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Abstract

In this paper we present a novel method for solving optimization problems governed by

partial di�erential equations. Existing methods use gradient information in marching toward

the minimum, where the constrained PDE is solved once (sometimes only approximately) per

each optimization step. Such methods can be viewed as a marching techniques on the intersection

of the state and costate hypersurfaces while improving the residuals of the design equation per

each iteration. In contrast, the method presented here march on the design hypersurface and

at each iteration improve the residuals of the state and costate equations. The new method

is usually much less expensive per iteration step, since in most problems of practical interest

the design equation involves much fewer unknowns than either the state or costate equations.

Convergence is shown using energy estimates for the evolution equations governing the iterative

process. Numerical tests shows that the new method allows the solution of the optimization

problem in cost equivalent to solving the analysis problem just a few times, independent of the

number of design parameters. The method can be applied using single grid iterations as well as

with multigrid solvers.
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1 Introduction

In the last few years there has been a growing interest in the numerical solution of optimization

problems governed by large scale problems. This new interest is a direct result of the improvement

in computer technology. Probably the most challenging problems are those which involve complex

governing equations such as the Euler, Navier-Stokes, Acoustic wave, and Maxwell's. Some global

quantities governed by the solutions of such equations are required to be minimized (maximized)

in terms of some prescribed design variables. The resulting mathematical problem is formulated

as a constrained optimization problem which can sometimes be viewed as a control problem. Most

existing algorithms use gradient information for reaching the minimum, possibly together with

preconditioners for accelerating convergence.

E�cient gradient calculation can be done using the adjoint equations, and in area of aerody-

namics design, this approach was �rst suggested in [J]. There the steepest descent method was

employed there and the adjoint equations were used for e�cient calculation of gradients. In this

approach, each optimization step requires the solution of the state and costate equations and an

e�cient implementation is achieved by using multigrid methods for both equations. No acceleration

of the optimization process was involved in this work.

The one shot method proposed in [T1] for control problems, also uses the adjoint method to-

gether with multigrid acceleration for state and costate, but also include an acceleration of the

minimization process. Its development so far has been for problems with elliptic partial di�erential

equations as constraints. The main idea is that smooth perturbations in the data of the prob-

lem introduce smooth changes in the solution, and highly oscillatory changes in the data produces

highly oscillatory changes in the solution. Moreover, highly oscillatory changes are localized. These

observations enable the construction of very e�cient optimization procedure, in addition to very

e�cient solvers for the state and costate variables. Design variables that correspond to smooth

changes in the solution are solved for on coarse levels and those corresponding to highly oscilla-

tory changes are solved for on appropriate �ner grids. The resulting method can be viewed as a

preconditioning of the gradient descent method where the new condition number is independent

of the grid size, and is of order 1. Thus, within a few optimization iterations one reaches the

minimum. The method was �rst developed for a small dimensional parameter space, where the

optimization was done on the coarsest grid, yet converging to the �ne grid solution [T1]. Later

in [TKS1], [TKS2] the method was applied to cases of a moderate number of design variables and

where the optimization was done on few of the coarsest grids. The extension of these ideas to the

in�nite dimensional parameter space was done in [AT1],[AT2] where both boundary control as well

as shape design problems were treated. In [AT1],[AT2] an important new analysis for the structure

of the functional near the minimum was introduced. That analysis also enables the construction

of e�cient relaxation for multigrid methods and preconditioners for single grid techniques. More-

over, it can give essential information about the structure of the minimum including the condition

number for the optimization problem, the well-posedness (ill-posedness) of the problem, and can
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suggest appropriate regularization techniques. Experiments with the one shot method for �nite

dimensional and in�nite dimensional design spaces showed that the convergence rate is practically

independent of the number of design parameters.

The necessity of using multigrid algorithms in the one shot methods is certainly a disadvantage

since in many engineering applications the underlying solvers do not use multigrid methods. This

drawback has led to inquiries in other directions, but still aiming at algorithms that solve the full

optimization problem in one shot, i.e., in a cost not much larger that that of solving the analysis

problem.

The �rst observation made was that the solution when using the adjoint method is an intersec-

tion point of three hypersurfaces describing the state equation, costate-state equation and design

equation (together forming the necessary conditions of the minimization problem). The adjoint

method can be viewed as marching on the intersection of the hypersurfaces corresponding to state

and costate variables, in the direction of the intersection with the design hypersurface. Since in

most applications the number of design variables is signi�cantly smaller than the number of state

or costate variables, marching in the design hypersurface is a much less expensive process than the

adjoint method, and may serve as a solution process for the optimization problem.

Methods that march on the design hypersurface are not based on gradients and their convergence

properties are di�erent. In this paper we construct and analyze methods of this type by embedding

the necessary conditions into an evolution equation so that the solution evolves in the design

hypersurface. Energy estimates are used to prove convergence.

The new methods which are stable approximations to evolution processes can be accelerated us-

ing multigrid or other acceleration techniques. Numerical results for model problems are presented

and demonstrate the e�ectiveness of the method. It is shown that the full optimization problem is

solved in a computer time equivalent to just a few solutions of the analysis problem. The method

seems to converge in a rate independent of the number of design variables.

2 On Adjoint Methods

We consider the following constrained minimization problem

min
u
E(u; �(u)) (1)

L(u; �) = 0 (2)

where L(u; :) is a partial di�erential operator (possibly nonlinear) de�ned on a Hilbert space H of

functions de�ned on a domain 
. The design variable is assumed to be in some other Hilbert space

U , for example, functions de�ned on the boundary @
, or part of it.

The (formal) necessary conditions are

L(u; �) = 0 State Equation

L���+ E� = 0 Costate Equation

L�u� +Eu = 0 Design Equation

(3)
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and we assume the existence of solutions for both the state and costate equations.

It can be shown that the gradient of E(u; �(u)) is given by

A(u) = L�u�(�; u) + Eu(u; �(u)) (4)

where �(u); �(�; u) are the solution of the state and costate equations. The quantity �A(u) can

serve as a minimization direction (steepest descent).

The adjoint method consists of solving the state and costate equations at each update step of

the design variables. Thus is can be viewed as an approximation to the following evolution process.

L(u; �) = 0 (5)

L���+ E� = 0 (6)

d

dt
u+ L�u� +Eu = 0 (7)

where d
dt
u represent the derivative of u with respect to the pseudo-time variable introduced into

the problem. The actual iteration method is obtained by replacing d
dt
u with (un+1 � un)=�t, for a

su�ciently small �t

The full algorithm can be viewed as a solver for the equation

A(u) = 0 (8)

for the variable u. A crucial quantity to consider for analyzing the e�ciency of di�erent algorithms

is the mapping

u �! A(u) (9)

For problems arising from partial di�erential equation this mapping is a di�erential or a pseudo-

di�erential operator and bad conditioning is anticipated. Preconditioning of basic iterative methods

such as the steepest descent, is needed.

The one shot methods [T1],[TKS1],[AT1],[AT2] were aiming at a preconditioning of the gradient

algorithm in such a way that an order one condition number is obtained. In such a case the number

of minimization step required to reach the minimum is independent of the size of the problem, i.e.,

the number of unknowns for u. This approach was found to be very successful for elliptic equations.

The idea is to exploit the locality of high frequencies in the algorithm, as well as the fact that high

frequencies in the design variables are related to high frequencies of the state variable and vice

versa. Finite and in�nite dimensional design spaces have been considered with application to

aerodynamics problems, and other shape design problems.

Another possible direction, which was not explored, is to construct single grid preconditioners

based on the form of the symbol of the operator A. This idea will be discussed elsewhere.
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Figure 1: Hypersurfaces for state, costate and design equations

3 The New Approach

The solution of the minimization problem is the intersection point of the hypersurfaces de�ned

by state, costate, and design equations, see �gure 1. Gradient descent methods for constrained

optimization problems march along the intersection of the state and costate hypersurfaces. Each

step in such a process requires the solution of two large scale problems, namely, the discretized

PDEs. Since in many applications the number of unknowns in either the state or costate equations

is signi�cantly larger than that in the design equation, marching on the hypersurface de�ned by

the design equation is a much less expensive process than that of marching along the state and the

costate hypersurfaces. This is the main idea of the new approach.

Each step in the minimization algorithms presented here improve the solution of the state and

costate equations, for example, by improving the distance to the hypersurfaces de�ned by the state

and costate equations. In addition each step is such that the approximate solution lies on the design

hypersurface.

The construction of algorithms that march along the design hypersurface and converge to the

minimum of the optimization problem can be done for a wide class of problems governed by PDE.

The approach taken here is to look at iterative methods for the solution of the state and costate

equations as a stable approximation to the evolution equations governed by the constrained PDE.

The construction of the method is done in two steps. In the �rst the stationary PDE (the necessary

conditions) is embedded into an evolution PDE for which the solution evolves in the design hyper-
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surface, and an energy estimate ensuring convergence is derived. The second step involves a stable

and consistent discretization of the pseudo-time dependent problem which is usually straightfor-

ward.

A technical di�culty which needs some explanation is related to the problem of staying on the

design hypersurface. Assume that we are given an iterative method for calculating the solutions

of the state and costate equations. Let the change produced in � and � be ~� and ~� respectively.

In order to remain on the design hypersurface it is necessary to calculate a change in u, namely, ~u

such that

A(u+ ~u; �+ ~�; �+ ~�) = 0 (10)

An approximation to this equation is

@A

@u
~u = �

@A

@�
~� �

@A

@�
~� (11)

This representation is useful when @A
@u

is an invertible operator. Note that the solution of this

equation involves a system whose size is identical to that of the number of design variables, which

is signi�cantly smaller than that of the state or the costate equations. While the operator @A
@u

+
@A
@�
�u +

@A
@�
�u is invertible, it is not convenient to work with; however Au =

@A
@u

is simple and easy

to manipulate.

In practice, Au may not be invertible and the update of the u requires a di�erent process. In

problems arising from partial di�erential equations in which the design variables are de�ned on

the boundary only, the design equation is an additional boundary condition for the system, for the

extra unknowns, namely, the design variables. In that case per each iteration step of the method

presented here require the simultaneous solution of the three boundary conditions for the state

equation, the costate equation and the design equation. These three conditions together involve

only a fraction more work than that of the boundary conditions for the state and costate equations.

In cases where the set of the three boundary conditions cannot be solved for the boundary state,

costate, and design variables, one should include equations from the interior. This is a typical case

when considering systems of partial di�erential equations in several dimensions.

In case that the linearized operator L� is coercive and the design equation can be solved for the

design variables, keeping the state and costate variables �xed, one can view the method presented

here as an approximation to the following time dependent problem

d

dt
�+ L(u; �) = 0 (12)

d

dt
� + LT

��+ E� = 0 (13)

Lu� +Eu = 0 (14)

where the last equation is essentially an extra boundary condition for the design variables.
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4 Examples

In this section we show a few examples of using the idea outlined in the previous section. We prove

an energy estimate for each of the examples, ensuring convergence.

Example I: Distributed Control Let 
 � IRn and consider the optimization problem

min
u

1

2

Z



(�� ��)2dx+
1

2
�

Z



u2 (15)

subject to (
4� = u 


� = 0 @

(16)

The necessary conditions are 8>>>>>><
>>>>>>:

4� = u 


4�+ � = �� 


�u� � = 0 


� = 0 @


� = 0 @


(17)

Consider the pseudo-time embedding

d
dt
� = 4�� u 


d
dt
� = 4�+ � � �� 


�u� � = 0 


� = 0 @


� = 0 @


(18)

We show that the error term in �; �; u, tend to zero as t approaches in�nity. These error terms

satisfy the same equations as their corresponding quantities �; �; u but with zero source terms. So

without loss of generality we consider our problem with �� = 0.

The proof uses Poincare's inequality in the form

k k2 � C(kr k2+ (

Z
�

�ds)2) C > 0 (19)

where � � @
, and C > 0 is a constant independent of  2 H1(
). The norm used above and in

the rest of the paper is the L2 norm on 
. The use of this theorem will be for functions vanishing

on part of the boundary denoted by �.

For this example we take � = @
 since the boundary condition for the errors in both � and

� is zero on @
. Multiplying the �rst two equations in (17) by � and � respectively we get using

integration by parts and the Poincare inequality

1

2

d

dt
(�k�k2 + k�k2) = ��kr�k2 � kr�k2 � �C(�k�k2 + k�k2) (20)
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for some constant C > 0, independent of �,�.

This implies that �k�k2 + k�k2 decay exponentially with rate exp(�Ct). That is, the pseudo-

time embedding converges to the minimum, at a rate determined by the constant C.

Example II: Boundary Control

The next example is of a boundary control. Let 
 � IRn , �1 [ �2 = @
, �1 \ �2 = ; and

consider

min
u

1

2

Z
@�1

(�� ��)2dx+
1

2
�

Z
@�1

u2 (21)

subject to

8><
>:
4� = 0 

@�
@n

= u �1

� = 0 �2

(22)

The necessary conditions are

8>>>>>>>>>>><
>>>>>>>>>>>:

4� = 0 


4� = 0 

@�
@n

= u @


�@�
@n

+ � = �� �1

�u+ � = 0 �1

� = 0 �2

� = 0 �2

(23)

The time embedding used for this problem is

d
dt
� = 4� 


d
dt
� = 4� 


@�
@n

= u @


�@�
@n

+ � = �� �1

�u+ � = 0 �1

� = 0 �2

� = 0 �2

(24)

In this case the use of Poincare's inequality is done for � = �2. Similarly to the previous

example it can be shown that

1

2

d

dt
(�k�k2 + k�k2) = ��kr�k2 � kr�k2 � �C(�k�k2 + k�k2) (25)

with a di�erent constant than that of example I. Again this estimate implies the exponential decay

of errors. Thus, convergence of � and � is ensured, and therefore also of u from the Neumann

boundary condition for �.
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Example III: System of First Order

Let x 2 IRd , A1; . . . ; Ad be symmetric constant matrices, � = (�1; . . . ; �n) de�ned on 
 � IRd.

We introduce the decomposition of �j@
 = (�+; �0; ��) as follows. Let A = (A1; . . . ; Ad) and n be

the outward normal to the boundary @
. The matrix A � n is symmetric and therefore has real

eigenvalues and a complete set of eigenvectors. Let � = (��; �0; �+) be a decomposition into the

direct sum of the subspaces of A � n corresponding to negative, zero and positive eigenvalues. For

simplicity we also assume that A � n has zero eigenvalues on isolated points on the boundary @
.

Consider the following problem

min
u

1

2

Z
�1

(�� � g)2ds+
1

2
�

Z
�1

u2ds (26)

where � is the solution of Pd
j=1Aj

@�
@xj

= 0 


(A � n)+�+ = u �1

(A � n)+�+ = 0 �2

(27)

where �1 [ �2 = @
;�1\ �2 = ; We further assume that there exist a constant K > 0 such that if

�� = 0; �+ = 0 for a time interval larger than K then � = � = 0.

The necessary conditions for the above optimization problem arePd
j=1Aj

@�
@xj

= 0 


�
Pd

j=1Aj
@�
@xj

= 0 


(A � n)+�+ = u �1

(A � n)��� + �� = �g �1

�+ + ��u = 0 �1

(A � n)+�+ = 0 �2

(A � n)��� = 0 �2

(28)

where � is an arbitrary positive number. We use it to derive the convergence estimate. Consider

the following time embedding

d
dt
�+

Pd
j=1Aj

@�
@xj

= 0 

d
dt
� �

Pd
j=1Aj

@�
@xj

= 0 


(A � n)+�+ = u �1

(A � n)��� + �� = �g �1

�+ + ��u = 0 �1

(A � n)+�+ = 0 �2

(A � n)��� = 0 �2

(29)

For analysis of the behavior of the errors we take g = 0 and using integration by parts we obtain

1

2

d
dt
(k�k2 + k�k2) = < (A � n)+�+; �+ > + < (A � n)���; �� > �

< (A � n)+�+; �+ > � < (A � n)���; �� >
(30)
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where the norms denote L2 norms on 
 and < :; : > denotes inner products on the boundary @
.

Eliminating the u from the boundary condition we obtain the following boundary condition that

must be satis�ed by �; �

(A � n)��� + ��� = 0 �1 (31)

�+ + ��(A � n)�1�+ = 0 �1 (32)

Substituting these into the energy estimate we obtain

1

2

d
dt
(k�k2 + k�k2) = < (A � n)� � (A � n)�1� ��; �� >�1

�

< (A � n)+ �
1

�
(A � n)�1+ �+; �+ >�1

< (A � n)���; �� >�2
� < (A � n)+�+; �+ >�2

(33)

The conditions

(A � n)� � �
2(A � n)�1� � 0

(A � n)+ �
1

(��)2
(A � n)�1+ � 0

(34)

imply that the changes in energy are non-positive. That is, it is either decreasing or stabilized.

Stabilization of the energy can occur only for the value zero, since otherwise it means that there

exists a non zero solution to the evolution equation such that �� and �+ are zero for all times.

This is in contradiction to the assumption about the constraint PDE.

Since � was arbitrary in this analysis, we can choose it small enough so that the �rst condition

holds. Then if � is large enough the second condition will hold as well. Thus, we obtain convergence

if � is not too small.

5 Numerical Results

In this section we demonstrate the e�ectiveness of the methods discussed here for an optimization

problem governed by inviscid incompressible 
ow. Let 
 = f(x; y)j0 � x � 1; 0 � y � 1g ,

�1 = f(x; 0)j0� x � 1g , �2 = f(x; 1)j0� x � 1g

The minimization problem is given by

min
u

1

2

Z
�1

(�� �0)
2dx+

1

2
�

Z
�1

u2dx (35)

subject to

4� = 0 

@�
@n

= u �1

� = g(x) �2

(36)

and all functions are assumed to be periodic in the x direction.
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5.1 Finite Dimensional Design Space

We assume that u has the form

qX
j=1

�jfj(x) (37)

where �j are constants to be determined and fj(x) are prescribed functions. The necessary con-

ditions for this problem are easily derived and we use the following time embedding as a solution

process

d
dt
� �4� = 0 


d
dt
� �4� = 


@�
@n

= u �1

�@�
@n

+ � = �0 �1

� = 0 �1

� = g �2R
1

0
fj(x)�(x; 0)dx+ ��j = 0 j = 1; . . . ; q

(38)

This time dependent process was approximated by Jacobi relaxation, where at each time step all

boundary conditions are satis�ed. Residuals history is given in �g 2 and shows that the convergence

rate is independent of the number of design variables.

5.2 In�nite Dimensional Design Space

In this case we look for u in a function space, namely, L2(0; 1). The necessary conditions are

stationary solution of the following time evolution equation which was used in the computation.

d
dt
��4� = 0 


d
dt
� �4� = 0 


@�
@n

= u �1

� = g(x) �1

�@�
@n

+ � = �0 �1

�(x; 0) + �u(x) = 0 �1

� = 0 �2

(39)

This time dependent process was approximated by Jacobi relaxation, where at each time step all

boundary conditions are satis�ed. Residuals history is given in �g 3 and shows that the convergence

rate is independent of �. It can be seen from that �gure that the number of iteration for the analysis

problem and for the full optimization problem are not much di�erent.
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Figure 2: Residuals History for analysis and full optimization method, grid 32x32, � = 0:
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Figure 3: Residuals History for analysis and full optimization method, grid 32x32

6 Conclusions

In this paper we have introduced pseudo-time methods for the e�cient solution of optimization

problems governed by partial di�erential equations. In these methods the marching toward the

solution of the optimization problem is done on the design hypersurface rather than the intersection

of the hypersurfaces for state and costate equations. Very e�cient solvers are obtained as indicated

from the proofs as well as from the numerical examples included. The methods allow the solution of

the full optimization problem in a computational cost similar to that of solving the constrained PDE.

The methods do not require gradient calculation however, it is essential to use it with the adjoint

equations. The methods o�er an alternative to gradient descent methods. Their implementation is

straightforward and can be done using multigrid algorithms or single grid iteration.
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