obtained with a time-dependent technique,

in the frame of an explicit �nite-volume code. The conservative variables U are computed

at the cell centers, and the 
uxes F and G are evaluated at the cell interfaces with the

approximate Riemann solver in reference [7]. Second-order accuracy is achieved by using
an essentially nonoscillatory scheme [2]. The 
ow-�eld values at the cell interfaces, used
as initial conditions for the Riemann problem, are reconstructed by means of a linear

interpolation and a minmod limiter. The amplitude of the integration step is chosen in
accordance with the Courant-Friedrichs-Lewy (CFL) condition.
The costate equations are discretized on the same grid presented above. Because they have
no conservative form, the numerical solution is obtained with a �nite-di�erence scheme.
We introduce a set of curvilinear coordinates '(x; y) and  (x; y): The costate equations

are then written
t
A�' +

t
B� = 0 (16)

where A = A'x +B'y and B = A x +B y: The transformations ' and  are de�ned as

(xl; ym)
'
! l and (xl; ym)

 
! m, respectively.

We �nd the solution of eq.(16) as the asymptotic limit of a time-dependent technique.
Consider eq. (16) embedded in time as

��t +
t
A�' +

t
B� = 0 (17)

We must select the proper sign for the time derivative. The inlet and outlet boundary
conditions for the costate equations are complementary to those of the 
ow �eld equations,
in the sense that if the number of boundary conditions for the 
ow �eld is c; then the number

of boundary conditions for the costate equations is 4�c: Therefore, the above equations and

boundary conditions are well posed if we select the negative sign for the time derivative.
In fact, the resulting characteristic pattern is mirror symmetric with respect to that of the


ow-�eld equations.
In the presence of a shock in the 
ow �eld, the matrices tA and tB are discontinuous. In

particular, the characteristic pattern at the shock indicates the necessity of a boundary

condition for the costate equations. For further discussion, see reference [3].
The costate equations are linear and as such are the boundary conditions. We exploit

this property to numerically solve these equations. Suppose that locally we separate the
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variables through the following approximation:

�('; ; t) = �
0

('; t) +�
00

( ; t): (18)

This separation of variables means that, for example, in a Taylor expansion about the point

('; ) we disregard all terms that involve a cross product ' : This approximation is at

least �rst-order accurate. We substitute eq. (18) into eq. (17) to obtain

��
0

t ��
00

t +
t
A�

0

' +
t
B�

00

 = 0

and we are left with the following subproblems in one dimension:

��
0

t +
t
A�

0

' = 0 (19)

��
00

t +
t
B�

00

 = 0 (20)

Let us de�ne n' = ('x=
q
'2x + '2y; 'y=

q
'2x + '2y) and n = ( x=

q
 2x +  2y;  y=

q
 2x +  2y):

The left and right eigenvector matrices of A and B are calculated by using the formulas in
App. I with n = n' and n = n , respectively. After eqs. (19) and (20) are diagonalized,
we upwind the derivatives of the characteristic variables according to the signs of the
corresponding eigenvalues. The time step �t is chosen according to the CFL condition.
This method can be regarded as a two-dimensional interpretation of the method presented
in reference [6].

The boundary conditions can be split in a similar way. Consider, for example, the boundary
condition at the solid wall. Because eq. (19) is de�ned along the wall, the characteristic
variables can be upwinded according to the corresponding eigenvalues. On the contrary,
the third row of eq. (20), which corresponds to the characteristic with a speed of +a; is
replaced by the boundary condition in eq. (AIII.5). Note that the contravariant component

of the speed in the direction  is 0; therefore, the resulting system can be written as

8>>>><
>>>>:

�tW
00

1 = 0

�tW
00

2 = 0

nx�
t�

00

2
+ ny�

t�
00

3
= �(pw � p�) cos � � nx�

t�
0

2
� ny�

t�
0

3

�tW
00

4 = a �t (
q
 2x +  2y)�

mW
00

4

(21)

where �(�) is the forward �nite increment of the function (�) with respect to the super-

scripted variable and

�W =

0
BBB@

�W1

�W2

�W3

�W4

1
CCCA = t

L
�1

n ��

In the third row of eq. (21), we have the functions of �t
�

0

; which are computed separately

as mentioned. The other boundary conditions are enforced in the same pattern that is

presented above.
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5 Optimization Experiments

The optimization problem is addressed with four di�erent gradient-based criteria.

1. Steepest descent (SD1). The shape coe�cients are updated as follows:

�i  �i � �(@L=@�i); where � is a given parameter.

2. Steepest descent with � selected as shown (SD2). Because we know the gradient

r�L at the present iteration, we can use a tentative � and can compute the

gradient r�L
0

: By calculating r�L � r�L
0

, we linearly estimate � such that

eventually r�L � r�L
00

= 0: Each step of the optimization requires solution of

the 
ow-�eld and costate equations twice.

3. The BFGS algorithm (presented in reference [9]). This algorithm (BFGS1) ac-

counts for the curvature of the hypersurface L. The shape coe�cients are up-

dated according to the formula �i  �i � �di; where d = (:::; di; :::) is the
descent direction determined by d = Hr�L and H is an estimate of the inverse
of the Hessian of the functional.

4. The BFGS algorithm (as above) with a linear estimate of � such that d �r�L
00

=
0: Each optimization step requires solution of the 
ow-�eld and costate equations
twice (BFGS2).

The computations are performed on a 40�20 grid unless otherwise speci�ed. Total pressure
and total temperature at the inlet are taken unitary and �(0; y) = 0: At the outlet, the
static pressure depends on the test case considered. For the lower wall ordinate y(�), we
have

y(�) =

8><
>:

0 if �0:5 � x < 0P
4

i=1 �i x
i+1 (x� 1)2 if 0 � x < 1

0 if 1 � x < 1:5

The optimization consists in �nding the four shape coe�cients �i such that the modulus of
the gradient r�L is 0: The 
ow-�eld and costate equations are iterated until the residuals
are less than 10�5:
Consider a test case in which a pressure distribution in a subsonic nozzle is found for which

the outlet pressure is 0:9 of the inlet total pressure. We take � = (2; 0; 0; 0) and de�ne the

corresponding con�guration as the optimal con�guration. Then, we compute the 
ow �eld
and determine the pressure distribution on the lower wall. This pressure distribution p� is
the one we want to recover with the optimization algorithm. In �g. 6, the target 
ow �eld
and the starting con�guration, obtained with � = (�2; 0; 0; 0), are shown along with the

convergence histories for DS1 and BFGS2.

For the supersonic case, we take a constant section channel as a starting con�guration and
� = (2; 0; 0; 0) as the target. In �g. 7, we present the results obtained when the outlet

pressure is lowered to 0:5 of the inlet total pressure. A relevant shock is generated in the

ow �eld. In the �rst optimization iterations, we updated the shape coe�cients, as was

done for DS1. This step is necessary because this far from the minimum the functional
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L might be not convex; therefore, the estimate of � that was used would not be correct.

Figure 8 shows the sequence of lower wall con�gurations obtained with BFGS2. We also

tested the e�ect of grid coarseness by reducing the number of grid points to 20� 10. (See

�g. 9.)

The second test case is designed to check the capability of the algorithm in detecting

minima in cases for which the desired pressure distribution is out of the design space (i.e.,

the functional is not 0 at the minimum). The pressure distribution p� is obtained with an

outlet boundary condition that di�ers from the distribution that is actually used in the

optimization routine. The results are given in �g. 10.

The DS1 updating strategy had the least attractive rate of reduction of the functional. Our

experience showed, nevertheless, that it was the most reliable in cases of complicated surface

topologies that can occur in 
ow �elds with embedded shocks. The BFGS2 becomes the

most e�cient of the algorithms tested when it is coupled with DS1. With this algorithm,

the functional was reduced by orders of magnitude.
Each optimization procedure with a 40 � 20 grid required 6 h of central processing unit
(cpu) time on a DEC 3000/500. The 20 � 10 case required 1 h of cpu time.

6 Concluding Remarks

We have derived an expression of the gradient of the cost function with respect to the shape
coe�cients. The boundary conditions for the costate equations have been presented; we
have shown their relevance to the well posedness of the problem. In the case of shocks,
we provided the proper conditions for the costate equations at the discontinuity. On the

discrete level, we proposed a method of integrating the costate equations in accordance with
a revisited scheme. Additional work is needed to test the algorithm with more realistic test
cases and to apply the One-Shot method (reference [10]) to hyperbolic problems.
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Appendix I

The Jacobian matrices for the Euler equation in conservative variables are

A =

2
6664

0 1 0 0

kV 2 � u2 (3� 
)u �2kv 2k

�uv v u 0

(�
e+ 2kV 2)u 
e� kV 2 � 2ku2 �2kuv 
u

3
7775 (AI:1)

B =

2
6664

0 0 1 0

�uv v u 0

kV 2 � v2 �2ku (3� 
)v 2k

(�
e+ 2kV 2)v �2kuv 
e� kV 2 � 2kv2 
v

3
7775 (AI:2)

The Jacobian in the direction n isC = Anx+Bny: The left (Ln) and right (L
�1

n ) eigenvector

matrices of C are

Ln =

2
6664

1� kV 2=a2 2ku=a2 2kv=a2 �2k=a2

Vt=� ny=� �nx=� 0

(�Vn + kV 2=a)=� (nx � 2ku=a)=� (ny � 2kv=a)=� 2k=�a
(Vn + kV 2=a)=� �(nx + 2ku=a)=� �(ny + 2kv=a)=� 2k=�a

3
7775 (AI:3)

L
�1

n =

2
6664

1 0 �=2a �=2a

u �ny �(u+ anx)=2a �(u� anx)=2a
v �nx �(v + any)=2a �(v � any)=2a

V 2=2 ��Vt �(V 2 + a2=k + 2aVn)=4a �(V 2 + a2=k � 2aVn)=4a

3
7775 (AI:4)

where Vn = V � n and Vt = V � t: The diagonal matrix Dn = LnCnL
�1

n is

Dn =

2
6664
Vn 0 0 0
0 Vn 0 0

0 0 Vn + a 0

0 0 0 Vn � a

3
7775 (AI:5)

Appendix II

To calculate �LU , consider the increment U U+ "fU )

F F + "AfU+ h:o:t: and G G+ "BfU+ h:o:t:

We obtain

�LU =
Z b

a

@p

@U

�����
�

(p � p�)fUdx+ Z



t
�

h
(AfU)x +BfU)yi d


+
Z
�

�n
@�V

@U
fUds+ h:o:t: (AII.1)
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If we apply Gauss' theorem to the second integral of the above equation then we �nd eq.

(7). Equations (8) and (9) are easily obtained.

To calculate �L�; we �rst consider the variation of the functions de�ned on �:

�i  �i + "~�i ) pw  pw + "
dp

dy
fi ~�i and �V �V + "

@�V

@y
fi ~�i:

Then, we consider the variation of the geometry; other higher order e�ects are disregarded.

When the geometry is perturbed, the domain of integration 
; the normal n and the

element of integration ds are perturbed. The domain 
 is increased (�g. 4) by a quan-

tity "~�i fi cos � ds: The normal n is perturbed by a quantity �"~�i dfi=dx cos2 � t; ds, by

"~�i dfi=dx cos � sin � ds: (See �g. 5.)

Appendix III

Consider eq. (14). This equation de�nes the boundary conditions for � after we impose
the proper constraints on fU: At the inlet, only one component of the variation of the 
ux

in the direction normal to the boundary e
Fn = (Anx +Bny)fU is independent of the others

because total pressure, total temperature, and � are �xed. If we express all components ofeFn in terms of f�u; we obtain

eFn =
8>>><
>>>:

�

[� + ��=(1�M2)]u
[�� � �=(1�M2)]u

H�

9>>>=
>>>;
f�u

where � = nx + �ny; � = (ny � �nx); H is the speci�c total enthalpy, and M is the local
Mach number. For an arbitrary choice of f�u; from eq. (14) we have

�1� + �2u
h
� + ��=(1�M2)

i
+ �3u

h
�� � �=(1 �M2)

i
+ �4H� = 0 (AIII:1)

At the outlet, if the 
ow is subsonic, then only the static pressure is �xed; therefore, three

components of the vector fU are arbitrary. If we take f�e as the dependent variable, we have

eFn =
2
6664

f�unx + f�vnyf�u(Vn + unx) + unyf�v � ~�uVnf�v(Vn + vny) + vnxf�u� ~�vVn
�~�(
p=2k� + u2 + v2) + f�u(Vnu+Hnx) + f�v(Vnv +Hny)

3
7775

For an arbitrary choice of ~�; f�u, and f�v; from eq. (14) we have

�1nx + �2(Vn + unx) + �3vnx + �4(Vnu+Hnx) = 0

�1ny + �2uny + �3(Vn + vny) + �4(Vnv +Hny) = 0 (AIII.2)

�2uVn + �3vVn + �4Vn(
p=2k� + u2 + v2) = 0
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For a supersonic outlet, no conditions exist on fU; therefore, we have
� = 0: (AIII:3)

If a shock is embedded in the 
ow �eld, then the shock is considered as a boundary for

the costate equations. The consequent boundary conditions are applied on each side of eq.

(AIII.3) before the shock and eq. on each side of (AIII.1) after the shock.

For the upper wall, we have

eFn =
2
6664

0

nx
ny
0

3
7775 ~p

such that for an arbitrary choice of ~p eq. (14) is satis�ed if

�2nx + �3ny = 0 (AIII:4)

At the lower wall, eq. (13) applies. Because the rank of Anx +Bny at the wall is 2; the
system has only two linearly independent rows. We obtain

�2nx + �3ny + (pw � p�) cos � = 0 (AIII:5)

which is the boundary condition for �, and

� = �
h
�1 + u�2 + v�3 + (
e� kV 2)�4

i
(AIII:6)

which is the relation between � and � on the boundary.
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Figure 2: Model problem.
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Figure 3: Discrete grid.
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Figure 4: Variation of domain of integration 
 with AH = dx; AD = "~y and BC =

"(~y + @~y=@x dx):
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Figure 5: Variation of n and ds with CE = "@~y=@x dx; DH = dx; DE = ds; "�� = EK=ds;

and EK = CE cos � (i.e., �� = @~y=@x cos2 �); variation of ds is KC = "@~y=@x sin �dx

.
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h-number �eld. (b) Starting con�guration.

gradient versus number of iterations for SD1.
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(a) Target Mach number �eld.

(b) SD1.
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(c) SD2.
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(d) BFGS1.
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(e) BFGS2.
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Figure 7:
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Figure 8: Wall shapes sequence with BFGS2. Starting con�guration: constant section.
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(a) SD1.
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(b) SD2.
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(c) BFGS1.
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Figure 9: Results with 20 � 10 grid.
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(a) DS2.
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(b) BFGS2.
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Figure 10:

20


