
IMPLICIT SCHEMES AND PARALLEL

COMPUTING IN UNSTRUCTURED GRID CFD

V. Venkatakrishnan

Institute for Computer Applications in Science and Engineering

MS 132C, NASA Langley Research Center

Hampton, VA 23681-0001

United States

Contents

1 Summary 2

2 Governing equations 2

3 Spatial discretization methods 3

4 Steady state solution techniques 6

4.1 Explicit schemes : 6
4.1.1 Acceleration techniques : 7

4.2 Implicit schemes : 7
4.2.1 Direct methods : 8
4.2.2 Standard iterative methods : 9
4.2.3 Line-implicit methods : 10
4.2.4 Incomplete LU factorization methods : 11
4.2.5 Advanced iterative methods : 11
4.2.6 Preconditioning : 13

4.3 Data structures : 15
4.4 Newton-Krylov methods : 16
4.5 Applications : 17

5 Solution techniques for unsteady
ows 22

5.1 Finite volume discretization : 22
5.2 Explicit schemes : 23
5.3 Implicit schemes : 24
5.4 Treatment of the mass matrix : 26
5.5 Grid adaptation for transient problems : 27
5.6 Applications : 29

6 Parallel computing issues 34

6.1 Partitioning of grids : 35
6.2 Communication issues : 41
6.3 Parallelism in explicit schemes : 43
6.4 Parallelism in implicit schemes : 44
6.5 Performance on the Intel iPSC/860 : 46
6.6 Adaptive grids : 49

1

1 Summary

The development of implicit schemes for obtaining steady state solutions to the Euler and Navier-
Stokes equations on unstructured grids is outlined. Following a brief review of spatial discretization
methods, the principal time discretization techniques that are available are reviewed. The tech-
niques for unstructured grids are contrasted with those used for structured, body-�tted grids.
Applications are presented that compare the convergence characteristics of various implicit meth-
ods.

Next, the development of explicit and implicit schemes to compute unsteady
ows on unstruc-
tured grids is discussed. Methods to improve the e�ciency of explicit methods for time-accurate
computations are reviewed. The development of an implicit scheme that makes use of nonlinear
multigrid techniques to compute unsteady
ows is outlined. The resulting method allows for arbi-
trarily large time steps and is e�cient in terms of computational e�ort and storage. The issue of
mass matrix that arises with vertex-based �nite volume schemes is addressed.

Lastly, the issues involved in parallelizing �nite volume schemes on unstructured meshes in
an MIMD (multiple instruction/multiple data stream) fashion are outlined. The techniques for
partitioning unstructured grids among processors are discussed. Parallelism in the
ow solvers is
addressed next. As a candidate explicit scheme, a four-stage Runge-Kutta scheme is used to com-
pute steady two-dimensional
ows. Implicit schemes are also investigated to solve these problems,
where the linear system that arises at each time step is solved by preconditioned iterative methods.
The choice of the preconditioner in a distributed-memory setting is discussed. The methods are
compared both in terms of elapsed times and convergence rates. It is shown that the implicit
schemes o�er adequate parallelism at the expense of minimal sequential overhead. Following do-
main decomposition ideas, the use of a global coarse grid to further minimize this overhead is also
investigated. The schemes are implemented on distributed-memory parallel computers. Finally,
some dynamic load balancing ideas, which are very useful in adaptive transient computations, are
presented.

2 Governing equations

The equations governing compressible
uid
ow in integral form for a control volume V(t) with
boundary S(t) are given by

@

@t

Z
V(t)

Wdv +

I
S(t)

[F (W;n; s)� G(W;rW;n)]da = 0; (1)

where

W = [�; �V ; �e]T

F (W; n; s) = (V � s):nW

G(W;rW; n) = [0; t; t:V � q:n]T ;

t = n:T

T =
h
(�p+ ��)I + 2�D

i
In the formulas given above � is the density, V is the velocity vector with Cartesian components
Vi, e is the speci�c total energy, n is the outward unit normal vector of the boundary S(t) and
s is the velocity vector of the boundary. Also, � is the molecular viscosity, � is the bulk viscosity

related to � by Stokes' hypothesis, � = �2=3�, I is the identity tensor, T is the stress tensor and

D is the deformation tensor given by

Dij =
1

2
(Vi;j + Vj;i) (2)

2

where Vi;j denotes the partial derivative of the ith component of V with respect to the Cartesian
coordinate xj , i.e., Vi;j = @Vi

@xj
. � stands for the divergence of V given by Vi;i with the usual

summation convention. q is the heat
ux given by Fourier's law

q = �KrT; (3)

where K is the thermal conductivity of the
uid and T is the temperature. These equations are
augmented by the equation of state, which for a perfect gas is given by

p = (
 � 1)(�e�
1

2
�jV j2) (4)

Eqn. (1) represents the conservation laws for the mass, momentum (the Navier-Stokes equations)
and energy. It holds for any volume and in particular, holds for a speci�c volume associated with
each grid point or a cell, termed the control volume.

3 Spatial discretization methods

The computational domain is �rst tessellated using a grid composed of simplices, which are trian-
gles in two dimensions and tetrahedra in three dimensions. Unstructured grids provide
exibility
for tessellating about complex geometries and for adapting to
ow features, such as shocks and
boundary layers. They are generated by using any of a number of techniques reviewed in [118, 82].
It is also possible to use hybrid grids, which include in addition structured, body-�tted quadrilat-
eral grids in two dimensions and prismatic grids in three dimensions in the vicinity of the solid
boundaries for resolving viscous regions as opposed to using stretched triangles and tetrahedra. In
three dimensions, the prismatic grids near the boundaries are typically generated by marching-out
procedures [93, 67].

On a given grid, one has the option of locating the variables at the cell centers or at the vertices
of the grid, giving rise to cell-centered and cell-vertex schemes. Alternatively, it is possible to deal
strictly with averages de�ned over volumes [11, 27]. This approach has certain advantages for higher
order schemes, but is not considered in the present work. In the case of �nite volume schemes,
the governing equations in integral form (Eqn. (1)) are discretized. This allows discontinuities
to be captured as part of the solution. Eqn. (1) expresses the rate of change of the conserved
quantities (mass, components of momentum and energy) to be the negative of the net
ux out of
the control volumes. This net
ux through the control volume boundary is termed the residual.
For steady-state computations, this residual vanishes over all control volumes. Starting from an
initial guess, typically freestream conditions, Eqn. (1) is marched in time until the solution W

does not change. Thus global conservation in space is guaranteed because of cancellation of the
interior
uxes, resulting in
ux contributions only at the physical boundaries. The control volume
for a cell-centered scheme is typically the triangle or the tetrahedron itself, whereas for a cell-vertex
scheme it is taken to be the median dual, composed of segments of the median. The control volumes
and the stencils associated with �rst order cell-centered and cell-vertex schemes in two dimensions
are illustrated in Figures 1 and 2. The de�nition of the median dual as the control volume in a
cell-vertex scheme comes about by showing the equivalence with a Galerkin �nite element method
employing piecewise linear basis functions while computing the gradient of a function [107, 9].
An alternative de�nition of a control volume for a cell-vertex scheme is a Voronoi cell which is
composed of perpendicular bisectors drawn between pairs of grid points. The Voronoi cell of a site
(grid point) is de�ned as that region of space containing points which are closer to the site than
to any other site. The dual to the Voronoi tessellation is the well-known Delaunay triangulation.
The Voronoi cell is guaranteed to be convex, but the approach imposes a Delaunay triangulation
and requires care at the boundaries. Another alternative is the containment dual [142, 13] which
has nice properties for stretched triangulations.

3

A

Figure 1: Control volume and stencil for a
�rst order accurate cell-centered scheme.

A

Figure 2: Control volume and stencil for a
�rst order accurate cell-vertex scheme.

An excellent review of spatial discretization methods for advection-dominated
ows may be
found in [1]. Here we will brie
y outline some of the popular methods. The interest here will be
con�ned to the bearing they have on the choice of time integration methods. In [64, 79] a Galerkin
�nite element scheme using piecewise linear basis functions is augmented with a blend of dissipative
terms made up of Laplacian and biharmonic terms. The �rst order Laplacian term acts only in
the vicinity of shocks whereas the third order biharmonic term used away from shocks serves as
background dissipation to eliminate odd-even decoupling. This scheme can be thought of as an
extension of the scheme of Jameson et al. [65] to unstructured grids. A space-time formulation has
been derived by Donea [35] called the Taylor-Galerkin family of schemes for the linear advection
equation. Adopting an FEM approach, he has shown how a Galerkin scheme (a centered scheme)
could be stabilized by using a Taylor-series expansion for the time derivative @u

@t
, similar to the

procedure used to derive the Lax-Wendro� scheme. He demonstrated that the resulting schemes
had good phase error and dissipation properties and that they could be easily extended to multi-
dimensions. Morgan et al. in [1] have used such a procedure for discretizing the Euler equations.
Another method of realizing higher order accuracy is provided by adopting the MUSCL formulation
of Van Leer [121] as outlined by Barth and Jespersen [12] for unstructured grids. In this approach,
�rst a piecewise polynomial reconstruction is performed from the given data within each control
volume and the polynomial is then interpolated to the its faces. The jumps that occur at the
control volume faces are reconciled by using an approximate Riemann solver such as Roe's solver
[106]. During the reconstruction stage, monotonicity principles are invoked so that oscillation-free
solutions can be obtained. Another way to design higher order accurate schemes is to construct
schemes of the form

dui

dt
=

X
j2Ni

Cij(uj � ui); (5)

where the Cij 's are non-negative, and Ni denotes the set of neighbors of i. It is easy to see that
under these conditions, the maxima can never increase and the minima can never decrease. If
the Cij 's are constants, the scheme is linear and hence, only �rst order accurate. Higher order
versions of such schemes have been developed [38, 28, 63] which add limited amounts of anti-
di�usive
uxes to the lower order
uxes. Higher order accuracy in the case of cell-vertex schemes
can also realized by using the
uctuation-splitting approach [31, 96]. These schemes consider the
average time evolution of a complete cell (a triangle or a tetrahedron) with the unknowns located
at its vertices, and then update the values at the vertices by the e�ect of linear wave solutions
evolving the piecewise linear data over a cell. Finite element methods, such as SUPG and Galerkin
least-squares methods [60, 59], and discontinuous Galerkin methods [73] also permit higher order
accuracy to be realized by utilizing appropriate basis functions.

It is assumed that a spatial discretization has been performed by using one of the approaches
outlined above. The typical stencils for the higher order cell-centered and cell-vertex schemes on

4

triangular meshes are illustrated in Figures 3 and 4. The stencil for the cell-vertex scheme involves
all the nearest-neighbors and the next-to-nearest neighbors. Whereas a �rst order cell-centered
scheme involves only the three nearest neighbors, note that the higher order scheme employs a
stencil that is comparable to that of a cell-vertex scheme [12, 48]. The more compact stencils for
cell-centered schemes outlined in [130, 38] have di�culties dealing with general triangulations. The
viscous terms are discretized in cell-vertex schemes by using a Galerkin �nite element approximation
and only involve the nearest neighbors. In the case of cell-centered discretizations, Frink et al. [48]
compute the �rst derivatives at the vertices of the triangulation, which are then averaged to obtain
the viscous
uxes at the faces. The stencils shown in Figures 3 and 4 are thus unaltered when
(laminar) viscous terms are included. One of the advantages of the
uctuation-splitting approach
is that the stencil for the second order accurate scheme only involves the nearest neighbors.

A

Figure 3: Stencil for a second order accurate
cell-centered scheme.

A

Figure 4: Stencil for a second order accurate
cell-vertex scheme.

All the spatial discretization methods outlined above only utilize data from a local neighborhood
in order to compute the residual at a point/cell. Thus the operations involved in computing the
residual involve compact stencils. The residual is computed by summing the
uxes. This operation
can be vectorized in one of two ways. This will be explained in the context of cell-centered schemes
in three dimensions. The �rst method computes the
uxes at the triangular faces and stores them.
This is followed by a loop over the tetrahedral cells to accumulate the
uxes to form the residuals.
This scheme would require face-to-cell and cell{to{face pointers. Alternatively, it is possible to
calculate the
uxes and accumulate the residuals in one loop over the faces, which would only
require face-to-cell pointers. This operation can be vectorized by coloring the triangular faces
which groups the faces such that no two members of the group point to the same cell. With an
outer (sequential) loop over the number of colors, the inner loop over the members of the color
can be vectorized. In the case of cell-vertex schemes, Barth [10] and Mavriplis [81] have shown
that even in three dimensions, the computation of the residuals can be cast as loops over edges
in inviscid computations. Therefore, edges are colored in both two and three dimensions in the
case of cell-vertex schemes so that no two edges within the same group point to the same vertex.
It is important to keep the number of colors as small as possible to maximize vector lengths and
minimize the number of vector startups. Coloring is a problem in graph theory. See section 6.1
for some de�nitions. The minimum number of colors required to color the edges of a graph is �
or � + 1, where � is the maximum degree of a vertex in the graph. This is known as Vizing's
theorem [50]. For graphs arising from grids, the minimum number of colors is �. The graph for
a cell-vertex scheme is the grid itself, whereas for the cell-centered scheme it is the dual graph,

5

where each tetrahedron is represented by a vertex and each triangular face is represented by an
edge. The minimum number of colors required in a cell-vertex scheme is then �, which can be
arbitrarily large. In a cell-centered scheme, on the other hand, the minimum number of colors is 3
in two dimensions and 4 in three dimensions.

4 Steady state solution techniques

After discretization in space, the following system of coupled ordinary di�erential equations results:

d(VMW)

dt
+R(W) = 0: (6)

Here W is the vector of unknowns over the grid points for a vertex-based formulation and over cells
for a cell-based formulation, and V is the volume of the polyhedral control volume associated with
the grid point/cell. In the case of a cell-vertex scheme, M is the mass matrix which represents the
relationship between the average value in a control volume and the values at the vertices (the vertex
representing the control volume and its nearest neighbors). It arises from adopting a strict �nite
volume viewpoint since the update as given by the residual should be made to the time derivative of
the average value within a control volume. It is only a function of the mesh and hence, a constant
matrix for a static mesh. If a steady state solution is sought, time-accuracy is not an issue and
M can be replaced by the identity matrix. This technique, known as mass-lumping, yields the
following system of ordinary di�erential equations for the vector of unknowns W :

V
dW

dt
+R(W) = 0: (7)

Assuming that the grid is static, cell-centered schemes (up to second order accuracy) and schemes
dealing strictly with cell-averages (to any order of accuracy) do not yield a mass matrix and thus
lead to Eqn. (7) for steady and unsteady problems. The e�ect of the mass matrix in time-accurate

ow simulations is addressed in Section 5.1. Time-space formulations, such as the Taylor-Galerkin
schemes, do not lead to the system of ODE's of Eqn. (6). Rather, they result in coupled system of
nonlinear equations which involve previous time levels depending on the order of accuracy of the
schemes. The easiest way to solve these equations is by using explicit methods, discussed in the
next section.

4.1 Explicit schemes

The simplest means of integrating the system of ODE's in Eqn. (7) is by the use of the explicit
schemes. In their simplest form, the time derivative is discretized using a �nite di�erence formula
at time step n, and the residual R(W) is evaluated at time step n as well. Thus, explicit schemes
possess the advantage of requiring only simple updates. Given that the residual computation is
vectorizable, explicit schemes are therefore vectorizable (parallelizable as well). For example, using
forward di�erences in time, we obtain:

V
Wn+1 �Wn

�t
+R(Wn) = 0: (8)

Higher order accurate di�erence formulas that make use of previous time levels may also be used for
discretizing the time derivative at time step n. For reasons of stability, it is necessary to consider a
sequence W 0;W 1; ::WN ; N !1 in Eqn. (8). The topic of stability of di�erence schemes is covered
extensively in texts. Therefore, it is assumed, that a proper discretization of the time derivative
has been performed so that the resulting scheme is stable. Typically, the nondimensional time
step permitted by explicit schemes is O(1). Perhaps the most popular method used to integrate

6

the system of ODE's in CFD is the Runge-Kutta method. The classical form of Runge-Kutta
methods requires solutions from previous levels to be stored. The following form of an m�stage
Runge-Kutta scheme is preferred for solving the system of ODES's given by Eqn. (7):

Q0 = Wn

::::

V Qk = V Q0 � �k�tR(Qk�1)

::::

V Qm = V Q0 � �m�tR(Qm�1) (9)

Wn+1 = Qm

For consistency, we require �m = 1 and the scheme is second order accurate in time for linear and
nonlinear problems if �m�1 = 1=2. The coe�cients �k 's can be optimized to expand the stability
region so as to allow for the maximum time step with a particular spatial discretization [61]. They
can also be optimized so that the resulting explicit scheme acts as a good multigrid smoother
[61, 123].

4.1.1 Acceleration techniques

For steady-state computations, several acceleration strategies are often employed in concert with
explicit schemes. Local time stepping allows each cell to take the maximum possible time step;
as a result the scheme is no longer consistent in time. It is also possible to use characteristic
time stepping. Viewing the Euler equations as a superposition of waves, each wave is allowed to
propagate at its own maximum allowable time step. This is highly e�ective in one dimension. Van
Leer et al. [122] have extended this concept to deal with two-dimensional Euler equations. Another
technique is to introduce a moderate degree of implicitness in the scheme by using the technique
of residual averaging [61]. Residual averaging is covered in Section 5.2. It leads to a system of
linear equations that is solved by a few Jacobi iterations on unstructured grids [79]. Finally, for
constant-enthalpy steady solutions it is possible to use the technique of enthalpy damping provided
that the spatial discretization allows for a constant-enthalpy solution [61].

In spite of these acceleration techniques, explicit schemes are not competitive. Convergence to
steady state is usually unacceptably slow, especially as the problem sizes and complexities grow.
Therefore, either multigrid methods or implicit schemes are required to accelerate the convergence.
Multigrid methods for unstructured grids are covered in the chapter by Mavriplis.

4.2 Implicit schemes

We return to Eqn. (7) which represents a system of ODE's. R(W) is in general a nonlinear vector
of the components of the solution vector W :

V
dW

dt
+R(W) = 0: (10)

After employing a backward Euler discretization in time we obtain:

V
Wn+1 �Wn

dt
+ R(Wn+1) = 0: (11)

Linearizing R about time level n, we obtain�
V

�t
+

@R

@W

�
�W = �R(Wn) (12)

�W = (Wn+1 �Wn)

7

Eqn. (12) represents a large sparse linear system which needs to be solved at each time step. As
�t tends to in�nity, the method reduces to the standard Newton's method which yields quadratic
convergence for isolated roots of the nonlinear system. The term @R

@W symbolically represents the
implicit side upon linearization and involves the Jacobian matrices of the
ux vectors with respect
to the conservative variables. Based on the work of Mulder [92], the time step in Eqn. (12)
is allowed to vary inversely proportional to the L2 norm of the residual, so that the time step
increases rapidly as the steady state solution is approached.

In the case of structured, body-�tted grids, the linear system Eqn. (12) is seldom solved;
indeed it is seldom even assembled. Instead, approximations are made to the linear system itself.
For example, the Alternating Diagonal Implicit (ADI) method [23] and Approximate Factorization
(AF) [19] result in a product of simpler factors. Each of the factors can be easily solved by direct
methods. For example, ADI results in nested block tri-diagonal systems which are solved by Thomas
algorithm. In addition, lower order discretizations and approximations to the
ux Jacobians are
often employed in approximating the left hand side. As a result of these approximations, these
methods are only moderately implicit. Typically they allow for CFL number (the nondimensional
time step) of the order of 10{100.

In the case of unstructured grids, one has no recourse to techniques such as AF or ADI. Instead
one has to deal with the solution of the sparse linear system. The system of equations can be solved
by direct or iterative means. We will �rst review the direct methods applicable to general sparse
matrices.

4.2.1 Direct methods

The linear system of Eqn. (12) has been solved by Gaussian elimination for the two-dimensional
compressible Euler and Navier-Stokes equations using structured grids [126, 17, 20, 95]. For logically
rectangular regions, the matrix assumes a banded form, that can be solved e�ciently by banded
solvers or by employing direct methods for general sparse matrices. The complexity for a n�n grid
with a banded solver is O(Nm2) where m is the half-bandwidth and N = n2 is the number of grid
points. For example, if a �rst order discretization is employed, the stencil involves only the nearest
neighbors and therefore, m = n. Thus, the number of operations is O(n4). The storage required is
O(n3) since for a banded matrix, almost the entire region between the bands gets �lled in during the
Gaussian elimination. Some sparse-matrix methods result in more favorable operation counts and
require less storage because they try to minimize �ll-in. Nested dissection [49], for example, only
requires O(n3) operations and O(n2log2n) storage for this problem. By solving the linear system
using direct methods, quadratic convergence has been demonstrated for compressible Euler and
Navier-Stokes equations. Techniques to improve the convergence process such as grid-sequencing
to establish a good initial guess and super-convergence are outlined in [126]. Newton methods have
been used to solve di�cult problems which are not amenable to conventional solution techniques
such as hysterisis phenomenon with airfoils [17] and high Reynolds number laminar
ows [18].
The Jacobian matrix @R

@W can be evaluated analytically or numerically. The latter option, while
expensive, is attractive when dealing with nondi�erentiable functions such as algebraic turbulence
models [17]. However, for most
ux functions and �eld turbulence models, the Jacobian evaluation
can be done either analytically or by using symbolic packages.

On unstructured grids, direct solvers have been utilized in two-dimensions to solve the com-
pressible Navier-Stokes equations [130]. Use was made of the minimum-degree algorithm [49] to
minimize the �ll-in during the factorization. It is also possible to use other techniques such as
spectral nested dissection [101] for this purpose. In [130] a cell-centered second order scheme was
used that only made use of 10-point stencils. A stencil such as the one shown in Figure 4 would
require far more computational e�ort and storage.

In summary, direct methods for compressible
ow solvers are limited to two dimensions. Pro-

8

hibitive computational costs and large memory requirements severely limit the usefulness of the
method in three dimensions. In addition, the gain that can be realized with techniques such as
nested dissection are not as great in three dimensions as in two dimensions. However, direct meth-
ods in can be used to study problems in two dimensions that are di�cult to solve by other means.
The fact that unstructured grids have larger stencils compared to structured grids make direct
methods even less attractive.

4.2.2 Standard iterative methods

Iterative methods are often used to solve the linear system given by Eqn. (12). Due to storage con-
siderations and computational complexity, typically only a lower order representation is employed
in the left hand side of Eqn. (12). This matrix is also better conditioned compared to the higher
order discretization. A consequence of this approximation is that the resulting can never approach
Newton's method (with its associated quadratic convergence property) due to the mismatch of the
right- and left-hand side operators. Therefore, it does not pay to solve the linear system well either.
Since there is a mismatch of operators in Eqn. (12), it is also necessary to limit the maximum time
step.

For solving the linear system
AX = b; (13)

the matrix A is �rst split as A =M +N so that

(M +N)X = b: (14)

A general iterative method is obtained as follows:

MXk+1 = �NXk + b: (15)

or equivalently,
M(Xk+1 �Xk) = �AXk + b = �rk ; (16)

where rk = AXk�b is called the residual for the linear system at kth step. The matrixM should be
close to matrix A in some sense while being easily invertible. Several well-known iterative methods
are obtained by making appropriate choices for M :

1. M = I { Richardson's method

2. M = D, D being the diagonal { Jacobi iteration.

3. M = D + E, D being the diagonal and E, the lower triangular part of A { Gauss-Seidel
iteration.

4. M = D+E step followed byM = D+F , F being the upper triangular part of A { Symmetric
Gauss-Seidel.

Variants of these basic schemes can be obtained by using relaxation factors. For unstructured
grids, all these techniques can be easily applied. Fezoui [43], Batina [15] and Slack et al. [113] have
used a Gauss-Seidel relaxation technique. It is also possible to generalize a red-black Gauss-Seidel
technique for unstructured grids leading to the multi-color Gauss-Seidel method. After coloring the
vertices (for cell-vertex schemes) and cells (for cell-centered schemes) the Gauss-Seidel algorithm
is applied to all the unknowns in each color. As the colors are processed sequentially, use is made
of the latest available values of the neighbors. This algorithm has been used by Anderson [5] to
compute compressible Euler
ows on unstructured grids.

For e�cient implementation on vector computers, the kernels that are of interest in Eqn. (16)
are the evaluation of b which is the negative of the the residual vector Rk in Eqn. (12), the matrix

9

vector product AX and the inversion of M . The vectorization of the residual has already been
covered in Section 3. The matrix vector product AX can be vectorized as explained in Section 4.3.
Regarding the inversion of M , vectorization for the Richardson's method and Jacobi procedure
is trivial whereas vectorization for the Gauss-Seidel method can be achieved by using wavefront
ordering [4] also described in Section 4.3. Vectorization of the multi-color Gauss-Seidel method is
straight-forward since all the entities (cells or vertices) belonging to the same color can be processed
simultaneously.

4.2.3 Line-implicit methods

As mentioned earlier, line-implicit methods are among the most successful implicit methods in use
for structured grids. However, ADI and AF are not appropriate for grids that possess no structure.
Hassan et al. [57] have developed a line-implicit procedure which we now describe for a cell-vertex
scheme. A line or a set of lines is passed through the grid such that each line passes through each
vertex exactly once. In graph theoretic terms, such a path or circuit which visits each vertex exactly
once is called a Hamiltonian tour [50]. For a given graph, there may exist many Hamiltonian tours
or none at all. Graphs arising out of triangulations in two and three dimensions appear to permit
multiple tours. Hassan et al. [57] have developed an e�cient incremental algorithm to �nd these
lines. They specify in addition, the orientations of the lines, so that in two-dimensional applications
two lines result, one being `vertical' and the other being `horizontal'. The algorithm is then made
implicit along each line, thus yielding a tridiagonal approximation for matrixM in Eqn. (15) which
can be easily solved. At each time step, Morgan et al. in [1] only perform one iteration in Eqn.
(15) for each line. Vectorization is an issue for this scheme since there is no nesting of tri-diagonal
systems as in ADI methods. It is possible to achieve vectorization by using a cyclic reduction
method [52] at the expense of higher operation counts. Morgan et al. in [1] have demonstrated
the e�ectiveness of this algorithm over an explicit method for solving inviscid problems in two
dimensions.

Figure 5(a): A `snake' with horizontal orien-
tation for an unstructured grid.

Figure 5(b): Linelets with horizontal orienta-
tion.

Martin and L�ohner [77] refer to the Hamiltonian tours as `snakes'. They have observed that there
is a signi�cant folding of these lines. This means that the
ow of information in the predominant
direction may be slowed down. Rather than use multiple lines as done by Hassan et al. [57], in

10

order to obtain a steady
ow of information they reconnect the line in the direction of interest.
Thus the line is broken into multiple linelets and the scheme is made implicit along these linelets.
Figure 5(a) and 5(b) taken from [77] illustrate a `snake' and linelets, aligned roughly with the
horizontal direction. Martin and L�ohner describe a general algorithm that creates these linelets on
unstructured meshes. However, the matrix no longer has a tri-diagonal structure and therefore,
they carry out a direct factorization, processing multiple linelets simultaneously to improve the
performance on vector computers. They report that the vector performance is still unacceptably
low. They have used this technique as a preconditioner for a conjugate gradient method when
solving the Poisson equation for pressure in incompressible
ows.

One shortcoming of the line-implicit methods is that the direction of propagation of information
is predetermined. Although the sensitivity to the orientation can be alleviated by using multiple
lines with di�erent orientations, the approach is not satisfactory because the
ow of information,
in general, varies locally. The methods advocated in the chapter by Mavriplis, may be attractive
in this regard. If the residual Ri at vertex i can be expressed as

Ri =
X
j2Ni

Cij(uj � ui); (17)

with Ci;j � 0, where Ni is the set of neighbors of i, the coe�cients Ci;j are interpreted as edge-
coe�cients that signify the strength of the connection between vertices i and j. It may be possible
to use this information to decide how to group vertices so that these can be treated implicitly. It
may also be possible to extend these ideas to systems of equations, where Ci;j becomes a matrix.

4.2.4 Incomplete LU factorization methods

A family of iterative schemes arises out of an incomplete LU factorization and is referred to as
ILU(n) [88]. A symbolic viewpoint is adopted in that LU factorization is carried out with a
prespeci�ed nonzero pattern. During the factorization, all the entries that fall outside of this
pattern are ignored. Here n represents the level of �ll-in. n = 0 implies no �ll-in beyond the
original nonzero pattern. n = 1 refers to a case where �ll-in caused by the original nonzero pattern
is allowed but not the �ll-in caused by the newly �lled-in entries. In practice, n = 0 is often used
especially for general sparse matrices since it is quite robust and has lower storage requirements.
Note that in terms of the general iterative framework, this scheme does not explicitly de�ne matrix
M in Eqn. (15); rather, the ILU factorization directly de�nes M�1. The Symmetric Successive
Over Relaxation (SSOR) iterative method with the relaxation factor set to 1 looks exactly like the
ILU(0) scheme, except that the lower and the upper factors are read o� directly from the matrix A
rather than by an incomplete factorization. Incomplete factorization is a nonvectorizable procedure
(although parallelizable by using wavefront ordering described later); SSOR method dispenses with
this sequential procedure. ILU factorization and SSOR as iterative techniques by themselves will
be tested for solving the linear sub-problems at each time step.

In contrast to the symbolic factorization viewpoint adopted in the de�nition of ILU given above,
a second method of obtaining incomplete factorization relies on the numeric values of the entries.
Gaussian elimination is carried out and entries are dropped if they fall below a certain threshold
[144]. In general, it is more expensive compared to the symbolic procedure. Saad [108] has proposed
a method that combines the two approaches which makes use of simpler data structures and is also
less expensive.

4.2.5 Advanced iterative methods

Multigrid methods. Multigrid methods can also be used to solve Eqn. (12). Multigrid methods
require the operators to be de�ned on a sequence of coarser grids, an iterative method that evolves
the solution (called a smoother) and interpolation operators that transfer information between

11

the grids. The principle behind the algorithm is that the high-frequency errors are damped by the
smoother on a given grid, whereas the low frequency errors are damped on coarser grids, where these
frequencies manifest themselves as high frequencies. In the case of unstructured grids, the coarse
grids can either be formed independently [79] or by using agglomeration methods [71, 114, 132]
by fusing �ne grid control volumes. The linear system is either determined by rediscretization or
by combining the �ne grid equations as in algebraic multigrid. Multiple Jacobi or Gauss-Seidel
iterations perform the role of a smoother. Lallemand et al. [71] have used the agglomeration
procedure and Anderson [5] has used the nonnested multigrid procedure to solve the linear systems
arising out of two- and three-dimensional inviscid
ows on unstructured grids. For a detailed
exposition on multigrid, see the notes in this lecture series by Mavriplis.

Krylov methods. One of the most e�ective ways of dealing with the solution of symmetric,
positive-de�nite matrix systems is by using a preconditioned conjugate gradient method devised
by Hestenes and Stiefel { see Strang [115]. The issue of preconditioning is covered in the next
section. The idea for conjugate gradient comes about from the observation that with a symmetric,
positive-de�nite matrix A, the solution X of the linear system

AX = b; (18)

minimizes the functional

F (z) =
1

2
(Az; z)� (b; z): (19)

The steepest descent method for this problem is de�ned by a one-dimensional minimization of F
in the direction of the gradient of F , given by rk :

xk+1 : F (xk+1) = min�F (xk � �rk)

rk = Axk � b: (20)

In the step xk ! xk+1 of the conjugate gradient method, instead, a (k+1)-dimensional minimization
is carried out:

xk+1 : F (xk+1) = min�0:::::�kF (xk � �0r0:::::� �krk) (21)

ri = Axi � b; i � k:

Because of the symmetry of A, an orthogonal basis of the ith Krylov subspace, de�ned below, can
be derived with only three-term recurrences. This is also su�cient for generating the residuals.
Thus, the residuals ri's and �i's need not all have to be stored. This results in constant work
and storage requirements at each iteration of the conjugate gradient method. Conjugate gradient
method overcomes the di�culties in convergence associated with steepest descent method and for
an n � n matrix A, it converges in n iterations in exact arithmetic.

For nonsymmetric systems, in some circumstances, it is possible to apply the conjugate gradient
method to the normal equations. The drawbacks are that the condition number worsens and that a
multiplication with the matrix transpose is required. It also eliminates the option of using matrix-
free methods discussed in Section 4.4. Several generalizations of conjugate gradient method to
solve nonsymmetric systems have been proposed in the literature. These can be classi�ed into
Arnoldi-based methods and Lanczos-based methods. The Generalized Minimal Residual Method
(GMRES) [109] belongs to the �rst category whereas the Transpose-free Quasi-minimum Residual
method(TFQMR) [45] and Bi-conjugate Gradient Stabilized method (Bi-CGSTAB) [34] belong to
the second category. For nonsymmetric systems, the optimality condition of Eqn. (21) is replaced
by the minimization of the residual norm at each step. The Arnoldi-based methods maintain this
optimality condition but sacri�ce the recursion relationships, whereas the Lanczos-based methods
relax the optimality condition. Compared with the Arnoldi-based methods, these methods require

12

less work and storage per iteration. GMRES is quite robust and is probably the most widely used
method and we describe it below.

Let x0 be an approximate solution of the system

Ax = b; (22)

where A is an invertible matrix. The solution is advanced from x0 to xk as

xk = x0 + yk: (23)

GMRES(k) �nds the best possible solution for yk over the Krylov subspace < v1, Av1, A
2v1 ,....,

Ak�1v1 > by solving the minimization problem

jjrkjj = miny jjv1 +Ayjj; (24)

r0 = v1 = Ax0 � b; rk = Axk � b: (25)

Here jjcjj stands for the L2 norm of vector c. The GMRES(k) procedure forms an orthogonal
basis fv1; v2; ::::::vkg (termed search directions) spanning the Krylov subspace by a modi�ed Gram-
Schmidt method. The Gram-Schmidt process is a potential source of numerical error. An alterna-
tive implementation of GMRES using Householder transformation is given by Walker [138]. The
search directions need to be stored. As k increases, the storage increases linearly and the number of
operations, quadratically. Good solutions can however be found in small subspaces (k � n) if the
n�n matrix A is well-conditioned. To mitigate the storage requirements and the operation counts,
Saad and Schultz [109] also describe a GMRES(k;m), which is a restarted GMRES(k) where the
k search directions are discarded and recomputed every m cycles. Substituting v1 = r0 into Eqn.
(24) we obtain

jjrkjj = minP (A)jjP (A)r0jj; (26)

where P (A) is of the form I + a1A + a2A
2 + :::akA

k. GMRES can be thought of as an optimal
polynomial acceleration scheme [141]. Some insight can be gained by considering the special case
of A being a diagonal matrix. Eqn. (26) then becomes

jjrkjj � E(k)jjr0jj; (27)

where E(k) = minp2P (k) max�2�(A)jp(�)j and �(A) is the eigenvalue spectrum of A. Like the
conjugate gradient method, GMRES also satis�es a �nite-stopping criterion, i.e., in the absence
of roundo� errors, it will converge in at most n iterations for an n � n matrix. Preconditioning
greatly improves the performance of GMRES and other related methods. It decreases the size
of the spectrum so that the optimal polynomial generated by GMRES can annihilate the errors
associated with each eigenvalue. For most large scale CFD problems, preconditioning is essential
to achieve convergence of the linear problem.

4.2.6 Preconditioning

Instead of Eqn. (22) the preconditioned iterative methods solve the following systems:

PAx = Pb; (28)

or
AQ(Q�1x) = b (29)

The systems of linear equations in Eqn. (28) and Eqn. (29) are referred to respectively as, left
preconditioned and right preconditioned systems and P and Q as left and right preconditioners.
The role of the preconditioner is to cluster the eigenvalues around unity. Thus, we require the

13

preconditioner to be a good approximation to A�1 (the ideal preconditioner) while being easy to
compute. Thus, the requirements for a preconditioner are not di�erent from those for choosing M
in the general iterative method given by Eqn. (15). Thus all of the candidates forM ful�ll the role
of a preconditioner.

There is an important di�erence between right and left preconditioning. In the iterative meth-
ods, one sets a tolerance and when the residual for the linear problem is reduced to this tolerance
relative to the initial residual, the linear system is declared solved. In the case of right precondition-
ing, this residual is the actual residual of the linear system Ax� b, whereas in left preconditioning
it is the scaled residual P (Ax� b). Therefore, when left preconditioning is employed, it is possible
that the actual residual is not reduced as well as the scaled residual. As a result, we could terminate
the solution procedure prematurely. Figure 6, taken from [127], shows the convergence histories
obtained using left and right preconditioned GMRES for laminar
ow over an NACA0012 airfoil.
The
ow conditions are M1 = 0:3, � = 3� and Reynolds number of 5000. The structured grid
computation employed grid sequencing and the convergence histories are plotted as a function of
CPU time on a Cray Y-MP. It is seen that on the �ne grid (128�32) convergence deteriorates with
left preconditioning.

Figure 6: Convergence histories with left and right preconditioning for laminar viscous
ow over
an NACA0012 airfoil.

Preconditioned GMRES method has been used to solve the compressible Euler and Navier-
Stokes equations by a number of researchers. GMRES with block-diagonal preconditioning has been
used by Shakib et al. [110] to solve the linear systems arising out of a �nite element discretization
of the Euler equations. Slack et al. [113] and Whitaker [140] have also used GMRES with block-
diagonal preconditioning in two and three-dimensional applications. Slack et al. [113] have observed
when solving the two-dimensional Euler equations, that the diagonally-preconditioned iterative
methods perform better than the other methods as the number of elements in the mesh increases.
Venkatakrishnan and Mavriplis [133] examined the use of GMRES with three preconditioners,
namely diagonal preconditioning, ILU factorization and SSOR for solving compressible Euler and
Navier-Stokes equations on unstructured grids. The discussion and results that follow are taken
from [133]. The preconditioners and the optimizations carried out to extract the best vector
performances out of them are described below.

14

4.3 Data structures

In this section the data structures and kernels employed are described for cell-vertex schemes in
two dimensions; these can be easily modi�ed to deal with cell-centered schemes. They are critical
in reducing memory requirements and obtaining good performance. In the course of the GMRES
method with preconditioning as per Eqn. (29), two kernels need to be addressed.

The �rst kernel is a sparse matrix - dense vector multiplication to compute Ax. The most com-
monly used data structures [49] are not suitable for this purpose since they have poor vectorization
properties. The compressed row-storage scheme that is suitable for LU factorization yields short
vector lengths because the vector lengths are limited to the number of nonzeros in each row. The
data structure that is used for storing the sparse matrix A is most easily explained by interpreting
the underlying triangular mesh as an undirected graph. Associated with each edge are the two
vertices, say n1 and n2, which are incident to the edge. The spatial discretization operator typi-
cally utilizes this data structure and therefore, this information is already available. The two 4� 4
matrices which contain the in
uence of n2 on n1 (entry in block row n1 and block column n2 in A)
and the in
uence of n1 on n2 are stored. The diagonal blocks are stored separately. With such a
data structure, a matrix vector multiplication can be carried out e�ciently by employing a coloring
algorithm to color the edges of the original mesh to get vector performance. Such a data structure
is possible since the graph of the sparse matrix for the lower order linear system is equivalent to
that of the supporting unstructured mesh.

The second kernel deals with the e�ect of the preconditioner Q on a vector. Q is D�1 for block-
diagonal preconditioning and (~L ~U)�1 for ILU preconditioning, where the~ indicates approximate
factors. For SSOR preconditioning, L and U are read o� directly from the matrix A. The block-
diagonal preconditioner computes the inverse of the 4 � 4 diagonal block associated with a grid
point. Good vectorization when using this preconditioner is easy to achieve by unrolling the LU
decomposition of the 4� 4 diagonal matrix as well as the forward and back solves over all the grid
points. The ILU and SSOR preconditioners require repeated solutions of sparse triangular systems.
By using a wavefront reordering algorithm [4] it is possible to obtain good vector performance.
Under this permutation of the matrix, unknowns within a wavefront are eliminated simultaneously.
The key step in this procedure is an o�-diagonal rectangular matrix - vector multiplication. This
requires that ~L and ~U be stored in a convenient form. A data structure similar to that for A
is chosen for ~L and ~U . In addition to the nonzero blocks and the block column numbers which
are provided by the compressed row storage scheme in the factorization, we store the block row
numbers. With this additional information, the data structure becomes similar to the edge-based
data structure employed for the A matrix except that we only store one block per edge. The o�-
diagonal matrix vector multiplication can then be vectorized by interpreting the rectangular matrix
as a directed graph and coloring the directed edges. The performances are further enhanced by
performing all the operations on blocks of size 4� 4.

The memory requirements for the implicit schemes are now given starting with the storage
requirements for the matrix A. A cell-centered scheme that makes use of the lower-order represen-
tation on the left-hand side of Eqn. (12) requires an array of size (�+1)�4�4N in two-dimensions
and (�+ 1)� 5� 5N in three dimensions, where N is the number of triangular or tetrahedral cells
and � is the number of neighbors of each cell. � = 3 in two dimensions and � = 4 in three dimen-
sions. In two dimensions, a cell-vertex scheme requires an array of size 7� 4� 4N = 112N to store
the nonzeros of the matrix, where N is the number of vertices. The factor of 7 arises from having 3
times as many edges as vertices (valid for all two-dimensional triangular grids, neglecting boundary
e�ects); we store two blocks per edge plus the diagonal matrix for all the vertices. The factor of 7
can also be arrived at as (�+1), where the average number of neighbors in a triangulation is 6. In
three dimensions �, de�ned as the ratio of the number of tetrahedra and the number of vertices,
N , could be arbitrarily large; however in practice this ratio is 5� 8. Meijering [87] shows that for

15

a three-dimensional Delaunay triangulation of randomly distributed points � � 6:77 and that the
number of edges in the triangulation varies as (� + 1)N � 7:77N . Thus the memory required to
store the nonzeros of the matrix in three dimensions is roughly 2(�+1)+1 � 17�5�5N = 425N .
This is prohibitive even given the large memory available on current supercomputers. Barth [13],
however, has proposed some interesting techniques that bring down the memory requirements for
dealing with the linear system derived from a higher order discretization. The standard iterative
methods require only one array of the sizes given above, namely to store the matrix A. ILU-
preconditioned GMRES method requires three such arrays. For our cell-vertex scheme, one of
these arrays stores the matrix A in the edge-based data structure that is suitable for computing
the matrix-vector product. A second copy stores the matrix in a compressed row format [49] that
is suitable for the factorization and a third contains the ~L and the ~U factors. The second array
is reused for storing the search directions in GMRES, permitting up to 27 search directions to
be stored in two dimensions. Block-diagonal as well as multi-color Gauss-Seidel preconditioners
dispense with one of these arrays.

We conclude this section with the topic of reordering of unknowns. The ordering of unknowns
has a bearing on the convergence properties of many iterative methods that involve a directional
bias such as the SSOR and ILU techniques. Batina [15] reordered the unknowns in the direction of
the freestream
ow while using a Gauss-Seidel iteration on unstructured grids to great advantage.
For structured meshes it was found [37] that a column-major ordering which minimized the band-
width (the \most local" ordering) yielded the best convergence rates. For unstructured meshes
we have settled on the Reverse Cuthill-Mckee (RCM) ordering [49]. This is a standard ordering
used in sparse direct methods to reduce �ll-in, but it also appears to be the \most local" ordering.
Various orderings based on coordinates of the vertices (sorting the vertices by the x coordinates,
y coordinates or some combination of x and y coordinates) were also tested in the solution of the
compressible Navier-Stokes equations in [133]. The RCM ordering gave slightly better convergence
rates over a wide range of problems. RCM is also more e�cient in that it creates fewer wavefronts,
thus producing longer vectors. Dutto [39] has carried out a systematic study of the e�ect of various
orderings on convergence and has reported similar results.

4.4 Newton-Krylov methods

All the iterative methods discussed so far sacri�ce convergence properties by making a lower order
approximation on the left hand side of Eqn. (12). If on the other hand, a consistent second order
approximation were employed on the left hand side, the convergence rates in terms of iterations
would vastly improve although involving higher computational and storage costs at each iteration.
If the linear system is solved well at each time step, it is possible to realize quadratic convergence
associated with Newton's method. As discussed earlier, the memory requirements for the higher
order matrix representation are prohibitive. Therefore, unless one has access to very large-memory
computers, this is not a viable approach. The Newton-Krylov approach bypasses this issue by
never forming the matrix. Instead the e�ect of the Jacobian matrix on a vector is approximated
by one-sided �nite di�erences:

@R

@W
(x)p �

R(x+ �p)� R(x)

�
; (30)

or by the more expensive central-di�erence approximation:

@R

@W
(x)p �

R(x+ �p)�R(x� �p)

2�
; (31)

where � is the step size. Newton-Krylov methods, proposed by Brown and Saad [24], have been
investigated for compressible Euler and Navier-Stokes equations using unstructured grids by Tidriri

16

[119], Johan et al. [66], Nielsen et al. [94] and for the full potential equation by Cai et al.
[26]. Finite-di�erencing with � makes the matrix-free methods somewhat susceptible to numerical
di�culties. To ensure that the derivative is reasonably well approximated, � cannot be too large.
It cannot be too small as the derivatives will be susceptible to precision errors. Guidelines for
choosing � are provided in the text by Dennis and Schnabel [33]. It appears that GMRES may
have an advantage over other Krylov methods when used in a matrix-free context because the
vectors p that arise in GMRES have unit-norm and are hence well-scaled. McHugh and Knoll [86]
have observed this to be the case when solving the incompressible Navier-Stokes equations. The
performance of GMRES did not degrade much when switching from a standard implementation to
the matrix-free implementation, whereas those of TFQMR and Bi-CGSTAB degraded.

Although the matrix-free method is attractive because it does not form the matrix explicitly,
the matrix is still required for preconditioning purposes. This is true for ILU, SSOR and multi-color
SOR preconditioners. Zohan et al. [66] settle for a compromise that uses a block-diagonal precon-
ditioner to enable them to solve three-dimensional problems. Therefore, for other preconditioners
that require the matrix, the advantage of the matrix-free methods comes not from a savings in
storage but from the fact that a true Newton's method can be approached. To this end, we can
use the lower order system to precondition the higher order system. In [26], ILU preconditioning
of the lower order system is employed in concert with a matrix-free GMRES in order to realize
fast convergence in the solution of nonsymmetric elliptic problems. Barth [13] and Nielsen et al.
[94] have employed an ILU preconditioning of the lower order system to solve three-dimensionals
Euler equations on unstructured grids. Whereas Barth uses a higher order matrix-based GMRES,
Nielsen et al. employ a Newton-Krylov framework.

4.5 Applications

The iterative methods discussed require a few parameters. The start-up CFL number (nondimen-
sional time step) and the maximum CFL number that can be used need to be speci�ed. It is also
possible to freeze the ILU factorization after a few time steps (or after a prescribed reduction in
the residual) and increase the e�ciency of the code, since it eliminates the assembly and/or the
approximate LU factorization of the matrix. This introduces an additional parameter. GMRES
requires a few parameters. It requires the maximum number of search directions k, the number of
restart cycles m and a tolerance level which speci�es the desired order of reduction of the residual of
the linear sub-problem. In all the problems, the tolerance is set to 10�5. The solution to the linear
system is terminated when the number of iterations exceeds the speci�ed maximum whether or not
the tolerance criterion is met, opting to rely on the outer inexact Newton iteration for convergence.
Experience indicates that the tolerance criterion is easy to meet in the initial stages of the
ow
solution, but becomes extremely di�cult to satisfy in the latter stages.

We illustrate the applications of iterative methods for a variety of
ows and problem sizes in
two dimensions. The �rst case studied is a standard airfoil
ow, namely inviscid
ow over the
ubiquitous NACA0012 airfoil at a freestream Mach number of 0.8 at 1:25� angle of attack. The
unstructured grid contains 4224 vertices or 8192 triangles. A close-up of the nearly uniform grid is
shown in Figure 7. The solution (not shown here) agrees with standard results. The computed lift,
drag and moment coe�cients are 0.3523, 0.0226 and -0.0452 respectively. The convergence histories
of �ve di�erent methods are shown in Figure 8 as a function of CPU time. Since we are dealing with
di�erent methods which require varying amounts of work at each time step we believe that CPU
time is the only true measure for comparing them. Since there are quite a few parameters involved
in each of these methods, what we have shown is the \best" convergence history obtained with each
method. GMRES with ILU preconditioning (GMRES/ILU) uses 5 search directions, CFL 20� 106

and freezes the factorization after 30 time steps. GMRES/SSOR, wherein SSOR is used as the
preconditioner, employs 15 search directions, CFL 20�106 and freezes the matrix after 30 time steps.

17

GMRES/DIAG, which uses the block-diagonal preconditioner, employs 25 search directions with 3
restarts, CFL 10-500,000 and freezes the preconditioner after 25 time steps. The ILU iteration uses
CFL 1-50 and freezes the matrix after 25 steps. Finally, the SSOR iteration uses CFL 1-25 and
freezes the matrix after 30 time steps. Using multiple \inner" sub-iterations with the ILU and the
SSOR iteration schemes in order to be able to use larger time steps turns out be less e�cient for
this problem. The number of time steps taken by GMRES/ILU, GMRES/SSOR, GMRES/DIAG,
ILU and SSOR are 75, 100, 75, 700 and 700 respectively. The parameters given above for the �ve
methods, we believe, are nearly optimal for this problem and yield the best convergence history for
each of the methods. Having to choose many parameters is a major drawback in using iterative
methods to solve the approximate linear systems arising from nonlinear problems. However, we
will be able to provide some guidelines for choosing these parameters for the best of these methods,
namely GMRES/ILU, by solving a few more representative problems. In Figure 8, we notice
that GMRES/DIAG is quite slow even for this simple problem, while ILU iteration appears to be
quite good. SSOR iteration and GMRES/SSOR have similar convergence histories. SSOR as a
preconditioner is not as e�ective as the ILU preconditioner; GMRES/ILU appears to be the best of
all the methods. As we shall see, as the problems get bigger and more sti�, GMRES/ILU performs
much better than the other four methods.

Figure 7: Grid about an NACA0012 airfoil
with 4412 vertices.

0 20 40 60 80 100

CRAY YMP-1 SECS.

-7

-6

-5

-4

-3

-2

-1

0

10

10

10

10

10

10

10

10

R
E

SI
D

U
A

L

GMRES/ILU
ILU
SSOR
GMRES/SSOR
GMRES/DIAG

Figure 8: Convergence histories for inviscid

ow over an NACA0012 airfoil (M1 = 0:8; � =
1:25�).

The next
ow considered is inviscid subcritical
ow over a four-element airfoil at a freestream
Mach number of 0.2 and angle of attack of 5�. The triangular mesh employed has 10395 vertices.
The grid is shown in Figure 9. The solution is not shown here and may be found in [78]. In Figure 10
we present the convergence histories of GMRES/ILU, GMRES/DIAG and ILU and SSOR iteration.
GMRES/SSOR had great di�culties in the initial stages and is not shown. GMRES/ILU converges
much better than the other methods. The parameters for GMRES/ILU are 10 search directions
and CFL 20� 106, the factorization being frozen after 30 time steps. GMRES/DIAG employs 25
search directions with 2 restarts, CFL 10 � 5 � 105 and freezes the preconditioner after 30 time
steps. ILU iteration uses CFL 1 � 50, freezes the matrix after 50 time steps and does not use
sub-iterations. SSOR iteration uses CFL 0:5� 5 and freezes the matrix after 100 time steps. The
number of time steps taken by GMRES/ILU, GMRES/DIAG, ILU and SSOR are 100, 70, 400 and
400 respectively. SSOR, either by itself or as a preconditioner, is clearly unsatisfactory for this

18

problem.

Figure 9: Grid about a four-element airfoil
with 10395 vertices.

0 50 100 150

CRAY YMP-1 SECS.

-7

-6

-5

-4

-3

-2

-1

0

10

10

10

10

10

10

10

10

R
E

SI
D

U
A

L

GMRES/ILU
ILU
SSOR
GMRES/DIAG

Figure 10: Convergence histories for invis-
cid
ow over the four-element airfoil (M1 =
0:2; � = 5�).

The performances of the methods are compared for transonic turbulent
ow over an RAE2822
airfoil, referred to as Case 6. The
ow conditions areM1 = 0.729, � = 2:31� and Reynolds number
6:5� 106 based on the chord. The
ow is computed on a mesh with 13751 vertices which contains
cells in the boundary layer and the wake region with aspects ratios up to 1000:1. For this turbulent
calculation, the unstructured mesh implementation of the Baldwin-Lomax model developed in
[80] is used. The grid is shown in Figure 11. The pressure plot and skin friction distribution
and experimental data are shown in Figures 12 and 13. The lift, drag and moment coe�cients are
0.7342, 0.0132 and -0.0978. Figure 14 shows the convergence histories of the various methods. Only
GMRES/ILU and GMRES/DIAG converge, the latter doing so much more slowly. GMRES/SSOR
diverges for any reasonable CFL numbers at all and its convergence history is not shown. The
parameters for GMRES/ILU are 25 search directions and CFL 5�25000. The factorization is frozen
after 80 time steps. The turbulence model is also frozen after nearly six orders of reduction in the
residual; otherwise, the residual hangs and the convergence of the method slows down. The e�ect
of freezing the turbulence model in this fashion has minimal e�ect on the aerodynamic coe�cients
(less than 0.02% change in lift coe�cient). The parameters for GMRES/DIAG are the same as
for GMRES/ILU. The number of time steps taken by both GMRES/ILU and GMRES/DIAG is
150. The unstructured multigrid algorithm of Mavriplis [79] takes nearly 300 secs. on the YMP to
reduce the L2 norm of the residual to :3� 10�3 and GMRES/ILU takes about 450 secs. to get to
the same level (7 orders of reduction in residual) for this problem. In the full multigrid algorithm,
the problem is �rst solved on coarser grids, whereas GMRES/ILU starts from freestream conditions
on the �ne grid. The ILU and SSOR iterations use 10 sub-iterations, CFL :5� 2:5 and still do not
converge after 200 time steps.

Based on this study, we draw the following conclusions regarding the �ve candidate implicit
schemes. For inviscid problems, with a small number of vertices and grids with low cell-aspect ratios,
most of the methods work well, GMRES with ILU preconditioning performing the best. For larger
problems, especially at high Reynolds numbers, almost all the methods except for GMRES/ILU
converge extremely slowly, if at all. Regarding the parameters, for inviscid
ows, we �nd that
5{10 GMRES search directions are usually su�cient, whereas the turbulent viscous
ows require
25 search directions. The start-up CFL number is usually about 20 for inviscid
ows and 5 for

19

turbulent viscous
ows and the CFL number is allowed to increase up to 500-50,000 fold. A non-
restarted GMRES is used whenever possible.

Figure 11: Mesh for computing transonic tur-
bulent
ow over an RAE2822 airfoil with 13,751
vertices.

1.

20

0.
80

0.

40

0.
00

 -
0.

40
 -

0.
80

 -
1.

20
 -

1.
60

Pr
es

su
re

 C
oe

ff
ic

ie
nt

Upper Surface

Lower Surface

Computed Solution

Figure 12: Computed surface pressure distri-
bution for Case 6 (M1 = 0:729; � = 2:31�) and
Reynolds number = 6:5� 106).

 -
1.

00
 -

0.
75

 -
0.

50
 -

0.
25

0.

00

0.
25

0.

50

0.
75

C
F

x
10

0

Upper Surface

Lower Surface

Computed Solution

Figure 13: Skin friction distribution for Case
6.

0 200 400 600

CRAY YMP-1 SECS.

-8

-7

-6

-5

-4

-3

-2

-1

0

1

10

10

10

10

10

10

10

10

10

10

R
E

SI
D

U
A

L

GMRES/ILU
GMRES/DIAG
ILU
SSOR

Figure 14: Convergence histories for Case 6
with the various implicit schemes.

20

An application of the Newton-Krylov method to solve three-dimensional Euler equations is
presented. This result is taken from a forthcoming paper by Nielsen et al. [94]. The Euler code
employs linear reconstruction and uses Roe's approximate Riemann solver to compute the
uxes.
The Newton-Krylov method employs an ILU preconditioning of the lower order system. Figure 15
shows the surface grid for an ONERA M6 wing with 139,356 nodes. The freestream conditions are
M1 = 0:699 and � = 3:06�. The convergence histories of the Newton-Krylov and the multi-color
Gauss-Seidel iterative techniques are shown in Figures 16(a) and 16(b) in terms of iterations and
CPU times on the Cray Y-MP. The superior convergence of the Newton-Krylov method is apparent.
The multi-color Gauss-Seidel employed 20 iterations. The Newton-Krylov method used 15 GMRES
search directions.

Figure 15: Surface grid for inviscid
ow over the ONERA M6 wing (139,356 nodes).

Figure 16(a): Convergence histories of the
Newton-Krylov and multi-color Gauss-Seidel
techniques as a function of iterations.

Figure 16(b): Convergence histories of the
Newton-Krylov and multi-color Gauss-Seidel
techniques as a function of CPU time.

21

5 Solution techniques for unsteady
ows

While solution techniques for computing steady
ows have evolved to a high degree of sophistication,
those for dealing with unsteady
ows have lagged behind. A comprehensive survey of methods for
computing unsteady
ows using structured grids may be found in the survey paper by Edwards
and Thomas [40]. In this section, we concentrate on techniques applicable for unstructured grids.

5.1 Finite volume discretization

After applying the �nite volume procedure, the following system of coupled di�erential equations
is obtained:

d

dt
(VMW) + R(W) = 0: (32)

Here W is the solution vector over the whole �eld, R(W) is the residual vector approximating the
boundary integral in Eqn. (1), V is the cell volume associated with the vertex and M is the mass
matrix.

The mass matrix arises because the update indicated by the residual R(W) should be made
to the average value in the control volume. It thus relates the average value of a control volume
associated with a vertex to the point value of the vertex and those of its immediate neighbors. Note
that this de�nition di�ers from the way the mass matrix is de�ned in �nite element formulations
where the mass matrix arises naturally from requiring the PDE, with the solution expanded in a
set of basis functions, to be orthogonal to a set of trial functions; in a Galerkin method the trial
functions are also the basis functions. It is well known that the use of a consistent mass matrix
in a �nite element method results in excellent phase properties [136, 35]. However, in the case of
�nite volume schemes employing a reconstruction procedure and upwinding, such a de�nition does
not extend readily and therefore we will use an alternative de�nition. For those schemes employing
a polynomial reconstruction procedure within a cell, the mass matrix is determined by computing
the average of this polynomial over the cell. When cell-centered approximations are employed, the
average value in the control volume and the point value at the centroid of the cell match to second
order accuracy, and therefore the mass matrix may be omitted, decoupling the system of ODE's
in Eqn. (32). However, when cell-vertex discretizations are employed, in general, the centroid of
the control volume is not represented by the vertex in question. The mass matrix M couples the
system of ODE's. The e�ect is that even when an explicit scheme such as a multi-stage Runge-Kutta
scheme is used, one has to deal with the solution of a coupled linear system at each stage of the
Runge-Kutta scheme. A technique called \mass-lumping" often used in �nite element approach
[116], replaces the matrix M by the identity matrix. While this has no e�ect on steady-state
solutions, for time-accurate computations, it would appear that such an approximation introduces
locally a �rst order spatial error. This approximation is routinely adopted for unsteady
ows as
well [16], and does not appear to adversely a�ect the quality of the solutions obtained. Davis and
Bendiksen [30] have observed little discernible di�erences in the unsteady solutions when using the
full and the lumped mass matrices. However, since they used an explicit scheme, the time steps
were quite small and furthermore, their grids appeared to be fairly uniform. For an equilateral grid,
the mass matrix can be lumped without any adverse impact, because the vertex locations coincide
with the centroids of the control volumes de�ned by the median dual. The technique employed
to solve the mass matrix (a few Jacobi iterations) is clearly not e�cient, especially when larger
grids are used. Also, when higher order spatial discretizations are employed, the mass matrix has
to be reckoned with, even when using cell-centered discretizations. An e�cient means of inverting
the mass matrix is yet to be found. Direct inversion will entail a substantial e�ort, and is clearly
unattractive, especially in three dimensions.

One way to avoid the mass matrix altogether is to never deviate from the concept of cell
averages. This would require that the reconstruction procedure only make use of cell averages and

22

not point values. This is an attractive proposition for higher order schemes. Higher order accurate
schemes based cell averages have been proposed and tested in [11, 27, 55].

In the following, we will review explicit schemes for unstructured grids and some acceleration
techniques. The techniques of residual averaging and temporal adaptation that relax time step
restrictions are brie
y reviewed. Finally, the development of implicit schemes that allow for arbi-
trarily large time steps is outlined. Much of the discussion on the implicit scheme for unstructured
grids is excerpted from a forthcoming paper [134].

5.2 Explicit schemes

Explicit schemes are the schemes of choice for certain unsteady applications when the time scales
of interest are small or more precisely, that they are comparable to the spatial scales. The grids
should be clustered only in regions of interest; otherwise, the size of the explicit time step could
become unnecessarily small. However, when dealing many low frequency phenomena such as
utter,
explicit schemes lead to large computing times. Also, for a variety of practical viscous
ows, the
time step restrictions imposed by small cells deep inside the boundary layer are excessively small.
Since the boundary layer is quasi-steady, implicit methods which allow for larger time steps may
be more suitable methods for such
ows.

Assuming that the mass matrix has been lumped, the explicit schemes reviewed in Subsection
4.1 can be applied to solve the system of uncoupled ODE's Eqn. (32) in a time-accurate manner.
The standard Runge-Kutta schemes are attractive since they can be designed to have a temporal
order of accuracy comparable to the spatial order of accuracy, without the need to store many
solution levels. When the spatial discretization possesses the TVD (Total Variation Diminishing)
or ENO (Essentially Nonoscillatory) properties, the Runge-Kutta schemes designed by Shu and
Osher [111] are often employed since they preserve these properties while maximizing the CFL
number.

When the mass matrix is present, the system of ODE's is coupled. When using a two-step
explicit Finite Element - Flux Corrected Transport (FEM-FCT) algorithm, Parikh et al. [99] used
a few Jacobi iterations since the mass matrix is well-conditioned. Davis and Bendiksen [30] when
employing a multi-stage Runge-Kutta algorithm have used a similar procedure at every stage of
the RK scheme. Donea [35] advocated a two-pass procedure where the bene�cial e�ect of the mass
matrix is exploited in a lumped-explicit context. Splitting the mass matrix M = I + B, the two
pass procedure for Eqn. (32) becomes

V (Wn+1
j �Wn

j)
(1) = �Ri(W

n)

V (Wn+1
j �Wn

j)
(2) = �Ri(W

n)�B(Wn+1
j �Wn

j)
(1) (33)

Donea also showed that such a scheme possesses the same order of accuracy as the scheme employing
a consistent mass matrix, while su�ering some degradation in phase properties on uniform grids.

One way to relax the stability restrictions of explicit schemes is by using the technique of
residual averaging [61]. However, in its original form it is only applicable for steady computations.
Venkatakrishnan and Jameson [131] proposed an extension of residual averaging for time-accurate
computations. This is outlined for a one-dimensional example. To solve

@W

@t
+R(W) = 0; (34)

replace the residual R(W) by �R(W) given implicitly by the relation

� �i+1=2(�Ri+1 � �Ri) + �Ri + �i�1=2(�Ri � �Ri�1) = Ri (35)

23

� is required to satisfy the following inequality which can be derived by assuming a central di�erence
approximation to the �rst order spatial derivative, R(W) = @u

@x
:

� �
1

4
[(�t=�t�)2 � 1]: (36)

Here �t is the global time step used and �t� is the local time step allowed for the unsmoothed
scheme. This is similar to the implicit scheme of Lerat et al. [72] where use is made of the spectral
radius of the Jacobian matrix which is inversely related to the local time step. However, Lerat et
al. [72] interpret their method as correcting the truncation error term in an implicit manner. They
were able to show unconditional stability for this implicit method. Even though unconditional
stability is proven for such implicit schemes, in practice only a CFL number of the order of 10 is
used. This practical limit arises out of convergence considerations for steady problems and temporal
truncation error in time-accurate computations. For steady state applications, � is assumed to be
constant given by Eqn. (36), with �t replaced by �, the CFL number with residual averaging, and
�t� replaced by ��, the CFL number of the unsmoothed scheme.

Another technique that can be used to improve the performance of explicit schemes is temporal
adaptation. Standard explicit schemes use a globally minimum time step for stability reasons.
This implies that many of the cells such as the cells having large volumes, are being advanced at a
fraction of maximum time steps permitted locally by stability considerations. Kleb et al. [70] have
derived a procedure that enables di�erent cells to take varying number of local time steps to get
to a particular time level. The residual calculations make use of time-consistent
uxes which are
either available or are obtained via interpolation. Kleb et al. [70] have demonstrated savings in
computational e�ort of factors up to 10 over explicit schemes that employ globally minimum time
steps when solving a variety of two-dimensional transonic
ows on unstructured grids.

Multigrid time-stepping schemes have been developed primarily to accelerate the convergence
to steady-state. They rely on approximations of the governing equations on a sequence of suc-
cessively coarser grids. In contrast to the elliptic viewpoint given in Section 4.2.5, the hyperbolic
interpretation of multigrid is that by using successively coarser grids and maintaining a constant
CFL number, and thereby taking increasingly larger time steps, the disturbances are rapidly dis-
patched out of the domain. One e�ort arising as a result of adopting the hyperbolic viewpoint is
the unsteady multigrid algorithm of Jespersen [46]. While he was able to show theoretically that
the solution obtained by using this procedure was time-consistent to a given order, he observed
experimentally that the quality of the solution deteriorated as the number of coarse grids used was
increased.

In spite of these acceleration techniques, explicit schemes are not viable for many unsteady
computations. An implicit method that allows for arbitrarily large time steps is desirable since
the time steps would then be solely determined by
ow physics. Akin to a spatial grid re�nement,
a temporal re�nement should be done to ensure that the solution is converged in time. Such a
method is outlined in the next section.

5.3 Implicit schemes

When an implicit scheme is used to solve for unsteady
ows, one has to drive the unsteady residual,
de�ned below, to zero or at least to truncation error. In the context of factored implicit schemes,
this is usually done by employing inner iterations [103, 102]. It is the role of these inner iterations
to eliminate errors due to factorization, linearization, and also errors arising from employing a lower
order approximation on the implicit side. The number of inner iterations required may be large
depending on the
ow situation and the size of the time step employed.

Brennis and Eberle [22] and Jameson [62] have advocated a di�erent approach for deriving an
e�cient implicit scheme for unsteady
ows. The idea is to de�ne an unsteady residual, following
a backward di�erence approximation to the time derivative and then use the same method as for

24

the steady state problem. In [22] a relaxation method is used whereas in [62] a multigrid procedure
is used as a driver for the fully implicit scheme when using structured grids. The signi�cant
advantage of the approach when multigrid is used to solve the nonlinear problem is that it incurs
no storage overheads associated with traditional implicit schemes, and is particularly attractive for
unstructured grid computations in three dimensions. It allows the time step to be determined solely
based on
ow physics. This method has been used to compute two- and three-dimensional
ows
over airfoils and wings [62, 89, 3] using structured grids. Vassberg [125] has applied this method
to compute
ow solutions over oscillating airfoils using unstructured grids where a sequence of
triangulations was generated by removing points from the �ne grid triangulation.

We �rst outline the implicit scheme as developed by Jameson [62] for cell-centered structured
grids. Therefore the mass matrix was not present in his formulation. Replacing the mass matrix
in Eqn. (32) by the identity matrix and making a 3-point backward-di�erence approximation for
the time derivative yields

3

2�t
V n+1Wn+1 �

2

�t
V nWn +

1

2�t
V n�1Wn�1 +R(Wn+1) = 0: (37)

As argued in [62], when applied to a linear di�erential equation of the form,

dW

dt
= �W (38)

this particular discretization is A-stable i.e., stable for all values of ��t in the left-half of the
complex plane [29]. Eqn. (37) is now treated as a steady state equation by introducing a pseudo-
time t�. The multigrid scheme then solves the following system to steady state using local time
steps �t�:

@V U

@t�
+R�(U) = 0; (39)

where U is the approximation to Wn+1. Here the unsteady residual R�(U) is de�ned as

R�(U) =
3

2�t
V U +R(U)� S(V nWn; V n�1Wn�1) (40)

with the source term

S(V nWn; V n�1Wn�1) =
2

�t
V nWn �

1

2�t
V n�1Wn�1 (41)

remaining �xed through the multigrid procedure. We would like to drive R� to zero at each time
step.

A multi-stage Runge-Kutta scheme is now applied to solve Eqn. (39). A low-storage second
order accurate m-stage Runge-Kutta scheme to advance U is given by

Q0 = U l

::::

V n+1Qk = V n+1Q0 � �k�t
�R�(Qk�1) (42)

::::

U l+1 = Qm

Starting with U1 = Wn, the sequence of iterates U l; l = 1; 2; 3:::: converges to Wn+1.
However, the way the scheme has been formulated has been observed by Arnone et al [6] to be

unstable for small physical time steps, �t. This is counter-intuitive because when using small �t,
the multigrid procedure should converge fast and ideally, in the limit of explicit time steps, the
multigrid procedure should converge in just a few iterations. Otherwise, one has to depart from the

25

implicit framework for small time steps and switch to an explicit scheme and, this is not desirable.
Melson et al. [89] showed that the problem is due an instability that arises when small �t is used.
They modi�ed the scheme to get rid of this instability. The problem is that the unsteady residual
R�(W) includes the term 3

2�t
V U and, is therefore, treated explicitly in the Runge-Kutta scheme.

Their analysis showed that if this term were treated implicitly in the Runge-Kutta scheme, the
stability region would grow as �t decreased. It is easy to treat the term implicitly since it is only
a diagonal term. Splitting the residual R�(U) as

R�(U) =
3

2�t
V U +R(U)� S; (43)

the Runge-Kutta scheme now becomes,

Q0 = U l

::::�
I +

3

2�t
�k�t

�

�
V n+1Qk = V n+1Q0 � �k�t

� [R(Qk�1)� S] (44)

:::: (45)

U l+1 = Qm

With the modi�ed scheme, Melson et al. [89] have shown that arbitrarily large or small time steps
�t may be employed.

As in [62, 89], we employ a full approximation storage multigrid scheme. The source term is
computed only on the �ne grid and the coarse grids are driven by the �ne grid residuals. For
the generation of coarse grids we follow the agglomeration multigrid procedure [71, 114, 132, 84,
85]. In this method, the sequence of coarse grids is generated a priori using e�cient graph-based
algorithms. This method has certain advantages when dealing with rigidly moving or deforming
meshes. Since the edges that comprise the coarse grid volumes are subsets of the �ne grid control
volume edges, when the grid moves rigidly or deforms, the projections of the control volume faces
onto the coordinate directions are easily computed from those of the �ne grid. Also, as long as no
grid points are added or removed, and the triangulation remains valid, and the grid connectivity
remains the same, the interpolation operators stay the same. Multigrid schemes based on non-
nested triangulations would have to recompute the transfer operators when the grids deform.

5.4 Treatment of the mass matrix

When employing a vertex-centered approximation, making a 3-point backward-di�erence approxi-
mation for the time derivative yields

3

2�t
V n+1Mn+1Wn+1 �

2

�t
V nMnWn +

1

2�t
V n�1Mn�1Wn�1 +R(Wn+1) = 0: (46)

The multigrid scheme now solves the following system to steady state using local time steps �t�:

@V U

@t�
+R�(U) = 0; (47)

where U is the approximation to Wn+1 where R�(W) now includes the mass matrix terms. Notice
that the �rst term @U

@t� does not involve the mass matrix uncoupling the system of equations. The
explicit Runge-Kutta scheme can be applied exactly as before. Thus, the inversion of the mass
matrix is thus accomplished indirectly during the multigrid procedure. However, the modi�ed
scheme of Melson et al. [89] poses a serious problem. Their modi�cation would require the term

26

3

2�t
VMU to be treated implicitly which is no longer a diagonal term. A modi�cation has been

devised that solves this problem and is detailed below. The implicit Runge-Kutta scheme that is
stable for all �t is given by

Q0 = U l

::::�
I +

3

2
�t�k�t

�Mn+1

�
V n+1Qk = V n+1Q0 � �k�t

� [R(Qk�1)� S] (48)

::::

U l+1 = Qm

where the source term S is now given by

S =
2

�t
V nMnWn �

1

2�t
V n�1Mn�1Wn�1 (49)

If we simply replace the mass matrix M by the identity on the left hand side of Eqn. (49), we
have observed that the instability at small time steps persists. In our modi�cation, we �rst add
and subtract 3

2�t
�k�t�Mn+1V n+1Qk�1 on the right hand side of Eqn. (49) to obtain

�
I +

3

2�t
�k�t

�Mn+1

�
V n+1Qk = V n+1Q0��k�t

�R�(Qk�1)+
3

2�t
�k�t

�Mn+1V n+1Qk�1; (50)

where use has been made of the equation

R�(U) =
3

2�t
V MU + R(U)� S: (51)

Note that the same term 3

2�t�k�t
�MVQ appears on the left and the right hand sides of Eqn. (50),

except that they are valuated at the k� 1 and k stages . Recall that R�(U) is being driven to zero.
The mass matrixM can now be replaced by �I , where I is the identity matrix and � is a constant
yielding the following equation:�

1 +
3

2�t
�k�t

��

�
V n+1Qk = V n+1Q0 � �k�t

�R�(Qk�1) +
3

2�t
�k�t

��V n+1Qk�1 (52)

The method can always be stabilized by increasing � and is akin to using a damped Jacobi method.
The implicit Runge-Kutta scheme no longer requires a matrix inversion. For small time steps of
the order permitted by the explicit scheme, we �nd that the choice of � = 2 stabilizes the scheme.

5.5 Grid adaptation for transient problems

One of the principal advantages of unstructured grids is the ease of adaptation. Adaptive grids
are increasingly being used to compute complex unsteady and steady
ows. Grid adaptation is
particularly useful in transient
ows, where features, such as shocks, move through the domain ; it
is impractical to re�ne the grid everywhere. There are three distinct ways the grid can be adapted
to the solution. These are r-re�nement, h-re�nement and p-re�nement. In r-re�nement, the nodes
are simply redistributed so that regions of importance are better resolved. In h-re�nement or mesh-
enrichment, the cells are locally subdivided or merged or in some instances, a complete remeshing
is done to reduce the grid spacing in regions of interest. In p-re�nement, the degree of the basis
function is adjusted locally to match the variation in solution.

R-re�nement is probably the simplest in concept, but is burdened with practical di�culties in
multi-dimensions particularly when dealing with highly stretched grids customarily employed for
viscous calculations. The di�culties include excessive grid skewness, crossing of lines, arbitrarily

27

small cell volumes etc. The advantage of r-re�nement is that if a valid grid results from it, all
that is required is interpolation of variables from the old to the new grid. This could be done in
a conservative manner if desired. A way to avoid the interpolation, which introduces errors that
could accumulate, is to introduce the grid movement terms in the governing equations Eqn. (1).
These terms need to be discretized carefully so that freestream is preserved. In other words, simply
moving the grid through the domain should not change the freestream solution. The Geometric
Conservation Law (GCL) [117, 143] formalizes this procedure. It can be derived from the continuity
equation in Eqn. (1) by assuming the control volumes to be the simplices themselves, both for cell-
vertex and cell-centered schemes. Assuming a uniform velocity �eld and a constant density �eld,
we obtain

@V

@t
+
I
S(t)

[V � s]:n da = 0; (53)

where V is the velocity �eld and s is the velocity of the boundary S(t). Since V is constant and
the control volume is assumed to be closed at all times so that

H
S(t)n da = 0, the equation becomes

@V

@t
�

I
S(t)

s:n da = 0: (54)

The discrete form of this equation should hold at all time steps and for all the simplices and is
called the GCL. Using a forward Euler approximation for the time derivative, we obtain

Vn+1I � VnI =

I
SI(t)

s:n �t da

=
X
j

Z

Ij

s:n �t da; (55)

where SI =
P

j
I;j is the surface enclosing the volume VI of simplex I . As observed in [143], the
term inside the summation represents the volume swept out by the boundary
I;j as the grid points
forming that segment move. If grid points are allowed to move arbitrarily, the GCL enables the
velocities s to be determined so that the GCL is obeyed. Since simplices are convex, the volumes
Vn;Vn+1 are uniquely determined by the positions of the points at time levels n and n + 1. If the
velocity si for grid point i is computed by the simple formula

si =
Xn+1

i �Xn
i

�t
; (56)

where X is the position vector, it turns out that the GCL is satis�ed. Eqn. (56) simply means
that a linear motion of the grid points is assumed between time levels n and n + 1.

Recently, r-re�nement has been used to great advantage with Roe's upwind scheme [106] to
obtain \�tted" shock resolution for steady and unsteady two-dimensional
ows [98, 100, 124] by
aligning the edges of the triangulation with discontinuities. The \�tting" is done in a shock-
capturing framework by utilizing that property of Roe's scheme which allows isolated discontinuities
aligned with the mesh to be captured exactly. Many of the methods for moving grid points such
as the use of exponentially-varying scaling factors [30], tension spring analogies [14, 47, 56] create
valid triangulations only when small time steps are used. For large time steps, especially when
multiple bodies are present and also for highly clustered viscous grids, these methods usually
result in invalid triangulations with crossing grid lines. Retriangulation techniques proposed in
[47, 56] would have to be incorporated to recover valid triangulations, but could become expensive.
Palmerio [97] presents some interesting techniques for adapting the grid to
ow solutions which
could be extended to deal with large scale motions of the bodies. A fast regridding procedure will
also have applications in design optimization, where the geometry changes during the design cycle.

28

H-re�nement is by far the most popular means of adaptation in compressible
ows. This is
especially true for inviscid
ows dominated by interactions of shock waves where p-re�nement
techniques are of limited value. The regions of interest are �rst identi�ed either through a com-
bination of heuristic criteria such as density gradients (undivided) or through estimation of the
truncation error. For transient problems, adaptation is performed frequently and therefore the
regridding process is required to be e�cient. E�cient h-re�nement techniques have been developed
in [75, 105]. The problem of
ow past bodies in relative motion has also been addressed in the
literature [74, 44, 120, 56, 68, 27]. Typically, mesh point movement and e�cient mesh restructur-
ing are employed to obtain valid, good-quality grids about the moving bodies. Many impressive
simulations of
ows about bodies in relative motion have been carried out using unstructured grids
e.g., [16].

5.6 Applications

First, results from a one-dimensional example are presented illustrating the role of the mass ma-
trix. Observe that for a second order accurate scheme on a uniform mesh with constant �x,
the vertex and the centroid of its control volume coincide. Therefore, the mass matrix can be
lumped without su�ering any adverse consequences. The situation is di�erent if a mesh with
variable mesh widths is considered. In particular, random perturbations about a uniform mesh
are considered. Starting with a uniform mesh with constant �x, each vertex moves randomly
towards its left or right neighbor a random amount. The distribution of �x is shown in Figure
17 with 100 grid points and displays a considerable deviation from the uniform mesh �x = 0:01.

0 20 40 60 80 100

Grid point no.

0.000

0.005

0.010

0.015

0.020

D
el

ta
 x

Figure 17: Distribution of the grid spacing in
the non-uniform grid with 100 grid points.

-4 -3 -2 -110 10 10 10

1/NX

-6

-5

-4

-3

-2

-1

10

10

10

10

10

10

L
2

E
R

R
O

R

Lumped mass matrix
Mass matrix - Eqn. (60)
Unif mass matrix - Eqn. (60)
Mass matrix - Eqn. (62)
FEM mass - Eqn. (63)

Figure 18: L2 norms of the errors with various
schemes.

The spatial derivative @u
@x

is approximated in a MUSCL scheme [121] as

�
@u

@x

�
i

=
1

�x
(uLi+1=2 � uLi�1=2) (57)

The one-dimensional advection equation is solved �rst using a scheme that is spatially second order
accurate. It employs a linear reconstruction procedure:

uLi+1=2 = ui + (xi+2 � xi)
(ui+1 � ui�1

(xi+1 � xi�1
: (58)

29

On a uniform grid, this formula reduces to the � = 0 scheme. Recall that the formula for the �
scheme [121] is given by

uLi+1=2 = ui +
1� �

4
(ui � ui�1) +

1 + �

4
(ui+1 � ui); (59)

which on the random grid is only �rst order accurate for the spatial derivative. The initial condition
is a Gaussian and the pro�le is advected by marching to a �xed time. A grid re�nement study is
carried out by using a constant CFL number of 0:5 and doubling the mesh size starting from 50
grid points. The mass matrix, which is tridiagonal, is inverted using Thomas algorithm. We have
experimented with two de�nitions of the mass matrix. The �rst one assumes a piecewise-linear
distribution of data. The entries in the mass matrix for vertex i are given by deriving the formula

for the average value u in the interval
h
xi�1=2; xi+1=2

i
:

1

4

xi � xi�1

(xi+1 � xi�1)
ui�1 +

3

4
ui +

1

4

xi+1 � xi

(xi+1 � xi�1)
ui+1 (60)

A second de�nition of the mass matrix is derived as the average of the reconstruction polynomial
within a cell which for this scheme is

u(x) = ui + (x� xi)
ui+1 � ui�1

xi+1 � xi�1
: (61)

The mass matrix then becomes

�
1

8

xi�1 � 2xi + xi+1

(xi+1 + xi�1)
ui�1 + ui +

1

8

xi�1 � 2xi + xi+1

(xi+1 + xi�1)
ui�1 (62)

Figure 18 compares the errors in L2 norm with the mass matrices given by Eqn. (60) and Eqn.
(62), and with the lumped mass matrix. All the schemes exhibit second order accuracy and the
errors are larger with the mass matrix given by Eqn. (60). The results obtained with the lumped
mass matrix are almost identical to those obtained with Eqn. (62). As per the earlier discussion,
Taylor series expansion would imply a �rst order error with the lumped mass matrix, whereas
Figure 18 clearly indicates second order accuracy. The results therefore reveal the inadequacy of
local analysis. Figure 18 also shows the results when we assume a uniform grid just for evaluating
the mass matrix in Eqn. (60), so that the entries become 1=8; 3=4; 1=8 and exhibits almost no
di�erence. Note that when such an assumption is made with Eqn. (62) it results in a lumped mass
matrix. The results obtained with the usual �nite element mass matrix

1

6
ui�1 +

4

6
ui +

1

6
ui�1; (63)

are also shown in Figure 18 and again displays larger errors compared to the lumped mass approx-
imation. The reason for this is that the �nite element mass matrix is consistent with a Galerkin
method which results central di�erence discretization, whereas the spatial di�erencing employed
here is upwind-biased. After experimenting with a one-parameter family of mass matrices, we have
found that the lumped mass matrix gives the lowest errors with this particular spatial discretization.

It is well known in �nite element literature [116] that in some cases the lumping of the mass
matrix does not compromise the solution accuracy but that the mass matrix may play a crucial
role when higher-order discretizations are considered. To this end, the � = 1=3 is used to discretize
spatial derivative to third order accuracy, on a uniform grid. The �nite volume mass matrix with
a quadratic distribution within each cell now reads

1

24
ui�1 +

11

12
ui +

1

24
ui+1 (64)

30

Figure 19 shows the error plots for the � = 1=3 scheme with the lumped and the full mass matrices.
The use of the mass matrix degrades the scheme to second order accuracy whereas the lumped
mass matrix yields third order accuracy. At �rst glance, this would appear surprising. However,
if we recall that the � formula assumes cell-averaged quantities, it is clear that the mass matrix
should be equal to the identity matrix. It is wrong to use any other mass matrix when dealing with
schemes based on cell-averaged values. To obtain a third order accurate scheme based on point
values, the following formula should be used:

uLi+1=2 = �
1

8
ui�1 +

3

4
ui +

3

8
ui+1 (65)

Figure 19 also shows the error plots for this third order accurate scheme with the full and the
lumped mass matrices. It shows that with the lumped mass matrix only second order accuracy
is achieved, whereas using the full matrix given by Eqn. (64) yields the third order accuracy of
the spatial discretization. We have observed that using any other de�nition for the mass matrix
degrades the accuracy to second order. The standard Runge-Kutta scheme that is fourth order
accurate in time is used for the higher order computations.

-4 -3 -2 -110 10 10 10

1/N

-7

-6

-5

-4

-3

-2

-1

10

10

10

10

10

10

10

L
2

E
R

R
O

R

Lumped-kappa=1/3
Full mass-kappa=1/3
Lumped-3rd order
Full mass-3rd order

Figure 19: L2 norms of the errors with higher-order schemes.

The implications for the scheme in multiple dimensions are clear. As long as only a second
order accurate scheme is used and we operate with either cell-vertex or cell-averaged data, the
mass matrix may be lumped without any loss of order of accuracy. The mass matrix can also be
ignored for third (and higher) order accurate schemes as long as only cell-averages are used. If point
values are used to construct third and higher order accurate schemes, the accuracy will degrade if
the mass matrix is lumped. For higher order accurate schemes based on point values, the indirect
mass matrix inversion technique discussed earlier will help preserve the order of accuracy of the
scheme.

We next present results from two-dimensional inviscid calculations over pitching airfoils. The
transonic
ow is over a sinusoidally oscillating NACA0012 airfoil where the angle of attack �(t)
varies according to the formula

�(t) = �m + �0sin(!t) (66)

31

For the test case chosen, �m = 0:016�, �0 = 2:51�, � = !c
2U
1

= 0:0814 and the freestream Mach
number, M1 = 0:755. Computing this
ow using an explicit scheme is very time-consuming
because of the low frequency. Flows are computed using two meshes, referred to as GRID1 and
GRID2, each having 6336 vertices. These are shown in Figures 20 and 21, respectively. GRID1 is
generated by drawing diagonals in a structured C-mesh and is fairly uniform. GRID2 is generated
by random perturbations on GRID1 by a procedure similar to that employed in the one-dimensional
example described earlier. Figure 22 shows the lift histories during the third cycle of oscillation.
Four curves are depicted, namely, the histories with the lumped and full mass matrices for GRID1
and GRID2. The mass matrix is derived by using a de�nition similar to Eqn. (60).

Figure 20: GRID1 about an NACA0012 air-
foil with 6336 vertices.

Figure 21: GRID2 about an NACA0012 air-
foil with 6336 vertices.

-4 -2 0 2 4

Alpha

-0.4

-0.2

0.0

0.2

0.4

C
l

GRID1 - Lumped mass
GRID1 - Full mass
GRID2 - Lumped mass
GRID2 - Full mass

Figure 22: Lift histories during the third

cycle of motion.

0 10 20 30 40 50

Multigrid cycles

-6

-5

-4

-3

-2

-1

10

10

10

10

10

10

R
es

id
ua

l

Lumped mass matrix
Full mass matrix

Figure 23: Histories of the unsteady residual
at a particular time step.

32

As expected, the mass matrix has little impact on the integrated quantities even in the random
mesh. The di�erences in the solutions between the two grids are likewise insigni�cant. The CPU
time increases by about 15% when the full mass matrix is included. These examples have been run
with a maximum physical CFL number of 500, corresponding to using 54 time steps per sinusoidal
oscillation of the airfoil. The number of iterations for the inner multigrid procedure is �xed at 30.
Figure 23 shows the convergence of the agglomeration multigrid procedure during a particular time
step with the lumped and the full matrices. The L2 norm of the unsteady residual R� is plotted
as a function of the multigrid cycles. The convergence improves slightly when the mass matrix is
included. The reason for this improvement is furnished by inspecting a one-dimensional situation.
The mass matrix for a second order accurate scheme given by Eqn. (60) becomes on a uniform grid

1

8
ui�1 +

3

4
ui +

1

8
ui+1 (67)

This can be rewritten as

ui +
1

8
ui�1 �

2

8
ui +

1

8
ui+1 �

"
I +

1

8
�x2

d2

dx2

#
ui; (68)

where a centered second order accurate di�erence formula is used to approximate d2u
dx2

. Written in
this form, the equation is similar to that used in residual averaging technique, discussed in Section
5.2. Finally, Figure 24 shows the e�ect of the physical time step size. Two lift histories are shown,
one for a CFL number of 500 and the other for 1000 using the lumped mass matrix. The integrated
quantities show slight discrepancies near the ends of the oval region. This may be due to two
causes { one, that the physical time step is too large and second, that the multigrid procedure is
not converged. The number of inner multigrid cycles is �xed at 30 and the convergence is worse
with the higher CFL number. This opens up the question of when to declare the inner iteration
converged. Ideally, this system should be solved only until the residual matches the truncation
error.

-4 -2 0 2 4

Alpha

-0.4

-0.2

0.0

0.2

0.4

C
l

54 Time steps/period
27 Time steps/period

Figure 24: Lift histories during the third cycle of motion with CFL = 500 and CFL = 1000.

33

6 Parallel computing issues

Computational
uid dynamics (CFD) as its name implies is inevitably linked to computing is-
sues. Among these are processing power, memory technology, networking and accessibility. Ability
to compute the solutions to problems in �nite time always being the goal, CFD has bene�ted
immensely from the revolution that has taken place in the last 15 years in these areas. Vector
supercomputers have provided much of the computing power that has been harnessed to compute
complex three-dimensional
ows. It is anticipated that distributed-memory parallel computers will
o�er the next cost-e�ective leap forward in terms of computing power. For the goal of sustained
high performance on these machines to be realized, however, many fundamental issues need to be
addressed. Among these are scalable algorithms and software.

In the case of unstructured grid computations on parallel parallel platforms, a number of issues
need to be addressed. Interfacing with geometry packages and grid generation should be ideally
done on the parallel computer itself. Following this, the grid and the data may need to repartitioned
so that communication is minimized. The next stage is the
ow solver, which could be explicit or
implicit. Finally, the parallel aspects of
ow visualization and other postprocessing techniques can-
not be overemphasized. Each of the areas mentioned above could become a sequential bottleneck,
limiting performance. Parallel unstructured grid generation has been investigated by a number
of researchers. L�ohner et al. [76] have implemented advancing front grid generation algorithm
in two dimensions on Intel iPSC/860. Merriam [90] has implemented a Delaunay triangulation
method on the Intel iPSC/860 for three-dimensional point-sets. Still, parallel grid generation is
not commonplace. The reason for this seems to be that although grid generation is a complicated,
time-consuming procedure, the stumbling block is not excessive computational e�ort. Rather, in-
terfacing with geometry packages and ensuring high quality of grids are the pacing items. Thus,
modern workstations that can generate up to 1000 tetrahedra a second appear to be adequate
for the task of grid generation. Parallel grid generation may be of more importance in unsteady
simulations involving motion of bodies where the grids may have to be regenerated periodically.
Partitioning the grid among processors in a judicious manner is important since it has a signi�cant
impact on the parallel performance of the
ow solver. When unstructured grid computations are
carried out on parallel computers, extracting parallelism out of the
ow solver is an important
task. In the case of adaptive grid computations, maintaining load balance among the processors
is also an important consideration. Finally, although it is possible to concatenate the data from
di�erent processors on a workstation for post-processing and visualization, it is clearly not a viable
option as the memories of the processors and problem sizes continue to grow. Therefore, parallel
visualization techniques have to be utilized.

Explicit schemes used in computational
uid dynamics possess almost complete parallelism.
They require only simple update procedures that involve local dependencies. On a parallel com-
puter, such schemes typically require communication only to nearest neighbors. Implicit schemes,
on the other hand, require the solution of coupled equations which involves global dependencies.
On distributed-memory parallel computers, the design of implicit schemes is more di�cult since
parallelism and load balance during the implicit phase are additional considerations. In reference
[129], the implicit schemes discussed in Section 4.2 were investigated for parallelism on the Intel
iPSC/860. The results from this study are reported in this section. In reference [66] an implicit
iterative solution strategy based on the diagonal-preconditioned matrix-free GMRES algorithm
[24] was implemented on the Connection Machine. Ramamurthi et al. [104] have developed and
tested on an Intel iPSC/860 an implicit incompressible
ow solver that uses a \linelet-based" pre-
conditioner (see Section 4.2.3) Ajmani et al. [2] have investigated the use of a preconditioned
GMRES implicit method for the solution of the Navier-Stokes equations using structured grids
on the Intel iPSC/860. Venkatakrishnan et al. [135] and Das et al. [83] have shown that it is
possible to obtain supercomputer performance when solving explicit unstructured grid problems

34

on the Intel iPSC/860. By paying careful attention to the partitioning of the mesh, communication
schedule and data structures, they have been able to show that nearly 2-4 times the speed of a
Cray Y-MP/1 could be obtained with 128 processors of the iPSC/860. The e�ects of using various
strategies for partitioning the unstructured grids on communication costs have been examined as
well. Unsteady and steady viscous
ows have been computed in [41] using an explicit scheme on
unstructured grids. More recently, Barth [13] has also obtained excellent performance when solv-
ing the three-dimensional Euler equations using the implicit scheme discussed in Section 4.4 on the
IBM SP2.

In this section, we �rst discuss in detail, the problem of partitioning of the grid and the data
for parallel computers. Next, the issues involved in parallelizing �nite volume schemes for solving
the Euler equations on triangular unstructured meshes in MIMD (multiple instruction/multiple
data stream) fashion are outlined. As a candidate explicit scheme, a four-stage Runge-Kutta
scheme is used to solve two-dimensional
ow problems. The implicit schemes outlined in Section
4.2 are explored as candidate schemes to solve these problems on parallel computers. The issues in
implementing the GMRES algorithm and the preconditioners in a distributed-memory environment
are addressed. The methods are compared both in terms of elapsed times and convergence rates.
Results for a typical
ow around a multi-element airfoil are presented and the performances of the
explicit and implicit schemes on the Intel iPSC/860 are compared. It is shown that the implicit
schemes o�er adequate parallelism at the expense of minimal sequential overhead. Following domain
decomposition ideas, the use of a global coarse grid to further minimize this overhead is also
investigated. The full details of the parallel implementations may be found in [129]. Finally, we
present some techniques for load balancing, which are important when adaptive grid computations
are carried out on parallel computers.

6.1 Partitioning of grids

We begin with a few de�nitions. An undirected graph is de�ned as a set of vertices joined by
edges. It is symmetric in that if vertex A is connected to B, B is connected to A as well. In
the context of unstructured grid
ow solvers, the graph can thus be viewed as a collection of �rst
order stencils. Vertices A and B are termed nearest neighbors if there exists an edge in the graph
linking A and B. Recall that the stencil for a higher order accurate cell-vertex scheme involves
next-to-nearest neighbors as well. However, in most �nite volume schemes, the information from
the next-to-nearest neighbors enters in the form of gradients evaluated at nearest neighbors. Thus
the graph of the problem for a cell-vertex scheme is the underlying grid itself. If the scheme made
use of information from vertices other than nearest neighbors directly, the proper graph to consider
should include edges connecting the vertex in question to those vertices as well. This is seldom
done in practice because the problem graph would become more dense in such cases.

The partitioning of unstructured grids among processors should be carried out in a manner as to
minimize the execution time. The execution or wall clock time is the maximum over all processors
the sum of the times required for computation and communication. The computational work (load)
is typically a function of the number of grid points and sometimes, a function of the shape of the
domain as well. The dependence on the shape of the domain arises, for example, when a banded
solver is used to invert a linear system of equations within each processor. For most practical CFD
computations, however, the computational work is only a function of the number of grid points
contained within each processor.

t
comp
i = �Na

i ; (69)

where � is the time taken to process one grid point and Ni is the number of grid points in the
partition. In most CFD solvers, the work is directly proportional to the number of vertices, so that
a = 1in Eqn. (69). In the case of cell-vertex schemes on unstructured grids, the computational
work involved in the computation of residuals is directly proportional to the number of edges which

35

is linearly related to the number of vertices in the grid. A typical model for communication time
tcomm
ij between two processors i and j is given by

tcomm
ij = ts + �dij +
mij: (70)

Here ts is the cost of start-up (also known as latency), � is the time required for communication
between nearest neighbors in the given topology of the computer, dij is the number of hops between
the two processors in the topology,
 is the time required to communicate one byte and mij is the
number of bytes being communicated. Thus the total execution time for processor i is given by

ttoti = t
comp
i +

X
j2Ni

tcomm
ij

= �Na
i + jNijts +

X
j2Ni

�dij

+
X
j2Ni

mij; (71)

whereNi is the set of neighboring partitions of i with a cardinality of jNij. Minimizing the maximum
ttoti over all processors is a very di�cult problem because it ties in the characteristics of the parallel
computer, such as the topology and the communication model, to the algorithm used to solve the
problem. Rather than solve this di�cult problem, we will examine each of the terms in Eqn. (71)
individually. There is no guarantee that the piecemeal approach to the partitioning problem will
minimize the execution time.

The �rst term in Eqn. (71) deals with the time to carry out the computations. This is minimized
if the partitioning problem guarantees that Ni is equal across all processors. The last term deals
with the transmission costs and is related to the number of cut-edges. The number of cut-edges is
a good metric for assessing the various partitioning strategies with the goal of minimizing it. In a
cell-vertex scheme, this metric is only a rough measure since the message lengths are proportional
to the number of vertices that are on either side of the cut-edges.

The penultimate term in Eqn. (71) is usually dealt with separately and is referred to as the
embedding problem. This term is getting less important with switches and wormhole routing in
modern parallel architectures. Embedding deals with the assignment of partitions to processors.
More precisely, it is the embedding of the partition communication graph to the processor graph.
An embedding of a graph G onto a graph H is a one-to-one assignment of a vertex in G to a vertex
in H. A partition communication graph (PCG) is de�ned as an undirected graph with vertices
representing the partitions and edges representing communication link between two neighboring
partitions. Figure 25 shows a decomposition of a domain into eight partitions and the corresponding
PCG. An optimal assignment of partitions to processors is an embedding that minimizes the dilation
cost, which is de�ned as the maximum distance in H between the images of vertices that are adjacent
in G [58]. Figure 26 shows a processor graph, which is a hypercube interconnect for 8 processors.
Figure 26 also shows an embedding of the PCG shown in Figure 25. The processor numbers
are shown as binary numbers while the partition numbers are shown in parantheses as Arabic
numerals. It is easy to see that the dilation cost for this mapping is 2. Heuristic techniques are
usually employed to derive good embeddings. On parallel computers with hypercube interconnect,
embedding does not appear to be much of an issue. The assignment of partitions to processors
could be more critical if the processor network is less dense e.g. a two-dimensional mesh.

36

2

3
4

5

6

7

0

1

Figure 25: 8-way decomposition of domain
and its associated partition communication
graph.

011010

000 001

100 101

111110

[0] [1]

[6]

[3] [7]

[5] [4]

[2]

Figure 26: 8-processor hypercube intercon-
nect and an assignment of processors.

The second term in Eqn. (71) depends on the number of neighbors of a partition. This can be
minimized if desired by using the so-called stripwise partitioning strategies[135]. Usually, however,
minimizing this leads to an inordinate increase in the cut-edges [135] and communication costs. An
example is given for a simple square domain. Figure 27(a) shows a 16-way domainwise partitioning
of a square whereas Figure 27(b) shows a 16-way strip-wise partitioning of the domain.

(b)

n

nn

n

 (a)

Figure 27: 16-way partitioning of a square (a) domainwise (b) stripwise.

Assume that the domain has n� n grid points and that the communication takes place across
the edges of the partitions and that the length of the messages is equal to the number of grid
points along the boundaries between partitions. The domainwise partitions have a maximum of
4 neighbors and the stripwise partitions, a maximum of 2. The computational time is the same,

37

whereas the communications times are di�erent. Assuming a simple communication model, Eqn.
(70) with � = 0, the communication cost with domainwise partitioning for an interior processor is

tcomm = 4(ts +
n=4); (72)

and for stripwise partitioning
tcomm = 2(ts +
n); (73)

This example shows that unless ts >
n=2, the domainwise partitioning strategy is better. On most
modern parallel computers, the latency is small enough that minimizing the number of neighbors
is not necessary, although it should be reasonably bounded.

The partitioning algorithms discussed below, create partitions that have the same computa-
tional loads and are applied to two-dimensional triangular grids. The e�cacies of the partitioning
strategies are assessed by inspecting the number of cut edges and also by measuring the commu-
nication times in applications. Das et al. [83] and Johan et al. [66] have applied the algorithms to
three-dimensional problems. It is assumed that a cell-vertex scheme is employed. One has the choice
of either partitioning triangles or the vertices themselves. Vertices are partitioned by applying the
algorithms to the graph represented by the triangulation itself, whereas triangles are partitioned
by considering the dual, where the triangles are represented by vertices which are connected by
dual edges. In [129], we have examined using both these strategies for a cell-vertex scheme and
�nd both the schemes lead to similar execution times. In the examples shown below however, the
triangles will be assinged uniquely to partitions; therefore, the dual graph is partitioned. Figure
28 shows a triangulation and Figure 29 shows the corresponding centroidal dual; each vertex in
Figure 28 corresponds to a triangle in Figure 28.

Figure 28: A triangulation. Figure 29: Dual graph.

Partitioning is done recursively starting with the problem of dividing one domain into two,
almost equal subdomains. The number of vertices in the two subdomains di�ers at most by one.
There are two classes of partitioning schemes. The �rst class utilizes the coordinates of the vertices
and does not make use of the problem graph. The second class does not use the coordinates but
uses only the graph information.

The coordinate bisection strategy uses the coordinate information associated with each vertex.
The coordinates are then sorted in a particular coordinate direction (either x or y). Typically,
the direction containing more number of points is chosen as the direction in which to sort. One
half of the ordered vertices de�ne the �rst partition and the remaining vertices de�ne the second
partition. The advantage of the coordinate bisection method is that it is extremely e�cient because

38

the sorting can be done in logN operations, where N is the total number of vertices. Variants of
this method include inertial bisection method [42] and parametric binary dissection [21]. In the
inertial bisection method, instead of sorting in the coordinate directions, a di�erent coordinate
system is used. In the case of parametric binary dissection, load balance is sacri�ced in order to
improve the total execution time.

The graph bisection techniques view the unstructured grid as an undirected graph and partition
the graph by �nding the graph separator by any of a number of methods. A separator is a set
of nodes that subdivides the original connected graph into two disjoint subgraphs. The sizes of
the separators have a direct bearing on the �ll-in that occurs during the factorization of sparse
matrices, but are also important in the context of partitioning since they form the interpartition
boundaries. One way to derive a separator is to �rst form the rooted level structure de�ning level
sets. These represent the neighbor lists starting with a root, neighbors of the root, neighbors
of neighbors of the root and so on. The Cuthill-McKee algorithm [49] generates a rooted level
structure as a �rst step. The two partitions are de�ned when one half of the domain has been
traversed. Another way to �nd a graph separator is called the spectral bisection method and is
based on the spectral partitioning algorithm of Pothen et al. [101]. Their algorithm induces the
partitions from the eigenvector corresponding to the second smallest eigenvalue of the Laplacian
matrix associated with the graph. The elements of n � n Laplacian matrix Lij of an undirected
graph with n vertices are de�ned as

Lij = �1 if i 6= j and an edge connects i and j

Lij = 0 if i 6= j and no edge connects i and j

Lij = D if i = j; (74)

where D is the the degree of vertex i. The smallest eigenvalue of this matrix is 0 with an eigenvector
of (1; ::::1). The eigenvector corresponding to the second smallest eigenvalue is determined by a
Lanczos algorithm. The entries of this eigenvector are sorted and split along the median to produce
equally-sized partitions. Pothen et al. [101] have shown that the separators produced by this
algorithm are shorter than those produced by other techniques. Barth in [1] presents a simple
proof that the spectral bisection technique minimizes number of cut-edges.

Simon [112] has applied these three partitioning algorithms to a variety of two- and three-
dimensional grids and has shown that the spectral bisection technique yields better partitions in
that it produces subdomains with shorter boundaries. He has observed that the coordinate bisection
technique leads to disconnected partitions, thereby greatly increasing the lengths of the boundary
segments. Disconnected partitions also have the undesirable e�ect of increasing the number of
adjacent partitions, and each adjacent partition requires a message to be generated. Therefore,
disconnected partitions imply higher start-up and transmission costs. The graph bisection technique
using level sets produces partitions with long boundaries since it uses a breadth-�rst search to de�ne
the level sets. The spectral bisection technique produces uniform, mostly connected subdomains
with short boundaries. Theoretical results by Fiedler (summarized in [101]) show that one of the
two subdomains formed by the spectral partitioning is always connected. Spectral partitioning
results in fewer shorter length messages and reduced communication costs.

Figures 30(a), 30(b), and 30(c) show eight-way decompositions for a mesh around a four-element
airfoil obtained with coordinate bisection, graph partitioning based on level sets and spectral par-
titioning, respectively. The interpartition boundaries are shown by the thick lines in these �gures.
We observe from Figure 30(a) that even with only eight partitions, there are instances when the
subdomains degenerate to zero thickness. This is a direct consequence of the variable density of the
grid within a rectangular coordinate strip and leads to disconnected domains for a larger number
of partitions. In Figure 30(b) we see that the partitions produced by the level sets strategy have
long boundaries and are connected, but as the number of partitions increases, we have observed

39

that the partitions become disconnected. In Figure 30(c) we notice that the partitions produced by
the spectral bisection technique are compact, and this property seems to hold even as the number
of partitions is increased.

Figure 30(a): 8-way decomposition with co-
ordinate bisection. communication graph.

Figure 30(b): 8-way decomposition with
graph bisection using level sets. processors.

Figure 30(c): 8-way decomposition with graph bisection using level sets. processors.

The execution times for the coordinate, level sets, and spectral bisection techniques for a 64-
way partitioning of a triangular mesh with 15606 vertices on a Silicon Graphics workstation (Iris
4D/70) in 32-bit arithmetic are 4, 3, and 1750 seconds, respectively. On the Cray Y-MP/1 the
timings without vectorization are 3.70, 3.96, and 399.26 seconds and 0.76, 1.04, and 26.6 seconds
with vectorization. The performance of spectral bisection improves considerably with vectorization
because the matrix-vector products are vectorized on the Cray Y-MP. The spectral bisection is
thus expensive. The multi-level spectral bisection scheme of Barnard and Simon. [7] can be used
to improve the e�ciency. The execution time on the workstation is reduced to 200 seconds to
partition the same grid. The multi-level spectral technique does not create the same partitions as
the original spectral algorithm due to round-o� and sensitivity to stopping criteria in the Lanczos
algorithm.

A di�erent partitioning strategy based on coordinates has been tested by Gilbert et al. [51]
based on the theoretical work of Miller et al. [91]. A brief description of this relatively new
partitioning algorithm, called geometric partitioning is given here.

40

Project Up. A stereographic projection of the point set in lRd onto a higher-dimensional unit
sphere is carried out. Assume lRd is embedded in lRd+1 as the xd+1 = 0 coordinate plane and
assume a unit sphere Ud embedded in lRd+1 centered at the origin. Given a point p in lRd,
construct a line L in lRd+1 passing through p and through the north pole of Ud. The line L
must pass through another point q of Ud; the point ST (p) = q is de�ned as the image under
the stereographic projection mapping. Thus the entire point set P = fp1; ::::; ; png in lRd is
mapped onto ST (P) = fST (p1); :::; ST(pn)g.

Find Centerpoint. This is a special point in the interior of Ud. The centerpoint of a point set is
de�ned as one such that every hyperplane passing through it about evenly divides the point
set. A more precise de�nition may be found in [51].

Conformal map: Rotate and Dilate. This step moves the centerpoint conformally to the ori-
gin. It is accomplished in two steps. First a rotation on Ud is carried out so that the
center-point c is mapped onto the diameter between the north and south poles of Ud i.e., the
new center point is c1 = (0; 0; :::r). Following a mapping back to lRd by using the inverse
transformation ST�1, the points in lRd are scaled by a factor

p
(1� r)=(1 + r). The scaled

points are projected back onto Ud by another application of ST .

Find Great Circle. A random great circle (a sphere in lRd) is chosen on the unit sphere Ud.

Unmap and Project Down. The great circle is transformed to a circle in lRd by applying the
inverse of the transformations. The resulting circle in lRd represents the boundary between
partitions.

The center-point computation is computationally expensive involving (O(Nd)) operations and
Miller et al. [91] have proposed a sampling strategy. The theoretical results in [91] indicate that
provably good separators can be obtained.

The advantage of geometric partitioning over coordinate bisection is that it produces separators
that are arcs of circles (in two-dimensions) as opposed to straight lines. It is also much less
expensive compared to graph bisection techniques. Since it only deals with the coordinates of the
point set, there are many situations where the graph bisection techniques will be better, e.g. a
two-dimensional graph embedded in 3-dimensional space.

6.2 Communication issues

After partitioning, global values of the data structures required to de�ne the unstructured mesh
are given local values within each partition in a preprocessing step. We thus dispense with any
references to global indices. In the present implementation, each local data set also contains the
information that a partition requires for communication at its interpartition boundaries. The
information required for communication at the interpartition boundaries is precomputed using
sparse matrix data structures. These are outlined for a cell-vertex scheme where vertices are
partitioned.

The data structures required for communication and stored by each processor consist of:

nadjproc - no. of adjacent processors (processors handling adjacent partitions)

iadjproc - list of adjacent processors; length nadjproc

ibvs - pointers to the cumulative number of interior boundary vertices that need to send informa-
tion in common with the adjacent processors; length nadjproc+1

nbvs - number of boundary vertices in common with processor iadjproc(j) that need to send
information. This can be derived from ibvs and is not stored; nbvs(j) = ibvs(j+1){ibvs(j)

41

nintbvs(.,1) - Local indices for the vertices sending information on current processor; length
ibvs(nadjproc+1){1

nintbvs(.,2) - Local indices on adjacent processor receiving information; length ibvs(nadjproc+1){
1

ibvr - pointers to the cumulative number of interior boundary vertices in common with the adjacent
processors that need to receive information; length nadjproc+1

nbvr - number of boundary vertices in common with processor iadjproc(j) that need to receive
information. This can be derived from ibvr and is not stored; nbvr(j) = ibvr(j+1){ibvr(j)

nintbvr(.,1) - Local indices on current processor receiving information; length ibvr(nadjproc+1){
1

nintbvr(.,2) - Local indices on adjacent processor sending information; length ibvr(nadjproc+1){1

The arrays nintbvs(.,2) and nintbvr(.,2) can be dispensed with if the numberings in the adjacent
processors are done in a consistent manner. The data structures are illustrated by means of an
example. Figure 31 shows a three-way partition with the inter-partition boundaries indicated by
the thick lines. Each of the vertices shown is stored by two or three processors. The entries of the
data structures for processor 0 are also shown in the �gure.

0

1

2

Sender

Receiver

DATA STRUCTURES

nadjproc = 2

iadjproc = 2, 1

ibvs = 1, 8, 12

nbvs = 7, 4

ibvr = 1, 9, 14

nbvr = 8, 5

Figure 31: 3-way decomposition showing only the triangles intersecting the partition bound-
aries and data structures for processor 0.

Regarding the assignment of partitions to processors, a naive mapping is done. This simply
maps partition 0 to processor 0 and so on. As was discussed in the last section, it is possible
to do a near-optimal mapping by heuristics. In [135], we evaluated the naive mapping against a
random mapping for an unstructured problem on 64 nodes of the Intel iPSC/860 and observed
little di�erence in performance. Reasons are also given [135] as to why the assignment of partitions
to processors is not crucial. We simply note here that since the partitioning is done in a recursive
manner, spatial locality is imposed on the partitions. For example, the �rst cut in a 64-way
partioning of the domain ensures that the �rst 32 partitions (0{31) are spatially separated from
the second 32 (32{63) except for the boundary between the two halves. A similar locality property
also exists in some processor networks, such as the hypercube.

The PCG de�ned in Section 6.1 only reveals the communication pattern. It does not contain
any information on the order in which messages could be received. Therefore, asynchronous re-
ceives can be posted for all the messages that a processor expects to receive. This would entail
providing storage for bu�ers to receive all the messages. This would also imply that the exchange
of information between two processors A and B takes place serially, the �rst to transfer information

42

between A and B and the second between B and A. On many parallel computers, such as the Intel
iPSC/860, a bidirectional communication facility is provided. If the processors are synchronized, a
two-way exchange of information takes place in parallel, thus reducing communication costs. For
this to be utilized, the edges in the PCG needs have to be colored. This approach also reduces
memory requirements since storage is not required for all the messages that a processor receives;
the bu�er only needs to be as large as the maximum message length. Thus a schedule of messages
is derived. Table 1 presents a schedule of messages for the PCG of Figure 25. It is a coloring of
the edges of the PCG. As a result, processors are organized into pairs so that the bidirectional
communication can take place between pairs of processors at each stage of the schedule.

Table 1: Communication schedule.

Processor Permuted iadjproc

0 1 7 - - -
1 0 2 3 4 6
2 3 1 - - -
3 2 4 1 - -
4 5 3 6 1 -
5 4 6 - - -
6 7 5 4 - 1
7 6 0 - - -

Partitioning, conversion from global to local addresses, and generation of the data structures
required for communication at the interpartition boundaries are all done presently on a workstation
as a preprocessing step. This is justi�ed when the same geometric case will be run for a variety
of analyses, varying freestream Mach number, angle of attack, etc. In adaptive grid situations,
where the grid evolves with the
ow solution, such an approach requires constant repartitioning
and is clearly not viable; procedures such as those outlined in Section 6.6 need to adopted. It
is also possible to parallelize the partitioning algorithms e.g., Johan et al. [66] have successfully
parallelized the spectral partitioning method.

6.3 Parallelism in explicit schemes

In a vertex-partitioned mesh, each vertex of the triangulation is assigned uniquely to a partition
and the interpartition boundaries consist of the edges of the control volumes. In the case of upwind
schemes based on projection-evolution techniques [12], two communication phases are required for
the evaluation of the residuals, one during the computation of the gradients and the other, during
the formation of the
uxes. The processors exchange the dependent variables at two rows of vertices
that are incident to the interpartition boundary edges for the computation of the gradients. Next,
during the reconstruction phase, gradients are exchanged so that each processor can compute the
interpolated variables on each side of the the dual edges forming the interpartition boundaries. If
limiters such as the one presented in [12] are employed, another communication step is necessary.
Each processor can thus compute the entire residuals for all the vertices it owns. Duplication of the

ux calculations occurs at the interpartition boundary edges, but it is not a crucial issue on medium-
and coarse-grained parallel computers. As discussed in [135], this duplication can be avoided on
�ne-grained parallel computers at the expense of more communication. Hammond and Barth [54]
when implementing an explicit scheme on a �ne-grained parallel computer, assign orientations to
the edges of the triangulation so that no vertex has an out-degree greater than 3. Each processor is
assigned a vertex and redundant
ux calculations are avoided by assigning
ux evaluations to the
processors containing the outgoing edges. We conclude this subsection by observing that there is
ample parallelism in stencil-based operations on �ne- and coarse-grained parallel computers with

43

the associated communication cost increasing with the sizes of the stencils.

6.4 Parallelism in implicit schemes

This section deals with the issues involved in parallelizing implicit schemes on unstructured grids.
Ramamurthi et al. [104] have implemented a conjugate gradient method with a linelet-based
preconditioner (see Section 4.2.3) and have addressed the issues involved in parallelizing an incom-
pressible
ow solver. They settle on a weaker parallel preconditioner that limits the linelets to be
contained entirely within the processor. Ajmani et al. [2] have also settled for a weaker precondi-
tioner when solving the Navier-Stokes equations with a GMRES implicit method grids on the Intel
iPSC/860. As was discussed in Section 4.2, the preconditioned GMRES method was shown to be
quite e�cient for solving two-dimensional
ow problems using unstructured grids on sequential and
vector computers. Given that the sequential algorithm is satisfactory, the techniques to extract the
best parallel performance are examined.

On distributed-memory parallel computers, the same least squares problem of Eqn. (24) is
solved by each of the processors. While this results in some duplication of work, the main nonlocal
kernels of the GMRES are distributed across multiple processors. These kernels include the sparse
matrix-vector multiplication, dot products, and L2 norm evaluations. On a Cray Y-MP, vectoriza-
tion for the sparse matrix-vector product was achieved by using an edge-oriented data structure for
the matrix and coloring the edges of the graph. Coloring of edges destroys locality while allowing
for vectorization, and is attractive on a computer such as the Cray Y-MP, because of the fast
gather/scatter functions it possesses. However, this is not the optimal way to compute the matrix
vector product on a parallel computer with hierarchical memory, where locality is of utmost impor-
tance. The compressed-row storage scheme [49], which a�ords more locality, is used instead. We
have found that even on a single node this approach outperforms the one that uses the edge-based
data structure by a factor of two, because of the increased locality. Alternatively, the edges and
vertices could be reordered such that the new ordering possesses much more locality [83]. The rows
are uniquely assigned to processors. The communication step consists of exchange of the vector
components at the two rows of vertices incident to the interpartition boundary edges. Akin to the
explicit scheme, each processor computes its share of the matrix vector multiplication. More details
on the implementations of the matrix-vector product on vector-parallel and distributed-memory
computers may be found in [128].

In most problems of interest, the choice of the preconditioner is very important, but the e�ort
involved in applying the preconditioner should not be prohibitive. The implicit scheme without
preconditioning possesses almost complete parallelism, except for the duplication of some work when
solving the least squares problem in GMRES, and the communication associated with the formation
of the residual. On a parallel computer, the parallelism in the preconditioning phase is an important
additional consideration. A simple choice is a block-diagonal preconditioner that computes the
inverse of the 4 � 4 diagonal block associated with a mesh point. The LU decomposition of the
4� 4 blocks and the forward and back solves are local and, hence, are inherently parallel.

With ILU(0) preconditioning, it is possible to obtain parallelism by using a level scheduling
[4]. Under this permutation of the matrix, unknowns within a wavefront can be eliminated simul-
taneously. However, since the degree of parallelism varies with the wavefront, it cannot be easily
exploited on a distributed-memory parallel computer. A �xed partitioning strategy for the mesh
incurs substantial load imbalance, while a dynamic partitioning strategy entails substantial data
movement and hence, increased communication costs. It has been found in [53, 8] that using a �xed
partitioning strategy when solving triangular systems of equations on a regular grid results in low
upper bounds on e�ciency even in the absence of communication. A higher degree of parallelism
in ILU(0) can be achieved by using a di�erent ordering of unknowns, but typically such an or-
dering adversely a�ects the convergence of the underlying iterative method. Therefore, for general

44

sparse matrices, the ILU(0) preconditioner is ill-suited for implementation on a distributed-memory
parallel computer.

Therefore, we settle on an ILU preconditioner that is processor-implicit i.e., ILU(0) is carried
out for all the vertices internal to a processor. Thus, at a macro-level, the overall preconditioner can
be viewed as an approximate block Jacobi iteration, wherein each block is assigned to a processor for
which an incomplete LU factorization is carried out. A block here refers to a subdomain consisting
of all the unknowns assigned to a processor. In the preconditioning phase, ILU factorization is
carried out for each processor by zeroing out the matrix entries whose column numbers lie outside
the processor domain. This is equivalent to solving the problem within each processor subject to
zero Dirichlet boundary conditions during the preconditioning. This approximation is consistent
with the steady state solution �W � 0 everywhere. The overall preconditioner is weaker than the
global ILU(0), and degenerates to a block-diagonal preconditioner in the limit of one grid point
per processor. Thus, as the number of processors increases, degradation in convergence is to be
expected. This degradation should be moderate on coarse-grained parallel computers.

In order to minimize the sequential overhead, we appeal to techniques developed in domain de-
composition. For an overview of domain decomposition techniques and their suitability to parallel
computers see [69]. One of the most successful methods in use in domain decomposition is the
Schwarz alternating procedure for overlapping subdomains, which can also be implemented as a
preconditioner. Two variants of this procedure have been developed in the literature, the additive
and the multiplicative algorithms; see [36]. The term additive denotes that the preconditioning can
be carried out independently for each subdomain. The processor-implicit scheme outlined above is
an example of an additive Schwarz preconditioner. In contrast, the multiplicative Schwarz method
requires that the preconditioner be applied in a sequential way by cycling through the subdomains
in some order, as in Gauss-Seidel relaxation. It is possible to extract some coarse-grained paral-
lelism by coloring the subdomains in an additive/multiplicative hybrid, but the potential is limited.
Therefore in a parallel context, the additive Schwarz method is preferred.

A powerful idea for elliptic problems advocated in [36], is the use of a coarse grid in order
to bring some global in
uence to bear on the problem, similar in spirit to a two-level multigrid
algorithm. The coarse grid operator is applied multiplicatively in our context i.e., the coarse grid
problem is solved �rst. The solution from the coarse grid problem is subsequently used by the
processors during the additive (parallel) phase as Dirichlet data at the subdomain boundaries.
Applying the coarse grid in this manner does impose a penalty in a parallel setting; it becomes
a sequential bottleneck. Additive coarse grid operators are also common [25]. In this reference,
the multiplicative and additive Schwarz algorithms are applied to the solution of nonsymmetric
elliptic problems. An almost h-independent convergence, where h is the �ne grid size, is observed
provided the coarse grid is �ne enough. In [25] the coarse grid operator was formed by discretizing
the partial di�erential equation on a coarse grid. However, in our application, this would require a
triangulation followed by a discretization on this coarse grid. Generation of interpolation operators
to transfer information between the coarse and the �ne grids would also be necessary. We avoid all
these complexities by appealing to an alternative way of obtaining a coarse grid operator described
in [139].

A coarse grid Galerkin operator is easily derived from a given �ne grid operator by specifying
the restriction and prolongation operators. We choose the restriction operator to be a simple
summation of �ne grid values, and the prolongation operator to be injection. Under this choice,
the coarse grid discretization is similar to the one used in an agglomeration multigrid strategy,
see [71, 132]. It amounts to identifying all the vertices that belong to a subdomain by one coarse
grid vertex, and summing the equations and the right-hand sides associated with them. Thus the
coarse grid system has as many vertices as the number of subdomains. At each time step, a coarse
grid system is formed and solved by using a direct solver. The data obtained from the coarse grid
is used on the boundaries as Dirichlet data for each subdomain. We have found that in practice,

45

a direct solver is seldom needed to solve the coarse grid system; an iteration of incomplete LU
decomposition seems to su�ce. The implementation of the coarse grid solver is discussed next.
Each processor �rst forms parts of the coarse grid matrix and the right-hand side at every time
step. A global concatenation is performed so that each processor has the entire coarse grid system.
This system is solved redundantly by each processor by forming approximate L and U factors.
During the preconditioning phase, each processor forms a portion of the right-hand side. After a
global concatenation of the right-hand side, each processor carries out forward and backward solves
and deduces the appropriate Dirichlet data.

We have found that at least one cycle of implicit smoothing similar to that employed in multigrid
context [79] is needed to mitigate the adverse e�ects of injection of the solution from the coarse to
the �ne grid. Therefore, on the �ne grid, after injection, given the old vector, uold, the following
system of implicit equations is solved for the new solution vector, unew :

(I + �d)unewi = uoldi +
dX

j=1

�unewj ; (75)

where � is taken to be 0:5, d is the degree of the vertex i, and the summation is over the neigh-
bors of each vertex. We have found one Jacobi iteration applied to Eqn. (75) to be su�cient.
This smoothing step involves communication at the boundaries. We have also developed a weaker
smoother that dispenses with the communication associated with the Jacobi smoothing, but yields
comparable convergence. This technique termed modi�ed Jacobi smoothing, smooths the neighbor-
ing coarse grid data (to be used as Dirichlet data) with the data that the processor holds. This
step is given by the following relation:

(I + �)Unew
D = UD + �ULOC ; (76)

where UD is the old Dirichlet data, Unew
D is the new Dirichlet data and ULOC is the value of the

coarse grid vertex assigned to the processor.

6.5 Performance on the Intel iPSC/860

The Intel iPSC/860 is a multiple instruction/multiple data stream (MIMD) parallel computer. The
machine used has 128 processor nodes. Each node comprises of a 40 MHz Intel i860 micro-processor,
8 MBytes of memory, and a Direct Connect Module (DCM) which handles communication in the
hypercube communication network. Each node has a peak performance of 60 M
ops in 64-bit
arithmetic. The bi-directional hypercube interconnect facilitates communication across the nodes.

Flow past a four-element airfoil in a landing con�guration at a freestream Mach number M1 =
0.2 and an angle of attack of 5� is considered as a test case. Performance results are presented for
two problem sizes that are representative of two-dimensional inviscid
ows. The coarse mesh has
6019 vertices, 17,473 edges, 11,451 triangles, 4 bodies, and 593 boundary edges. The �ne mesh has
15,606 vertices, 45,878 edges, 30,269 triangles, 4 bodies, and 949 boundary edges. Figure 32 shows
the coarse grid about the four-element airfoil. The Cray implementation of the explicit code [12]
runs at 150 mega
ops on the Cray Y-MP. The implicit code was not optimized for the Cray Y-MP,
since it was developed on the Intel iPSC/860. The result is that it runs in an almost scalar fashion
on the Cray, except for the right-hand side computation. However, a similar implicit unstructured
mesh Navier-Stokes code was implemented earlier on the Cray Y-MP and optimized [135] to run at
approximately 110{120 mega
ops. All the mega
op numbers in this section are based on operation
counts using the Cray hardware performance monitor. The explicit scheme is a four-stage Runge-
Kutta scheme and uses a CFL number of 1.4. With the GMRES/DIAG scheme, the start-up CFL
number is 3 and the CFL number is allowed to vary inversely proportional to the L2 norm of the
residual up to a maximum of 30. With GMRES/ILU, the start-up CFL number is 20 and the CFL

46

number is allowed to vary inversely proportional to the L2 norm of the residual up to a maximum
of 200,000. With both implicit schemes, the number of GMRES search directions is limited to 15.
Hence, we use a �xed-storage inexact Newton method [32].

Figure 32: Coarse grid about the four-element airfoil with 6019 vertices.

0 20 40 60 80 100

Iterations

-6

-5

-4

-3

-2

-1

0

10

10

10

10

10

10

10

R
es

id
ua

l

GMRES/ILU - 1 proc
GMRES/ILU - 16 procs
GMRES/ILU - 32 procs
GMRES/ILU - 64 procs
GMRES/ILU -128 procs

Figure 33: Convergence histories with GM-
RES/ILU on the �ne mesh.

0 20 40 60 80 100

Elapsed Time (secs.)

-6

-5

-4

-3

-2

-1

0

10

10

10

10

10

10

10

R
es

id
ua

l

GMRES/ILU
GMRES/DIAG
RK4

Figure 34: Convergence histories as a func-
tion of elapsed times on the �ne mesh with 64
processors.

The performances of the explicit and the implicit schemes are compared on the Intel iPSC/860.
Tables 2 and 3 show the times per iteration in seconds and the convergence rates for the coarse

47

and the �ne grids, respectively. The convergence rate is de�ned as

Rate =

�
Rn

R1

� 1

n�1

; (77)

where Rn is the L2 norm of the residual of the density equation at the end of nth time step and
R1 is the residual at the end of the �rst time step. Figure 33 shows the convergence histories
for the �ne mesh as a function of the number of iterations. It may be observed that the explicit
scheme is barely converging while the implicit schemes converge much faster. The GMRES/ILU
processor-implicit preconditioning exhibits degradation in convergence as the number of processors
increases, but the degradation is moderate. It is also seen that the convergence histories with
GMRES/ILU gravitate towards that of GMRES/DIAG as the number of processors increases. In
the limit of 1 grid point per processor the two will be identical. Since the problem does not �t
on one processor of the Intel iPSC/860, the uni-processor runs were carried out on the Cray Y-
MP. Even with 128 processors, the GMRES/ILU scheme requires only about 20% more iterations
than the ideal 1 processor scheme to obtain the same level of convergence (5 orders of reduction
in the residual norm). Since the time to completion is of ultimate interest, Figure 34 shows the
convergence histories as a function of the elapsed times with the number of processors �xed at 64.
It clearly shows the superiority of the GMRES/ILU processor-implicit technique over the explicit
and the GMRES/DIAG schemes.

Table 2: Performance of the implicit scheme on the Intel iPSC/860 - 6019 vertices.

No. of processors
Scheme Measure 1 4 8 16 32 64

RK4 Time/iter (sec) - 1.07 0.59 0.32 0.20 0.13
Conv. rate 0.973 0.973 0.973 0.973 0.973 0.973

GMRES/ Time/iter (sec) - 3.06 1.66 0.95 0.59 0.42
DIAG Conv. rate 0.874 0.874 0.874 0.874 0.874 0.874

GMRES/ Time/iter (sec) - 4.42 2.36 1.32 0.77 0.52
ILU Conv. rate 0.791 0.795 0.796 0.797 0.797 0.797

Table 3: Performance of the implicit scheme on the Intel iPSC/860 - 15606 vertices.

No. of processors
Scheme Measure 1 16 32 64 128

RK4 Time/iter (sec) - 0.78 0.43 0.25 0.15
Conv. rate 0.997 0.997 0.997 0.997 0.997

GMRES/ Time/iter (sec) - 2.19 1.24 0.75 0.51
DIAG Conv. rate 0.968 0.968 0.968 0.968 0.968

GMRES/ Time/iter (sec) - 3.07 1.73 1.07 0.65
ILU Conv. rate 0.870 0.878 0.878 0.880 0.891

Finally, we examine the e�ects of using a coarse grid as discussed in Section 6.4 to improve
convergence for the 15,606-vertex mesh. Figure 35 shows the convergence histories as a function of
iterations for the uni-processor, 32-processor and 128-processor cases, with and without the use of
a coarse grid. A cycle of modi�ed Jacobi smoothing is employed as part of the preconditioner in
order to stabilize the procedure with the coarse grid system, and the coarse grid system is solved
redundantly by all processors using one iteration of incomplete LU factorization. The convergence
improves signi�cantly, illustrating the power of the coarse grid; the convergence with 128 processors

48

is even better than that obtained with the uni-processor scheme. Unfortunately, this improved
convergence does not translate into a reduction in the time required to solve the problem, in spite
of all the optimizations mentioned in Section 6.4. This is illustrated in Figure 36, which shows the
convergence histories as a function of elapsed times on 32 and 128 processors with and without the
coarse grid. In both the 32- and the 128-processor cases, it may be observed that the times required
to solve the problem are nearly the same with and without the use of the coarse grid. On a per
iteration basis, the elapsed times for the 32-processor case are 1.73 and 1.87 seconds respectively,
without and with the coarse grid. For the 128-processor case, these times are 0.64 an 1.02 seconds.
This points to a major drawback of using the coarse grid system to improve convergence on a
parallel computer. With too small a coarse grid system, the e�ort required to solve the system
is minimal, but so is the realized improvement in convergence. With a larger coarse grid system,
the gain in convergence is substantial but comes at a greater cost. The coarse grid operator, being
sequential in nature, predominates as the number of processors increases. When invoking the coarse
grid operator, a large fraction of the time is spent in the global concatenation. Thus, if the parallel
computer were to have better communication rates, the technique would be more competitive in
terms of elapsed times as well.

0 20 40 60 80 100

Iterations

-6

-5

-4

-3

-2

-1

0

10

10

10

10

10

10

10

R
es

id
ua

l

Uni-processor
P=32
P=32 - Coarse grid
P=128
P=128 - Coarse grid

Figure 35: Convergence histories for the
15606-vertex case as a function of iterations
with and without the use of a coarse grid.

0 50 100 150 200

Elapsed Time (secs.)

-6

-5

-4

-3

-2

-1

0

10

10

10

10

10

10

10

R
es

id
ua

l

P=32
P=32 - Coarse grid
P=128
P=128 - Coarse grid

Figure 36: Convergence histories 15606-
vertex case as a function of elapsed times with
and without the use of a coarse grid.

In order to get an idea of the relative performances of the codes on the Intel iPSC/860 and
the Cray Y-MP/1, performance data from the Cray implementation are given. The elapsed times
on the Cray Y-MP/1 are respectively, 0.15 and 0.39 seconds per time step for the coarse and �ne
meshes with the explicit scheme. The explicit code runs at 150 mega
ops on the Cray Y-MP/1.
The mega
op ratings on the Cray are obtained using the hardware performance monitor. By simple
scaling it may be veri�ed that the explicit code runs at nearly 400 mega
ops on 128 processors of
the Intel iPSC/860 with the larger problem. Timings for the implicit scheme on the Cray Y-MP/1
are not provided since the codes have not been not optimized.

6.6 Adaptive grids

R-re�nement, where the grid points are simply repositioned so that regions of importance are better
resolved, poses no problems in parallel. P-re�nement causes load imbalance in a parallel setting.
H-re�nement or mesh-enrichment also results in load imbalance. We will be mainly concerned in

49

this section about redressing the load imbalance caused by h-re�nement, with a similar approach
being possible for p-re�nement.

In the case of steady
ows, a global repartitioning using any of the partitioning strategies
outlined in Section 6.1 is attractive, because the adaptation is typically only carried out a few
times. In the case of unsteady
ows, however, the adaptation is usually carried out much more
frequently and global repartitioning, even if done in parallel, is time-consuming. Instead, a dynamic
load balancing strategy which involves local migration of cells from each processor to/from the
neighboring processors is more appealing. The quality of the partitions that result from such a
local procedure is dependent on the quality of the initial partitions and also on the number of
times the local procedure is carried out. Periodically, we may have no choice but to use a global
repartitioning strategy if the quality of the partitions degrades. A tacit assumption is made when
dealing with adaptive grids on distributed-memory parallel computers. The assumption is that
when the subgrid assigned to a node is re�ned, it still �ts in the memory of that node before the
load balancing algorithm is initiated. This may be an unrealistic assumption unless the memory of
that node is sizable; it may also limit the amount of re�nement that can be done.

A dynamic load balancing strategy presented in [137] for adapted tetrahedral grids is now
described. The technique migrates tetrahedral cells between processors so that balanced partitions
result. Given an initial partitioning, that becomes unbalanced because of adaptive re�nement,
the load balancing algorithm consists of two steps. The �rst step, or the higher-level algorithm,
concerns the identi�cation of the processors that need to exchange cells with their face-adjacent
neighbors and the speci�cation of the number of cells to be exchanged. The second phase, or the
lower-level algorithm, concerns the actual modus operandi of the exchange of cells between any two
face-adjacent processors, including the updating of the pertinent data structures.

The higher-level algorithm used for load balancing is a divide-and-conquer strategy. The global
problem involving all the processors is split into two similar, independent problems, each of which
involves half the number of processors. The two problems are recursively solved in the same fashion,
with the recursion terminating when the problem involves only two processors. Thus the algorithm
completes in log2P stages where P is the total number of processors. At each stage, processors
in each group that are face-adjacent to at least one processor in the other group are identi�ed for
the actual migration of cells and are called candidate processors. Since a recursive partitioning
strategy is adopted (see Section 6.1), the groups of processors at each stage are easily identi�ed
by their binary addresses. This will be clari�ed by means of an example. Figure 37 shows an
8-way partition of the domain. The loads associated with the partitions are shown in parantheses.
Assume that a naive mapping of processors is done, so that partition 0 is assigned to processor 0,
and so on. At the �rst stage, the processors are split into two groups, one with 0 in the leading
bit of the binary addresses (processors 0, 1, 2, 3) and the other with 1 (processors 4, 5, 6, 7).
The candidate senders are processors 0, 1 and 3 and the candidate receivers are 7, 6 and 4 at the
�rst stage. The cumulative loads in these two processor groups are balanced by migrating a total
load of 50 from the heavier group using the candidate processors. The next step will involve two
problems, one that exchanges data between processor groups (0, 1) and (2, 3), using candidate
processors 1, 2 and 3 and a second, that exchanges data between processor groups (4, 5) and (7, 6),
using candidate processors 6, 4 and 5. The last stage consists of exchange of information between
processors 0 and 1, 2 and 3, 4 and 5, and 7 and 8. At each stage of the load balancing, migration
takes place only across face-adjacent neighbors. Because of the recursive initial partitioning, such
a scheme would never have to migrate cells between processors that are not face-adjacent. In our
applications, the number of cells migrated by each candidate by each candidate sender is given by
the following relation:

Migi =
Ni

Ntot
�Migtot; (78)

where Migi is the number of cells to be migrated by the ith candidate processor in the sender

50

group, Ni is the total number of cells on processor i, Migtot is the total number of cells to be
migrated, and Ntot is the cumulative number of cells in all the candidate processors of the sender
group. This algorithm will fail when Migi > Ni. This can happen if, for example, a processor
such as processor 2 in Figure 37, has an excess load, but is not a candidate processor in the early
stages of the algorithm. However, such situations can be remedied by initially balancing the load of
such a processor with its face-adjacent neighbors before applying the divide-and-conquer algorithm.

0

7

6
1

5
[10]2

3 4

First stage of load balancing

Third stage
Second stage

[20]

[10]

[90]
[5]

[10]

[5]

[10]

Figure 37: 8-way decomposition with the computational loads shown in parantheses.

After the determination of candidate senders and receivers at each step of the divide and conquer
algorithm, the second step consists of the actual migration of cells. The candidate processors in the
sender group send the number of cells computed using Eqn. (78) to the receivers. The candidate
processors in the receiver group likewise receive the information from the senders. Asynchronous
communication models are utilized for this purpose. The candidate processors also have to adjust
their inter-partition data structures so as to accurately re
ect the change in the assignment of cells
to partitions. The local migration procedure is split into two steps:

1. The cell-designation step: The sender processor determines which cells are to be sent. To
minimize start-up costs, the sender sends the entire group of cells to the receiver in one
message. The cells could be designated by using either a connectivity-based or a coordinate-

based strategy. In the connectivity-based strategy, starting with the cells on the sender that
are face-adjacent to the receiver, additional cells are added to the list if they share a face
with any of the cells already in the list. In the coordinate-based strategy, cells within a
spatial region are designated for transfer. In [137], it was found that the coordinate-based
designation scheme was found to produce smooth inter-partition boundaries, whereas the
connectivity-based strategy produced jagged boundaries. It should be mentioned that the
coordinate-based cell-designation is appropriate only when a coordinate bisection strategy is
employed for the initial grid partitioning.

2. Communication step: The sender processor deletes the designated cells and the appropriate
faces, edges and nodes from its representation. It sends the information to the receiver
processors. Each of the receivers adds the elements to its representation. Then both the
sender and receiver update their inter-partition boundary data structures.

An example of the load balancing algorithm taken from [137] for an adapted grid for
ow about
an ONERA M6 wing is shown in Figure 39(a) and (b). The surface grid has been adapted once near
the leading edge, the tip and the shock waves. The initial partitioning using a coordinate bisection

51

strategy is shown in Figure 39(a) by the thick lines. The surface plot for the balanced grid using the
divide and conquer strategy with the coordinate-based cell designation scheme is shown in Figure
39(b). During the �rst step of the load balancing algorithm the vertical partition boundary moves
to the left to balance the number of cells in the two halves. This is followed by an independent
movement of each of the horizontal boundaries. The length of the inter-partition boundaries has
not changed appreciably due to the balancing. This is contrast to the case where connectivity-based
cell-designation is employed where it was found that the inter-partition boundaries became jagged
and poorly formed [137]. The load balancing was implemented on an iPSC/860 and was found to
have adequate parallelism.

Figure 39(a): Adapted grid with the initial
partitioning.

Figure 39(b): Partitions that result from ap-
plying the load balancing algorithm.

References

[1] Special course on unstructured grid methods for advection dominated
ows, vol. AGARD
Report 787, AGARD, 1992.

[2] K. Ajmani, M. S. Liou, and R. W. Dyson, Preconditioned implicit solvers for the Navier-
Stokes equations on distributed-memory machines. AIAA Paper 94-0408, Jan. 1994.

[3] J. Alonso and A. Jameson, Fully-implicit time-marching aeroelastic solution. AIAA Paper
94-0056, Jan. 1994.

[4] E. Anderson and Y. Saad, Solving sparse triangular systems on parallel computers, Int.
J. High Speed Computing, 1 (1989), pp. 73{96.

[5] W. K. Anderson, A grid generation and
ow solution method for the Euler equations on

unstructured grids, J. Comp. Phys., 110 (1994), pp. 23{38.

[6] A. Arnone, M.-S. Liou, and L. A. Povinelli, Multigrid time-accurate integration of

Navier-Stokes equations. AIAA Paper 93-3361CP, 1993.

52

[7] S. T. Barnard and H. D. Simon, A fast multi-level implementation of recursive spectral

bisection for partitioning usntructured grid problems, Concurrency: Practice and Experrience,
6 (1994), pp. 101{117.

[8] E. Barszcz, R. Fatoohi, V. Venkatakrishnan, and S. Weeratunga, Triangular sys-
tems for CFD applications on parallel architectures, Tech. Rep. NAS Applied Research Branch
RNR, NASA Ames Research Center, Apr. 1993.

[9] T. J. Barth, Numerical aspects of computing viscous high Reynolds number
ows on un-

structured meshes. AIAA Paper 91-0721, Jan. 1991.

[10] , Numerical aspects of computing viscous high Reynolds number
ows on unstructured

meshes. AIAA Paper 91-0721, Jan. 1991.

[11] T. J. Barth and P. O. Fredrickson, Higher order solution of the Euler equations on

unstructured grids using quadratic reconstruction. AIAA Paper 90-0013, Jan. 1990.

[12] T. J. Barth and D. C. Jespersen, The design and application of upwind schemes on

unstructured meshes. AIAA Paper 89-0366, Jan. 1989.

[13] T. J. Barth and S. W. Linton, An unstructured mesh Newton solver for compressible

uid
ow and its parallel implementation. AIAA Paper 95-0221, Jan. 1995.

[14] J. T. Batina, Unsteady Euler airfoil solutions using unstructured dynamic meshes, AIAA
J., 28 (1990), pp. 1381{1388.

[15] , Implicit upwind solution algorithms for three-dimensional unstructured meshes, AIAA
J., 31 (1993), pp. 801{805.

[16] J. D. Baum, H. Luo, and R. L�ohner, A new ALE adaptive unstructured methodology for

the simulation of moving bodies. AIAA Paper 94-0414, Jan. 1994.

[17] R. M. Beam and H. E. Bailey, Newton's method solver for the axisymmetric Navier-Stokes
equations, J. Comp. Phys., 30 (1990), pp. 1507{1514.

[18] R. M. Beam and H. S. Bailey, Viscous computations using a direct solver, Computers
and Fluids, 18 (1990), pp. 191{204.

[19] R. M. Beam and R. F. Warming, An implicit �nite-di�erence algorithm for hyperbolic

systems in conservation laws, J. Comp. Phys., 22 (1976), pp. 87{110.

[20] E. E. Bender and P. K. Khosla, Solution of the two-dimensional Navier-Stokes equations

using sparse matrix solvers. AIAA Paper 87-0603, Jan. 1987.

[21] S. Bokhari, T. W. Crockett, and D. M. Nichol, Parametric nested dissection. ICASE
Report 94-39, 1994.

[22] A. Brennis and A. Eberle, Application of an implicit relaxation method solving the Euler

equations for time-accurate unsteady problems, Transactions of ASME - J. Fluids Engrg., 112
(1990), pp. 510{520.

[23] W. R. Briley and H. McDonald, Solution of the multi-dimensional compressible Navier-

Stokes equations by a generalized implicit method, J. Comp. Phys., 21 (1977), pp. 372{397.

[24] P. N. Brown and Y. Saad, Hybrid krylov methods for nonlinear systems of equations,
SIAM J. Sci. Stat. Comput., 11 (1990), pp. 450{481.

53

[25] X. Cai, W. D. Gropp, and D. E. Keyes, A comparison of some domain decomposition

and ILU preconditioned algorithms for nonsymmetric elliptic problems, Num. Linear. Alg.
with Applications, 19 (1994), pp. 477{504.

[26] X. C. Cai, W. D. Gropp, D. E. Keyes, and M. D. Tidriri, Newton-Krylov-Schwarz
methods in CFD, in Proceedings of the International Workshop on Numerical Methods
for the Navier-Stokes Equations, vol. 47 of Notes in Numerical Fluid Mechanics, Braun-
schweig/Wiesbaden, 1994, Vieweg Verlag.

[27] S. Chakravarthy, K. Y. Szema, S. Ramakrishnan, R. Burman, and R. Schultz,
Inviscid CFD for store separation using uni�ed boundary conditions. AIAA Paper 93-3404,
Aug. 1993.

[28] B. Cockburn, S. Hou, and C. Shu, TVB Runge-Kutta local projection discontinuous

Galerkin �nite element method for conservation laws IV: the multidimensional case, Math.
Comp., 54 (1990), pp. 545{581.

[29] G. Dahlquist and A. Bj�orck, Numerical methods, Prentice Hall, New Jersey, 1974.

[30] G. A. Davis and O. O. Bendiksen, Unsteady transonic two-dimensional Euler solutions

using �nite elements, AIAA J., 31 (1993), pp. 1051{1059.

[31] H. Deconinck, H. Paillere, R. Struijs, and P. L. Roe, Multidimensional upwind

schemes based on
uctuation-splitting of conservation laws, Comp. Mechanics, 11 (1993),
pp. 323{340.

[32] R. S. Dembo, S. C. Eisenstadt, and T. Steihaug, Inexact Newton methods, SIAM J.
Numer. Anal, 19 (1982), pp. 400{408.

[33] J. E. Dennis and R. B. Schnabel, Numerical methods for unconstrained optimization and

nonlinear equations, Prentice{Hall, Englewood Cli�s, NJ, 1983.

[34] H. A. V. der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the

solution of nonsymmetic linear systems, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 631{644.

[35] J. Donea, A Taylor-Galerkin method for convective transport problems, Int. J. for Numer.
Meth. in Engrg., 20 (1984), pp. 101{119.

[36] M. Dryja and O. B. Widlund, Towards a uni�ed theory of domain decomposition algo-

rithms for elliptic problems, in Third International Symposium on Domain Decomposition
Methods for Partial Di�erential Equations, T. Chan, R. Glowinski, J. Periux, and O. B.
Widlund, eds., Philadelphia, PA, 1990, SIAM, pp. 3{21.

[37] I. S. Duff and G. A. Meurant, The e�ect of ordering on preconditioned conjugate gradi-

ents, BIT, 129 (1989), pp. 635{657.

[38] L. J. Durlofsky, B. Engquist, and S. Osher, Triangle-based adaptive stencils for the

solution of hyperbolic conservation laws, J. Comp. Phys., 98 (1992), pp. 64{73.

[39] L. Dutto, The e�ect of ordering on preconditioned GMRES algorithm, for solving the com-

pressible Navier-Stokes equations, Intl. J. for Numer. Meth. in Engrg., 36 (1993), pp. 457{497.

[40] J. W. Edwards and J. L. Thomas, Computational methods for unsteady transonic
ows.
AIAA Paper 87-0107, Jan. 1987.

54

[41] C. Farhat, L. Fezoui, and S. Lanteri, Two-dimensional viscous
ow computation on

the Connection Machine: Unstructured meshes, upwind schemes and parallel computation,
Comput. Methods Appl. Mech. Engrg, 102 (1993), pp. 61{88.

[42] C. Farhat and M. Lesoinne, Automatic partitioning of unstructured meshes for the parallel
solution of problems in computational mechanics, Intl. J. for Numer. Meth. in Engrg., 36
(1993), pp. 745{764.

[43] L. Fezoui and B. Stoufflet, A class of implicit upwind schemes for Euler simulations

with unstructured meshes, J. Comp. Phys., 84 (1989), pp. 174{206.

[44] L. Formaggia, J. Peraire, and K. Morgan, Simulation of a store separation using �nite

element method, Appl. Math. Modelling, 12 (1988), pp. 175{181.

[45] R. W. Freund, G. H. Golub, and N. M. Nachtigal, Iterative solutions of linear systems,
Acta Numerica, 1 (1992), pp. 57{100.

[46] N. T. Frink, A time-accurate multiple-grid algorithm. AIAA Paper 85-1493CP, June 1985.

[47] , Grid restructuring for moving boundaries. AIAA Paper 91-1589CP, July 1991.

[48] , Recent progress toward a three-dimensional unstructured Navier-Stokes
ow solver.
AIAA Paper 94-0061, Jan. 1994.

[49] A. George and J. W. Liu, Computer solution of large sparse positive de�nite systems,
Prentice Hall Series in Computational Mathematics, Englewood Cli�s, N. J., 1981.

[50] A. Gibbons, Algorithmic graph theory, Cambridge University Press, New York, NY, 1985.

[51] J. R. Gilbert, G. L. Miller, and S.-H. Teng, Geometric mesh partitioning: Implemen-

tation and experiments, Tech. Rep. CSL{94{13, Xerox Palo Alto Research Center, 1994.

[52] G. H. Golub and C. F. Van Loan, Matrix computations, Johns Hopkins Uniersity Press,
Baltimore, MD, 1989.

[53] A. Greenbaum, Solving sparse triangular linear systems using FORTRAN with parallel

extensions on the NYU Ultracomputer prototype, Tech. Rep. Ultracomputer Note 9, New
York Univ., Apr. 1986.

[54] S. W. Hammond and T. J. Barth, E�cinet massively parallel Euler solver for two-

dimensional unstructured grids, AIAA J., 30 (1992), pp. 947{952.

[55] A. Harten and S. Chakravarthy, Multi-dimensional ENO schemes for general geome-

tries. ICASE Report No. 91-76, 1991; submitted to J. Comp. Phys.

[56] J. E. Hase, D. A. Anderson, and I. H. Parpia, A Delaunay triangulation method and

Euler solver for bodies in relative motion. AIAA Paper 91-1590CP, July 1991.

[57] O. Hassan, K. Morgan, and J. Peraire, An adaptive implicit/explicit �nite element

scheme for compressible high speed
ows. AIAA Paper 89-0363, Jan. 1989.

[58] J. Hong, K. Melhorn, and A. L. Rosenberg, Cost trade-o�s in graph embeddings, with

applications, JACM, 30 (1983), pp. 709{728.

[59] T. J. R. Hughes, Recent progress in the development and understanding of SUPG meth-

ods with special reference to the compressible Euler and Navier-Stokes equations, Intl. J. for
Numer. Meth. in Fluids, 7 (1987), pp. 1261{1275.

55

[60] T. J. R. Hughes, L. P. Franca, and G. M. Hulbert, A new �nite element formulation

for computational
uid dynamics: VIII The Galerkin/least-squares method for advective-

di�usive systems, Comput. Methods Appl. Mech. Engrg, 73 (1989), pp. 173{189.

[61] A. Jameson, Solution of the Euler equations by a multigrid method, Applied Mathematics
and Computation, 13 (1983), pp. 327{356.

[62] , Time-dependent calculations using multigrid, with applications to unsteady
ows past

airfoils and wings. AIAA Paper 91-1596, July 1991.

[63] , Analysis and design of numerical schemes for gas dynamics 1. Arti�cial di�usion,

upwind biasing, limiters and their e�ect on accuracy and multigrid convergence. Submitted
to Intl. J. Comp. Fluid Dynamics, 1994.

[64] A. Jameson and D. J. Mavriplis, Finite volume solution of the two-dimensional Euler

equations on a regular triangular mesh, AIAA J., 24 (1986), pp. 611{618.

[65] A. Jameson, W. Schmidt, and E. Turkel, Numerical solution of the Euler equations by

�nite volume methods using Runge-Kutta time stepping schemes. AIAA Paper 81-1259, 1981.

[66] Z. Johan, T. J. R. Hughes, K. K. Mathur, and S. L. Johnsson, A data parallel

�nite element method for computational
uid dynamics on the Connection Machine System,
Comput. Methods Appl. Mech. Engrg., 99 (1992), pp. 113{124.

[67] Y. Kallinderis and S. Ward, Hybrid prismatic/tetrahedral grid generation for complex

geometries. AIAA Paper 93-0669, Jan. 1993.

[68] S. R. Kennon, J. M. Meyering, C. W. Berry, and J. T. Oden, Geometry based

Delaunay tetrahedralization and mesh movement strategies for multi-body CFD. AIAA Paper
92-4575, Aug. 1992.

[69] D. E. Keyes, Domain decomposition: a bridge between nature and parallel computers, in
Adaptive, multilevel and hierarchical computational strategies, A. K. Noor, ed., New York,
1991, ASME, pp. 293{334.

[70] W. L. Kleb, J. T. Batina, and M. H. Williams, Temporal adaptive Euler/Navier-Stokes
algorithm involving unstructured dynamic meshes, AIAA J., 30 (1992), pp. 1980{1985.

[71] M. Lallemand, H. Steve, and A. Dervieux, Unstructured multigridding by volume ag-

glomeration: Current status, Computers and Fluids, 21 (1992), pp. 397{433.

[72] A. Lerat, J. Sides, and V. Daru, E�cient computation of steady and unsteady transonic

ows by an implicit solver, in Advances in computational transonics, W. G. Habashi, ed.,
vol. 4 of Recent advances in Numerical Methods in Fluids, Swansea, U.K., 1985, Pineridge
Press, pp. 545{576.

[73] P. Lesaint and P. A. Raviart,On a �nite element method for solving the neutron transport

problem, in Mathematical aspects of Finite Elements in Partial Di�erential Equations, C. de
Boor, ed., Academic Press, 1974, pp. 89{123.

[74] R. L�ohner, An adaptive �nite element solver for transient problems with moving bodies,
Comp. Struct., 30 (1988), pp. 303{317.

[75] R. L�ohner and J. D. Baum, Adaptive H-re�nement on 3-D unstructured grids for transient

problems, Int. J. Num. Meth. Fluids, 14 (1992), pp. 1407{1419.

56

[76] R. L�ohner, J. Cambreros, and M. Merriam, Parallel unstructured grid generation, Intl.
J. Num. Meth. Engrg., 54 (1992), pp. 545{581.

[77] D. Martin and L�ohner, An implicit linelt-based solver for incompressible
ows. AIAA
Paper 93-0668, Jan. 1992.

[78] D. J. Mavriplis, Multigrid solution of the two-dimensional Euler equations on unstructured

triangular meshes, AIAA J., 26 (1988), pp. 824{831.

[79] , Accurate multigrid solution of the Euler equations on unstructured and adaptive meshes,
AIAA J., 28 (1990), pp. 213{221.

[80] , Algebraic turbulence modeling for unstructured and adaptive meshes, AIAA J., 29
(1991), pp. 2086{2093.

[81] , Three-dimensional multigrid for the Euler equations, AIAA Journal, 30 (1992),
pp. 1753{1761.

[82] , Mesh generation and adaptivity for complex geometries, Handbook of Computational
Fluid Mechanics, Academic Press, Inc., San Diego, CA, 1995.

[83] D. J. Mavriplis, R. Das, J. Saltz, and R. E. Vermeland, Implementation of a parallel

unstructured Euler solver on shared and distributed memory machines. ICASE Report No.
92-68, 1992; to appear in The J. of Supercomputing.

[84] D. J. Mavriplis and V. Venkatakrishnan, Agglomeration multigrid for viscous turbulent

ows. AIAA Paper 94-2332, June 1994; to appear in Computers and Fluids.

[85] , A 3D agglomeration multigrid solver for the Reynolds-averaged Navier-Stokes equations

on unstructured meshes. AIAA Paper 95-0345, Jan. 1995.

[86] P. R. McHugh and D. A. Knoll, Comparison of standard and matrix-free implementa-

tions of several Newton-Krylov solvers, AIAA J., 32 (1994), pp. 2394{2400.

[87] J. L. Meijering, Interface area, edge length, and number of vertices in crystal aggregates

with random nucleation, Tech. Rep. 8, Philips Res. Rep, 1953.

[88] J. A. Meijerink and H. A. van der Vorst, Guidelines for the usage of incomplete

decompositions in solving sets of linear equations as they occur in practical problems, J. Comp.
Phys., 44 (1981), pp. 134{155.

[89] N. D. Melson, M. D. Sanetrik, and H. L. Atkins, Time-accurate Navier-Stokes cal-

culations with multigrid acceleration, in 6th Copper Mountain Conf. on Multigrid Methods,
1993, pp. 423{439.

[90] M. Merriam, E�cient parallel implementation of an algorithm for Delaunay triangulation.
Paper submitted to the J. Comp. Phys., June 1993.

[91] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis, Automatic mesh parti-

tioning, in Graph Theory and Sparse Matrix Computation, A. George, J. R. Gilbert, and
J. W. H. Liu, eds., Springer Verlag, 1993, pp. 57{84. The IMA Volumes in Mathematics and
its Applications, Volume 56.

[92] W. A. Mulder and B. van Leer, Implicit upwind methods for the Euler equations. AIAA
Paper 83-1930, July 1983.

57

[93] K. Nakahashi, A �nite-element method on prismatic elements for the three-dimensional

Navier-Stokes equations, in Lecture Notes in Physics, vol. 323, Springer Verlag, 1989.

[94] E. J. Nielsen, R. W. Walters, W. K. Anderson, and D. E. Keyes, Application of

Newton-Krylov methodology to a three-dimensional Euler code. Paper submitted to the 12th
AIAA CFD Conf., San Diego, CA., June 1995.

[95] P. D. Orkwis and D. S. McRae, Newton's method solver for the axisymmetric Navier-

Stokes equations, AIAA J., 30 (1992), pp. 1507{1514.

[96] H. Paillere, H. Deconinck, R. Struijs, P. L. Roe, L. M. Mesaros, and J. D.

Muller, Computations of compressible
ows using
uctuation-splitting on triangular meshes.
AIAA Paper 93-3301CP, July 1993.

[97] B. Palmerio, An attraction-repulsion mesh adaption model for
ow solution on unstructured

grids, Computers and Fluids, 23 (1994), pp. 487{506.

[98] M. Paraschivoiu, J. Y. Trepanier, M. Reggio, and R. Camarero, A conservative

dynamic discontinuity tracking algorithm for the Euler equations. AIAA Paper 94-0081, Jan.
1994.

[99] P. Parikh, R. L�ohner, C. Gumbert, and S. Pirzadeh, Numerical solutions on a

PATHFINDER and other con�gura tions using unstructured grids and a �nite element solver.
AIAA Paper 89-0362, Jan. 1989.

[100] I. Parpia and P. Parikh, A solution-adaptive mesh generation method with cell-face ori-

entation control. AIAA Paper 94-0416, Jan. 1994.

[101] A. Pothen, H. D. Simon, and K. P. Liou, Partitioning sparse matrices with eigenvectors

of graphs, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 430{452.

[102] T. H. Pulliam, Time accuracy and the use of implicit schemes. AIAA Paper 93-3360CP,
July 1993.

[103] M. M. Rai, Navier-Stokes simulations of blade-vortex interaction using high-order accurate

upwind schemes. AIAA Paper 87-0543, Jan. 1987.

[104] R. Ramamurthi, W. Sandberg, and R. L�ohner, Evaluation of a scalable 3-D �nite

element incompressible
ow solver. AIAA Paper 94-0756, Jan. 1994.

[105] R. D. Rausch, J. T. Batina, and H. T. Y. Yang, Spatial adaptation of unstructured

meshes for unsteady aerodynamic
ow computations, AIAA J., 30 (1992), pp. 1243{1251.

[106] P. L. Roe, Characteristic-based schemes for the Euler equations, Ann. Rev. Fluid Mech., 18
(1986), pp. 337{365.

[107] P. Rostand and B. Stoufflet, TVD schemes to compute compressible viscous
ows on

unstructured meshes, in Notes on numerical
uid mechanics, vol. 24, Braunschweig, Germany,
1988, Vieweg Press.

[108] Y. Saad, ILUT : A dual threshold incomplete factorization, Tech. Rep. UMSI 92/38, Uni-
versity of Minnesota Supercomputing Institute, Mar. 1992.

[109] Y. Saad and M. H. Schultz, Gmres: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856{869.

58

[110] F. Shakib, T. J. R. Hughes, and Z. Johan, A multi-element group preconditioned gmres

algorithm for nonsymmetric problems arising in �nite element analysis, Comput. Methods
Appl. Mech. Engrg, 87 (1989), pp. 415{456.

[111] C.-W. Shu and S. Osher, E�cient implementation of Essentially Non-oscillatory shock-

capturing schemes, J. Comp. Phys., 77 (1988), pp. 439{471.

[112] H. D. Simon, Partitioning of unstructured problems for parallel processing, Computing Sys-
tems in Engrg., 2 (1991), pp. 135{148.

[113] D. C. Slack, D. L. Whitaker, and R. W. Walters, Time integration algorithms for the

two-dimensional Euler equations on unstructured meshes, AIAA J., 32 (1994), pp. 1158{1166.

[114] W. A. Smith,Multigrid solution of transonic
ow on unstructured grids, in Recent Advances
and Applications in Computational Fluid Dynamics, Nov. 1990. Proceedings of the ASME
Winter Annual Meeting, Ed. O. Baysal.

[115] G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley,
MA, 1986.

[116] G. Strang and G. J. Fix, An analysis of the �nite element method, Prentice Hall, New
Jersey, 1973.

[117] P. D. Thomas and C. K. Lombard, Geometric conservation law and its applications to

ow computations on moving grids, AIAA J., 17 (1979), pp. 1030{1037.

[118] J. F. Thompson and N. P. Weatherill, Aspects of numerical grid generation: current

science and art. AIAA-93-3539-CP, 1993.

[119] M. D. Tidriri, Couplage d'approximations et de mod�eles de types di��erents dans le calcul

d'�ecoulements externes, PhD thesis, Universit�e de Paris IX, May 1992.

[120] J. Y. Trepanier, H. Zhang, M. Reggio, and R. Camarero, Adaptive and moving

meshes for the computation of unsteady compressible
ows, in Numerical grid generation in
Computational Fluid dynamics and related �elds, A. S. Arcilla, J. Hauser, P. R. Eiseman,
and J. F. Thompson, eds., New York, 1991, North-Holland, pp. 43{54.

[121] B. van Leer, Towards the ultimate conservative di�erence scheme V. A second order sequel

to Godunov's method, J. Comp. Phys., 32 (1979), pp. 101{136.

[122] B. van Leer, W. T. Lee, and P. Roe, Characteristic time-stepping or local preconditioning
of the Euler equations. AIAA Paper 91-1552CP, June 1991.

[123] B. van Leer, C. H. Tai, and K. G. Powell, Design of optimally-smoothing multi-stage

schemes for the Euler equations. AIAA Paper 89-1933, June 1989.

[124] J. van Rosendale, Floating point shock �tting for the Euler equations. Paper submitted to
the 12th AIAA CFD Conf., San Diego, CA., June 1995.

[125] J. C. Vassberg, A fast, implicit unstructured-mesh Euler method. AIAA Paper 92-2693,
1992.

[126] V. Venkatakrishnan, Newton solution of inviscid and viscous problems, AIAA J., 27
(1989), pp. 885{891.

[127] , Preconditioned conjugate gradient methods for the compressible Navier-Stokes equa-

tions, AIAA J., 29 (1991), pp. 1092{1100.

59

[128] , Parallel computation of Ax and ATx, Int. J. High Speed Computing, 6 (1994), pp. 325{
342.

[129] , Parallel implicit unstructured grid Euler solvers, AIAA J., 32 (1994), pp. 1985{1991.

[130] V. Venkatakrishnan and T. J. Barth, Application of direct solvers to unstructured

meshes for the Euler and Navier-Stokes equations using upwind schemes. AIAA Paper 89-
0364, Jan. 1989.

[131] V. Venkatakrishnan and A. Jameson, Computation of unsteady transonic
ows by the

solution of Euler equations, AIAA J., 26 (1988), pp. 974{981.

[132] V. Venkatakrishnan and D. J. Mavriplis, Agglomeration multigrid for the three-

dimensional Euler equations. AIAA Paper 94-0069, June 1994; to appear in AIAA J.

[133] , Implicit solvers for unstructured meshes, Journal of Computational Physics, 105 (1993),
pp. 83{91.

[134] , Implicit method for the computation of unsteady
ows on unstructured grids. Paper
submitted to the 12th AIAA CFD Conf., San Diego, CA., June 1995.

[135] V. Venkatakrishnan, H. D. Simon, and T. J. Barth, A mimd implementation of a

parallel Euler solver for unstructured grids, The J. of Supercomputing, 6 (1992), pp. 117{137.

[136] R. Vichnevetsky and J. B. Bowles, Fourier Analysis of Numerical Approximations of

Hyperbolic Equations, SIAM Studies in Applied Mathematics, SIAM, Philadelphia, PA, 1982.

[137] A. Vidwans, Y. Kallinderis, and V. Venkatakrishnan, Parallel dynamic load-

balancing algorithm for three-dimensional adaptive unstructured grids, AIAA J., 32 (1994),
pp. 497{506.

[138] H. F. Walker, Implementation of the GMRES method using Householder transformations,
SIAM J. Sci. Stat. Comput., 9 (1988), pp. 152{163.

[139] P. Wesseling, An introduction to multigrid methods, John Wiley & Sons, New York, 1992.

[140] D. L. Whitaker, Three-dimensional unstructured grid Euler computations using a fully-

implicit, upwind method. AIAA Paper 93-3337CP, July 1993.

[141] L. B. Wigton, N. J. Yu, and D. P. Young, GMRES acceleration fo
uid dynamics codes.
AIAA Paper 85-1494CP, July 1985.

[142] X. Xia and R. Nicolaides, Covolume techniques for anisotropic media, Numer. Math., 61
(1992), pp. 215{234.

[143] H. Zhang, M. Reggio, J. Y. Trepanier, and R. Camarero, Discrete form of the

GCL for moving meshes and its implementation in CFD schemes, Computers and Fluids, 22
(1993), pp. 9{23.

[144] Z. Zlatev, Use of iterative re�nement in the solution of sparse linear systems, SIAM J.
Numer. Anal., 19 (1982), pp. 381{399.

60

