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Abstract

In the interaction of an acoustic �eld with a moving airframe we encounter a canonical

initial value problem for an acoustic �eld induced by an unsteady source distribution,

q(t;x) with q � 0 for t � 0, in a medium moving with a uniform unsteady velocity U(t)̂{

in the coordinate system x �xed on the airframe. Signals issued from a source point S

in the domain of dependence D of an observation point P at time t will arrive at point

P more than once corresponding to di�erent retarded times, � in the interval [0; t]. The

number of arrivals is called the multiplicity of the point S. The multiplicity equals 1 if

the velocity U remains subsonic and can be greater when U becomes supersonic. For an

unsteady uniform 
ow U(t)̂{, rules are formulated for de�ning the smallest number of I

subdomains Vi of D with the union of Vi equal to D. Each subdomain has multiplicity 1

and a formula for the corresponding retarded time. The number of subdomains Vi with

nonempty intersection is the multiplicitym of the intersection. The multiplicity is at most

I. Examples demonstrating these rules are presented for media at accelerating and/or

decelerating supersonic speed.

y This is an updated version of NYU CIMS Report BMT94 with additional examples.
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1. Introduction

In this paper we study the propagation of acoustic waves induced by a spatial source

distribution q(t;x) in a uniform medium moving with a time dependent velocity U(t)̂{

relative to the coordinate system x = (x; y; z). This study is an outgrowth of recent exper-

imental and theoretical investigations of a model acoustic-panel interaction problem. See

for example [1] and [2]. The acoustic source distribution could simulate the noise from jet

exhausts, turbulent boundary layers and/or the airframe panel oscillation. For the analysis

of the panel oscillation it is convenient to work in the coordinate system x = (x; y; z), sta-

tionary with the airframe, while the 
ow �eld is moving with the uniform unsteady velocity

U(t)̂{. In this system, the acoustic potential �(t; x; y; z) is governed by the convective wave

equation with variable coe�cients, the velocity U(t) and the acceleration _U (t),

[@2tt +
_U@x + 2U@2tx + U2@2xx � C2�]�(t; x; y; z) = q(t; x; y; z) ; (1:1)

where � denotes the Laplacian in (x; y; z) and C stands for the speed of sound of the

medium at the ambient condition. For an initial value problem, we impose

� = 0 ; @t� = 0 ; at t = 0 ; (1:2)

or

q = � = �t = 0 ; for t � 0 : (1:3)

In general, the solution �(t;x) is constructed indirectly via the solution of the correspond-

ing acoustic �eld �� in the coordinate system �x with the medium at rest [3]. These two

coordinate systems, which coincide at t = 0, are related by translation, x = �x + {̂X(t),

i. e.,

�x = x �X(t) ; �y = y ; �z = z ; with X(t) =

Z t

0

U(t0) dt0 : (1:4)

From hereon we omit the bars over y and z for the coordinates of x. Figure 1 shows the

coordinate �x with the medium at rest moving with velocity U(t)̂{ relative to the coordinate

x. We use �f and f to denote the same quantity as functions of �t; �x; y; z and t; x; y; z

respectively with �t = t. Thus we have

�f (�t; �x; y; z) = f(t; x; y; z) with @�t �f = (@t + U@x)f and �r �f = rf ; (1:5)

where �r and r denote the gradient operators in �x and x. In particular, if f denotes the

unsteady source distribution q in the coordinate system, x, the corresponding distribution

�q in �x is given by (1.5). In the barred system, the acoustic potential �� is governed by the

simple wave equation,

[C�2@2�t�t � ��] ��(�t; �x; y; z) = �q(�t; �x; y; z) ; (1:6)

where �� denotes the Laplacian in (�x; y; z). With homogeneous initial conditions (1.2)

applied to the barred variables, the potential at point �P (�x) at instant t, is given by the

explicit formula [3],

��(t; �x; y; z) = � 1

4�

Z Z Z
�V

d��d�d�
�q(�; �x0; y0; z0)

R
; (1:7)

where ��; �; � denote the coordinates of a source point �S(�x0) relative to point �P (�x),
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�x0 = �x + �� ; y0 = y + � ; z0 = z + � ; (1:8)

R denotes the distance from S to P and � the retarded time,

R = j�x0 � �xj =
q
��2 + �2 and � = t�R=C where � =

p
�2 + �2 : (1:9)

We now identify the domain of integration �V as the domain of dependence �D of point �P

at time t. In the coordinate system, ��; �; �, the point �P is the origin of the system and the

domain of dependence �D is a spherical ball of radius Ct centered at the origin, �P , i. e.,

�D = f(��; �; �)
�� 0 � R � Ctg : (1:10)

It is covered by a family of concentric spheres of radii R 2 [0; Ct]. The signal from a point
�S in �D on a sphere of radius R arrives at the origin �P along the radial line �S �P at time

t when the signal was initiated at the retarded time � = t � R=C. Since the domain of

dependence is axi-symmetric with respect to the �� axis, we show in Fig. 2 the cross section

of the domain �D, its boundary �B and the family of concentric spheres in a meridian plane,

the ��� plane. We de�ne the multiplicity of a point by the number of retarded times the

signal from the point reaches point �P at time t. Thus the multiplicity of a point in �D

or the multiplicity of �D, in the barred coordinate system with the medium at rest, is one

and hence the domain of integration �V for the integral on the right hand side of (1.7) is

equal to the domain of dependence �D. Note that the above description of the domain of

dependence (1.10) in the barred coordinate system is independent of the velocity of the

medium relative to the coordinate system x.

To identify the source distribution �q at point �S(�x0; y0; z0) at a retarded time � with

the distribution q at the corresponding point S(x0; y0; z0) in the moving frame, we relate

the coordinate �x0 to x0 by (1.4) at time � , i. e.,

x0 = �x0 +X(� ) and �q(�; �x0; y0; z0) = q(�; x0; y0; z0) : (1:11)

By using (1.4) and (1.5), the left hand side of (1.7) is identi�ed as �(t; x; y; z) and (1.7)

becomes an implicit formula for � at point P (x; y; z). Since the dependency on the velocity

U(t)̂{ of the medium appears only via the transformation (1.11) for the source distribution,

the solution (1.7) of the initial value problem, (1.6) and (1.2), is valid for all Mach numbers

including the transonic range.

To express the potential � as an integral in the coordinate system x, we change the

integration variables ��; �; � in (1.7) to �; �; � which are the coordinates of point S relative

to P . Using (1.4), (1.8) and (1.11), we have � as function of �� and � or � and � ,

� = x0 � x = �� +X(� )�X(t) = �� �
Z t

�

U(t0)dt0 ; (1:12)

where � = t�R=C, R =
p
��2 + �2 and � =

p
�2 + �2.

The Jacobian determinant of the coordinate transformation is

J =
@(�; �; �)

@(��; �; �)
=
@�

@ ��
=
R �M ��

R
= 1�M cos : (1:13)
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Here R; �;  with 0 �  � � represent the spherical coordinates while ��; �; � the cylindrical

coordinates with � = � cos � and � = � sin �. Note that in the transformation (1.12), � and

� and hence � and � remain the same. The cylindrical coordinates in the �; �; � space are

�, � and �.

The spheres �S of constant � in a subsonic interval, where M(� ) < 1, cover a subsonic

region in �D. The spheres in a supersonic interval, where M(� ) > 1, cover a supersonic

region. In a subsonic region, the Jacobian remains positive. In a supersonic region, there

is a critical surface, �J , on which the radial velocity component is sonic,

J = 1�M(� ) cos = 0 or � = ��
p
M2 � 1 � 0 : (1:14)

The transformation (1.12) maps the domain of dependence �D of the origin �P of the
��; �; � space to the domain of dependence D of the origin P of the �; �; � space. The critical

surface �J in a supersonic region is then mapped to surface J . Since the Jacobian J changes

sign across �J , the neighborhoods on the two sides of �J are mapped to the same side of J .
Thus the inverse transformation of (1.12) is not single valued and hence the multiplicity

of a point in D can be greater than 1. For a given point (�; �) and time t, (1.12) becomes

an implicit equation for �� because the lower limit of the integral � = t� R=C and R are

related to �� by (1.9). Using (1.9) and (1.12), we get an implicit equation for R(�; �; �),

R2 = [� +

Z t

�

U(t0)dt0)]2 + �2 : (1:15)

The root(s) of (1.15) in [0; Ct] depend on the unsteady velocity U(t0).

Using (1.11) to (1.13), we convert (1.7) to a volume integral in the �; �; � space,

�(t; x; y; z) = � 1

4�

Z Z Z
D

d�d�d�
q(�; x + �; y + �; z + �)

jR�M ��j (1:16a)

= � 1

4�

IX
i=1

Z Z Z
Vi

d�d�d�
q(�i; x + �; y + �; z + �)

jRi �Mi
��ij

: (1:16b)

To evaluate the integral over the domain of dependence D in (1.16a) we need to relate R

and �� to �, � and t, that is, to �nd all the roots, Ri of (1.15) in [0; Ct] or the retarded time

�i in [0; t] and identify the domain Vi in the �; �; � space for each Ri. Then � is written as

the sum of integrals over the smallest number I of domains Vi in (1.16b). It is the purpose

of this paper to formulate the rules identifying these domains Vi for a medium moving at

an unsteady speed, U(t). First, we review brie
y the solutions given in [2] and [3] for the

following three special cases; 1) moving at an unsteady subsonic speed, 2) moving at a

constant supersonic speed, and 3) moving with constant acceleration.

1.1, Unsteady Subsonic Speed For this case, we haveM(� ) < 1 ; � 2 [0; t], the forward

and backward speeds of propagation C�U are positive and hence the family of concentric

spheres covering �V is mapped to a family of nested spheres covering the spherical ball D
bounded by S0. Hence I = 1 and the domain of dependence D has multiplicity 1. This
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result reduces to the well known result for a steady subsonic 
ow, at a constant M < 1,

for which (1.15) has a unique and explicit solution for �; �; � in D and the denominator in

(1.16) becomes the pseudo-distance [3],

R�M� = R� =
p
�2 + (1 �M2)�2 : (1:17)

The result that the domain of integration in (1.16) is equal to D remains valid even

when there is a sonic interval, where M(� ) = 1 for 0 � t1 � � � t2 � t, during which, the

nested spheres will be in contact at one point on the �-axis with � = C(t�� )�X(t)+X(� ) =

C(t� t1)�X(t) +X(t1). Although the multiplicity at the point of contact is in�nite, the

integral in (1.16) remains �nite because the acoustic �eld is initiated at t = 0.

1.2, Constant Supersonic Speed For the case of a medium moving at constant super-

sonic speed, M > 1, the solution is well known [3]. The domain of dependence D of point

P lies in the backward Mach cone from P . The cone is

� = �
p
(M2 � 1)�2 : (1:18)

To evaluate the integral we need to relate R and �� to �, � and t, The domain D is covered

by a one parameter family of spheres of radius R = C(t � � ) centered on the �-axis at

� = �MR for � 2 [0; t]. The Mach cone is the envelope of these spheres. The circle of

tangency of a sphere with the cone divides the sphere into a large and a small surface,

convex and concave away from the cone respectively. Fig. 3 shows the cross section of

the Mach cone and the spheres in the meridian plane, the �� plane. As an initial value

problem, we have � � 0 or R � Ct, thus the domain of dependence D is bounded by the

backward Mach cone (1.18) and the convex part of the spherical surface S0 with radius

Ct centered at � = �Ut and azimuthal angle  2 [�=2��; �], where � is the Mach angle.

Note that the mirror image of the domain of dependence D with respect to the plane � = 0

is the domain of in
uence of a source S at the origin for the duration [0; t] described in [3].

With a constant M > 1, (1.15) reduces to a quadratic equation for R and the two roots

are [3],

R� = �[M� �R�]=(M2 � 1) ; (1:19)

where R� =
p
�2 � (M2 � 1)�2. The denominator of the integrand in (1.16) becomes R�

and the integral can be written as the sum of two integrals over the domains V � and V +.

Equation (1.16) becomes,

�(t; x; y; z) = � 1

4�

�Z Z Z
V +

+

Z Z Z
V�

� q(�; x + �; y + �; z + �)

R�
d�d�d� ; (1:20)

with � = t�R� in V � and I = 2. The domain of integration V + is bounded by the Mach

cone and convex part of the sphere S0 and is equal to D. The domain of integration V �

is bounded by the concave part of the sphere S0 with � 2 [0; �]. Note that the superscript

of V gives the sign of J in V �. Since V � 2 V + = D, the multiplicity of D \ V � is two

while the multiplicity of the complement, the spherical ball inside S0, is one. The meaning

of R� and the propagation of signals from point S at �� to P at time t are described in

Appendix A.
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Without making use of the explicit solution (1.19) of (1.15), the results in [3] quoted

above were obtained by a di�erent method in [2]. It begins with the partition of the domain

of dependence �D, the spherical ball (1.10), into two nonoverlapping subdomains, �V �, by the

critical surface �J , (1.14), which is the circular cone,  = arccos(1=M) = �=2� �. Shown

in Fig. 4 is the partition of �D in a meridian ��� plane by the critical curve �J , the radial
line �P �T , into two subdomains �V � and �V +, with 0 �  < �=2 � � and �=2 � � <  � �

respectively. The image of �J in the �� plane in Fig. 3 is the backwardMach line PT and the

images of �V � are the domains of integration V � described in the preceding paragraph.. The

procedure for the identi�cation of the domains of integration in the �; �; � space, introduced

in [2], demonstrates the important role played by the critical surface, which does not exist

in an unsteady subsonic region. Since this procedure does not need the explicit solution

of (1.15) or (1.12), it is suitable for generalization to an unsteady speed U(� ) with several

supersonic intervals. As an illustration or rather a clue to the generalization, we mention

the special case of constant accelerating motion considered in [2].

1.3 Constant Accelerating Motion The interaction of an acoustic �eld with a ba�ed

panel in the horizontal xz plane was studied in [2], for the panel moving with constant

acceleration to a supersonic speed, i. e., U = C� . With M = � for � 2 [0; t] and t > 1,

there is a supersonic interval 1 < � � t. This special case shows that in addition to the

partition of �D by the critical surface �J in a supersonic region, further partitions may be

needed, related to the geometrical properties of �J and its image J . See Figs. 4 and

5. This case is discussed in x4 as one of the examples for the application of the rules of

partition formulated in x3.
In the next section, we study the geometry of the critical surface �J and the corre-

sponding singular points on the image J . We then use these studies to formulate in x3 the

rules for the partition of the domain of dependence, �D, into nonoverlapping subdomains
�Vj 's for an unsteady velocity, U(� ) ; � 2 [0; t]. and show that the partition has the required

property that the transformation (1.12) from a �Vj to its image Vj in the �; �; � space is one

to one. In particular, the value of R or � de�ned by (1.15) for a point in Vj is uniquely

de�ned. Thus the domain of integration D in (1.16) is the sum of those images Vj 's. Since

those images may overlap each other in the �; �; � space, signals from a point S in the space

lying inm of those images will reach point P m-times. Hence m is the multiplicity of point

S. The rules for counting the multiplicity of a point in D are also stated in x3. The anal-
yses in x2 and 3 justify the assertions made in [2] for the case of a constantly accelerating

speed. Additional examples with unsteady velocities, accelerating and/or decelerating at

di�erent ranges of Mach numbers are presented in x4 to demonstrate the application of

the rules of partition of �D and to show the singularities of J in the �; �; � space.

2. The Geometry of the Critical Surface and its Image

In x1, the domain of dependence �D of point �P at time t and the critical surface �J in

the coordinate system (��; �; �) with the medium at rest are de�ned by (1.10) and (1.14).

The transformation from the system (��; �; �) to (�; �; �) de�ned by (1.12) at time � is a

pure translation of (X(� )�X(t)) along the �� axis. We reemphasize the following pointsy

y Numbers in curly brackets refer to statement numbers in x2.
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f1g The domain �D is a spherical ball of radius Ct centered at point �P and for each point

on a concentric sphere of radius R 2 [0; Ct], the retarded time is t � R=C. Thus �D
has multiplicity one, independent of the source distribution and the velocity U(� )̂{ of

the medium.

f2g The critical surface �J , on which the Jacobian determinant J vanishes, appears in �D
only in a supersonic region. The surface is axisymmetric with respect to the ��-axis,

is independent of the source distribution but depends on the velocity U(� ) of the

medium. See for example Figs. 2 and 4

f3g The transformation (1.12) relates the axial variable �� to � while the other two variables

� and � or � and � remain unchanged. The transformation is also independent of the

source distribution but depends on U(� ). Thus the images of the spherical ball �D,
the concentric spheres of constant � and the critical surface �J in the �; �; � space are

axisymmetric with respect to the �-axis.

f4g A spherical cap of radius R centered at the origin of the ��; �; � space is mapped to

the same spherical cap centered at {̂(X(� ) �X(t)) in the �; �; � space with the same

retarded time � = t �R=C. See for example Figs. 3 and 5.

Because of the axisymmetry, it su�ces to study the geometry of the surfaces �J and its

image J in a meridian plane, the ��� plane, and the corresponding �� plane. We retain the

same symbols �D; �J ; �Vj for their cross sections in a meridian plane and the same unbarred

symbols for the images. The geometrical properties of the critical curve �J and its image

J will be described in x 2.1 and x 2.2 respectively and be employed in x3 to formulate

the rules for the partition of �D into nonoverlapping subdomains �Vj , j = 1; 2; � � � such that

the mapping of a �Vj to its image Vj is one to one.

2.1. The critical curve �J in a meridian plane, the ��� plane

In the meridian plane, the two spherical coordinates R and  become the polar coordi-

nates, and the domain of dependence �D in the plane is a semicircular disc with 0 � R � Ct

and 0 �  � �. Let us consider the signals initiated in a supersonic interval, i. e.,

M(� ) > 1; � 2 [t�; t
�], and M = 1 at t� if t� > 0 and at t� if t� < t. The signals come

from points in the supersonic ring C(t� t�) � R � C(t� t�) in �D. The critical curve �J
in the polar coordinates is de�ned by,

cos = 1=M(� ) and R = C(t� � ) ; (2:1)

and in the rectangular coordinates (��; �) by

�� = R cos = C(t� � )=M and � = R sin = C(t� � )[1�M�2]1=2 ; (2:2)

with � 2 [t�; t
�]. See for example Fig. 4, where t� = 1 and t� = t. Since the Mach angle

�(� ) = �=2�  we have from (2.1),

f5g The radial line to point �Q(R; ) on �J is orthogonal to the Mach line at �Q. The

polar angle  of �Q reaches a local maximum (minimum) whenM or U reaches a local

maximum (minimum).
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The rates of change of � and �� are

�0(� ) =
RM 0 �CM(M2 � 1)

M2
p
M2 � 1

; ��0(� ) =
�CM �RM 0

M2
(2:3a)

and the slope of �J is

d�

d��
=

[RM 0 � CM(M2 � 1)]

�(CM +RM 0)
p
M2 � 1

: (2:3b)

From hereon we use the prime to denote the � -derivative. From (2.3), we see that �0(� ) < 0

when M 0 � 0, therefore, �0 and the slope vanish only when M 0 > 0 while ��0(� ) < 0. Thus

f6g The ordinate � of �J attains an extremum only in an accelerating subregion, while ��

decreases.

Since � remains unchanged in the transformation from the ��� plane to �� plane, the

mapping of a neighborhood of the curve �J to its image is de�ned by the mapping of a

horizontal line segment at constant �. A small segment which crosses over �J at a point

with nonzero slope, or �0 6= 0, will cross over �J only once.

Now consider an extremum point, say �Ke, i. e., �
0
e = 0 at �e, we have

��0e = �CMe and �00e =
ReM

00
e � 3CM2

eM
0
e

M2
e

p
M2

e � 1
: (2:4a)

We have assumed that U 00(� ) or M 00 exists, therefore, �00e exists with Me > 1. This is a

realistic assumption and will simplify our discussion that follows but is not essential.

When the extremum point is neither a maximum nor a minimum, �0 does not change

sign as � crosses �e and �
00
e = 0. A horizontal segment close to point �Ke will intersect �J

only once.

When �00 6= 0 at a critical point say �K1, it is either a local maximum or minimum

point. The curve �J near �K1 behaves as a parabola with (� � �1)�
00
1 > 0. For a given �,

there are two roots,

�� � ��1 = �CM1[
2(� � �1)

�001
]1=2 +O(� � �1) : (2:4b)

Thus a horizontal segment near point �K1 crosses over �J twice if it is below (above) �K1

where � is a local maximum (minimum). This point will be elaborated in f11ag and

f11bg. We need to locate the local maximum and minimum points on �J . Let the n-th

point and the corresponding time be denoted by �Kn and �n with �n in decreasing order,

i. e., �n > �n+1, for n = 1; 2 � � � ;N . The corresponding radii Rn = C(t � �n) are in

increasing order. These N points divide �J into N + 1 segments. The segment from point
�Kn�1 to �Kn, is denoted by �Jn with �0 = �� and �N+1 = ��.

If the supersonic interval ends at t� = t, we have R(t�) = 0. If t� < t, the interval

ends with M(t�) = 1 due to the continuity of M(� ). For either case, we see from (2.1),

(2.2) and (2.3), that
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f7ag For the supersonic region, the critical curve �J ends at � = t� on the �� axis with

�0(t�) < 0. If �J has one or more extremum points, N � 1, the �rst one �K1 has to be

a local maximum. Therefore, �Kn is a local maximum if n is odd and is a minimum if

even.

f7bg If the supersonic interval begins at t� > 0, we have M(t�) = 1 and �0(t) ! +1 as

t! t� +0. Hence �KN is a local maximum and N is odd. If N is even, it is necessary

that t� = 0.

If the supersonic interval begins at t� = 0, we haveM(0) � 1 and the sign of �0(0+) depends

on the initial acceleration orM 0(0+). For example, in the case of constant supersonic speed,

M 0(� ) = 0 and hence �0 < 0 as shown in Figs. 2. On the other hand, the sign can be

positive, if the interval begins with an acceleration at a low supersonic speed. See for

example Fig. 4.

Because of f7g, the number N of extrema of �J will be even or odd depending on

whether �0(t�) is negative or not. Thus

f8ag If the ordinate of the critical curve �J decreases at the beginning of a supersonic

interval, i. e., �0(t� +0) < 0, N has to be even. The curve has either no extremum or

pairs of maxima and minima, with the last one being a local minimum �N at �KN .

f8bg If the ordinate of the critical curve �J is not decreasing at the beginning of a supersonic

interval, i. e., �0(t�+0) � 0, N has to be odd. This is the case when t� > 0. The curve
�J has at least one local maximum � at point �K1 and time �1. If there are additional

ones then they come in pairs of minima and maxima. The last one is a local maximum

at �KN .

Note that f7bg is included in f8bg. Since �J has an extremum � only when M 0 > 0, f8ag
and f8bg are applicable to an accelerating supersonic interval.

From (2.4a) for �00 at an extremum point and f6g that M 0 > 0, it is clear that �00e < 0

when M 00 � 0 and the extremum point can not be a local minimum. Therefore

f8cg In a supersonic region with constant or decreasing acceleration, there can be at most

one local maximum and no local minimum.

Note that for the case of a constant supersonic speed [3] reviewed brie
y in x1.2,
the critical curve �J which is a radial line does not have a local extremum �. This result

is in agreement with f8ag since �0(� ) = �1=M ; � 2 [0; t]. For the case of constantly

accelerating speed from subsonic to supersonic [2], reviewed brie
y in x1.3, we can use

f8bg and f8cg to conclude that the critical curve �J has only one maximum point and no

minimum as shown in Fig. 4.

Figure 6 gives another demonstration of f8ag. It is the case of accelerating at a

constant rate from a low supersonic speed, with M(� ) = 1:15 + � 2 for 0 � � � t = 2:25.

The critical curve �J begins at point �T on the semicircle �B with M(0) = 1:15 and �(0) =

Ct
p
1�M�2 = 0:494Ct. As � increases, the ordinate � of �J decreases to a minimum at

point K2 with �2 = 0:0918, increases to a maximum at point �K1 with �1 = 0:609, and then

decreases reaching the origin �P at � = 2:25 with M = 6:2125. Points �K1 and �K2 divide
�J into three segments �Jn, n = 1; 2; 3. Similar to Figs. 2 and 4, curve �J partitions the
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domain of dependence �D into �D+ and �D�. Also shown are the partition of �D� under the

rules to be described in x3.

2.2 The critical curve J in the �� plane

Now we study the properties of the image J in a meridian plane, the �� plane with

� � 0. With � related to �� by (1.12), (2.2) and (2.3) become the equations for the image

J in the �� plane,

� = C(t� � )=M �C

Z t

�

M(� 0)d� 0; � = C(t� � )
p
M2 � 1=M (2:5)

and

d�

d�
= �CM +RM 0

M2
+ CM = �d�

d�

p
M2 � 1 hence

d�

d�
= � tan� ; (2:6)

Thus the tangent line to the curve J is a backward Mach line,

� �R cos� = � tan�f� � [X(� )�X(t) +R sin�]g : (2:7)

Note that the image of a semicircle R = C(t� � ) in the ��� plane is a semicircle of the

same radius in the �� plane centered at (�X(t) +X(� ); 0),

[� +X(t) �X(� )]2 + �2 = C2(t � � )2 : (2:8)

From (2.7) and (2.8), we see that

f9g The curve J in the �� plane is the envelope of the family of Mach lines (2.7) and also

of the family of circles (2.8) with parameter � 2 (t�; t
�).

Figure 3 shows the images of curves in the ��� plane shown in Fig. 2. At a constant

supersonic speed, the curve J becomes the backward Mach line TP enveloping the family

of circles (2.8). Figure 5 shows the images of curves in Fig. 4 for a constant accelerating

motion. The curve J begins at point T at � = 1 and M = 1 with a vertical tangent

corresponding to the back facing Mach angle � � � = �=2. The curve approaches the

origin P as � ! t along a radial line which is the backward Mach line. Tangent lines to

J or the local backward Mach lines are shown in the insert. Figure 7 shows the images

of curves in Fig. 6 for a constant rate acceleration from a low supersonic Mach number.

The semicircle B with radius Ct and centered at (�X(t); 0) is the image of the circular

boundary �B of �D when � = 0. The critical curve J is divided by the point K1 of local

maximum and the point K2 of local minimum into three branches. See also the insert.

The �rst branch J1 starts at the origin P along the radial line or the the backward Mach

line at � = t. The third branch J3 ends at point T on the semicircle B with a common

tangent; the backward Mach line at � = 0 with M = 1:15.

Using (2.6), we obtain the curvature of J ,

� =
M�

M2
= � M 0(� )

�0(� )M2
p
M2 � 1

(2:9)
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The sign of � depends on the sign of M 0=�0. From f6g, we know that at an extremum

point on �J , �0 = 0 ;M 0 > 0 and (2.9) says that the radius of curvature 1=� at the image

point on J vanishes. If the extremum point on �J is either a local maximum or minimum,

say point �Kn at �n, then �
0 and 1=� change sign along J as � passes �n. The point Kn,

which is the image of a local maximum or minimum point �Kn on �J , is a cusp on J formed

by two adjacent branches Jn and Jn+1.

Now we study the curve J or rather the two adjacent branches in the neighborhood

of the cusp Kn. From (2.3) and (2.9), we see that on these two branches, �0 , �0 and 1=�

are of opposite sign and they vanish at Kn. With M 0 > 0, the slope of J is increasing

continuously as � increases across �n from branch Jn to Jn+1. We describe the curve J
in the neighborhood of a cusp Kn,

f10ag The image of a local maximum (minimum) point �Kn on �J is also a local maximum

(minimum) point on �J . The segments �Jn and �Jn+1 on the left and right of point �Kn

are mapped onto the right and left branches Jn and Jn+1 of the cusp Kn.

f10bg As � increases across �n, the slope of the tangent line or the backward Mach line (2.6)

increases along branch Jn+1 to the cusp Kn and then continues along branch Jn. If �

attains a local maximum (minimum) at cusp Kn, � reaches its minimum (maximum).

f10cg The branch Jn+1 is concave downward (upward) and lies below (above) Jn when

the cusp Kn is a local maximum (minimum) point. The two branches of opposite

concavity form a simple cusp of the �rst species.

From (2.3a) and (2.9), we know that if M 0 = 0, then �0 < 0 and � = 0. and that the

curvature of a branch can change sign if M 0 changes sign. Also we see that M 0 has to be

positive, when �0 � 0. Therefore,

f11ag A point on J , where the Mach number is a local maximum or minimum, is a point of

in
ection of J . The curvature of J changes sign whenever the velocity changes from

decelerating to accelerating or vice versa.

f11bg A branch joining a point of local minimum � to a local maximum, as � increases, has

to be in an accelerating subregion and has to be concave downward. A decelerating

interval, M 0 < 0, can occur only on a branch joining a local maximum to minimum

and this branch is concave upward during an accelerating interval but downward in a

decelerating interval.

To see the additional partitions needed for the subdomains �V �, so that the mapping

(1.12) of each subdomain on to its image is one to one, we study the mapping of a horizontal

segment �Sr �Sl of constant �c in the ��� plane to its image SrSl in the �� plane. If the segment
�Sr �Sl lies either in �V + or in �V �, i. e., the segment does not intersect the critical curve �J , the
Jacobian J = d��=d�, (1.13), does not change sign and the mapping is one to one. We need

to study only those segments crossing �J , on which J = 0 or cos =
p
M2 � 1=M � 0.

Therefore, we consider the segments with �� � 0 that cut two adjacent branches of the

critical curve �J , the left branch �Jn and the right branch �Jn+1, at �Sn and �Sn+1 as shown

in Fig. 8. In Fig. 8a (8b), the point �Kn is a local maximum (minimum) and �c is less

(greater) than �n. The segment �Sr �Sl is divided into three segments �Sr �Sn+1, �Sn+1 �Sn and
�Sn �Sl. They are oriented as indicated by the arrow in the direction opposite to the �� axis as

� increases, because ��0 = �CR=�� � 0. Since �d�=d�� > 0 in �V �, the image of the segment
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of �Sr �Sl in �V � is oriented in the direction of �� axis as shown in Fig. 8. Note that the two

image branches Jn and Jn+1 form a cusp at Kn with branch Jn lying to the right (left)

of Jn+1. in Fig. 8a (8b). The �rst and third segments �Sr �Sn+1 and �Sn �Sl lie above (below)
�J therefore, their images SrSn+1 and SnSl are oriented in the same (opposite) direction

from right to left (from left to right). The second segment �Sn+1 �Sn lies below (above) �J ,
therefore its image Sn+1Sn is oriented in the opposite (same) direction from right to left

(from left to right). Because of the change of direction of the image segments across each

branch, the second segment Sn+1Sn and the two branches Jn and Jn+1 lie on the same

sheet while the �rst and third segments lie on two di�erent sheets. Therefore, the �rst

segment SrSn+1 will be continued across the branch Jn without a reversal of direction and

the third one SnSl across Jn+1.

Consider the inverse transformation of (1.12) of a point in the �� plane without

considering the three separate sheets. A point q in the middle segment Sn+1Sn has at

least three image points �qr; �q and �ql which lie in the segments �Sr �Sn+1, �Sn+1 �Sn and �Sn �Sl
respectively. As point q approaches an end point say Sn, the two image points �ql and

�q approach each other and coincide at �Sn as a double root. The third image point �qr
approaches a point �q� to the right of �Sn+1. When q crosses over to the right of Sn, there

is only one image point �ql which moves to the right of the point �q�. We say that

f12ag A horizontal segment �Sr �Sl intersecting �J twice at points �Sn and �Sn+1 is divided by
�J into three nonoverlapping horizontal segments �Sr �Sn+1, �Sn+1 �Sn and �Sn �Sl oriented

in the same direction. They are mapped respectively onto three segments SrSn+1,

Sn+1Sn and SnSl with folding or change of orientation at the points Sn and Sn+1 on

the branches Jn and Jn+1 respectively.

f12bg The segments SrSn+1, and SnSl overlap each other over the segment Sn+1Sn. A point

S on Sn+1Sn lies on all three segments; therefore, the multiplicity of point S is three if

the inverse mapping is restricted to the segment �Sr �Sl. If point S lies on either SrSn+1
or SnSl, the multiplicity of S is one.

To end this section, we recall that a critical point �Ke on �J which is neither a local

minimum nor maximum is excluded in the above discussion because the image of �Ke is not

a cusp and behaves the same as a point on J with �0 6= 0. If a parameter � (or parameters)

de�ning U(� ) can be varied so that two adjacent roots �n and �n+1 of �
0 = 0 for � < �e

become a double root �e at � = �e and disappear for � > �e, then the extremum point at

the double root �e is neither a maximum nor a minimum. There is no cusp formation in

the mapping of the neighborhood of point �Ke at �e when the parameter � � �e. A small

decrease in � from �e results in two cusps appearing like a butter
y [4] in the mapping of

the neighborhood of �Ke. There is an increase in multiplicity of 2. The sensitivity of the

mapping on the parameter has been known in many other physical problems [5] and will

not be addressed here.

As a complement to the above quantitative analysis, we present in Appendix B the

qualitative analysis of the inverse transformation of (1.12) and derive the formula for the

retarded time for a point in the neighborhood of a branch near or away from a cusp. In

x3, we use the above statements f1g to f12g to formulate the rules for the partition of the

domain of dependence �D.
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3. The Rules for the Partition of the Domain of Dependence

Guided by the statements f1g to f12g in x2, we formulate the general rules for the
partition of of the domain of dependence �D for a medium moving at an unsteady velocity

U(� )̂{. Since the multiplicity of �D is 1, we seek to partition �D into I nonoverlapping

subdomains �Vi such that the mapping from �Vi to Vi in the �� plane by (1.12) is one to

one. Hence the multiplicity of Vi is 1, i. e., for each point in Vi there is only one retarded

time. Also we de�ne the minimum number of partitions I.

Since di�erent supersonic intervals in [0; t] are separated by subsonic intervals, we can

study the partition of the domain of dependence for each supersonic region one by one.

Therefore, it su�ces to study the case where there is only one supersonic interval (t�; t
�).

The Jacobian J of transformation (1.12) changes sign in the supersonic region across the

critical curve �J on which J = 0. The curve ends at � = t� on the �� axis. It begins at

� = t� from the �� axis if t� > 0 or from the semi-circular boundary �B if t� = 0. Therefore,

the critical curve �J partitions �D into two nonoverlapping regions �V � where �J > 0. The

region �V � is bounded below by the �� axis and above by the the critical curve �J if t� > 0

and in addition partially by �B if t� = 0. From (2.1) we see that �J and hence �V � lie inside

the circular sector 0 �  �  m where  m = arccos[1=Mmax] and Mmax is the maximum

of M(� ).

From f12ag and f12bg, we see that the mapping from �V � to their images V � may

not be one to one. Further partitions of �V � are needed to separate the region in �V +

above ( �V � below) the curve �J to the left hand side of a peak (valley), a local maximum

(minimum) point �Kn at instant �n where n is odd (even), from the right hand side of the

peak (valley). There is not a unique way to do the separation. We choose to partition �V +

( �V �) by the large (small) circular arc �C+n ( �C�n ) passing through the point �Kn with radius

C(t� �n) at the retarded time �n for n odd (even).

Before we state the rules for the partition of the domain of dependence, �D, for a given
velocity function U(� ); � 2 [0; t] with a supersonic interval, we carry out the following two

preparatory steps.

Step 1. Graph the boundary of the domain of dependence �D in the ��� meridian plane,

bounded by a semi-circle �B with radius Ct centered at the origin, and then the critical

curve �J de�ned by (2.2). Locate the roots, of �0 = 0 in (2.3a) while �00 6= 0 and arrange

the roots, �n ; n = 1; 2 � � � ;N in decreasing order of � , i. e., �n > �n+1. These N points

divide �J into N + 1 segments �Jj ; j = 1; � � � ;N + 1. Segment �Jj joins points �Kj�1 and
�Kj . Here �K0 and �KN+2 denote the end points of �J at � = t� and ��.

In this step we made use of f6g and f7g and note that these roots should be in accelerating
supersonic interval(s). The �rst segment �J1 joins the end point at � = t� on the �� axis

to the local maximum point �K1. When �� > 0, the last segment �JN+1 joins point �KN to

the end point �KN+1 on the �� axis. Hence �KN is a local maximum and N has to be odd.

If �� = 0, the end point �KN+2 lies on the semicircle �B of � = 0. �KN is a local maximum

(minimum) if N is odd (even) while N is odd (even) if �0(0) is positive (negative). Let

L+ and L� denote the number of maximum and minimum points on �J , then we have

L+ + L� = N and

L+ = L� + 1 = (N + 1)=2 when N is odd, (3:1)
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L+ = L� = N=2 when N is even. (3:2)

Step 2. Graph the images of the boundary curve �B and the critical curve �J in the ��

plane. The image B is a semi-circle of radius Ct centered at (�X(t); 0). The image J
forms cusps at the N image points Kn.

These N cusps divide J into N + 1 branches, Jn, the images of the segments �Jn. The

domain od dependence D is the maximum area bounded above by either B or J and below

by the � axis.

Now we state the rules of partition:

Rule 1. Partition �D by the critical curve �J into �V � where �J > 0

The domain �D� is bounded below by the �� axis and above by �J if the velocity begins

subsonic M(0) < 1 and becomes sonic at � = t�. If the velocity is supersonic at �� = 0

the end point T or �KN+1 lies on the semicircle �B with polar angle  N+1 = arccos 1=M(0)

and then �D� is bounded above in addition by the small arc �C�N+1
of the semicircle �B

with 0 �  �  N+1. Note that the large arc �C+N+1
of �B, with  N+1 �  � �, is a

boundary of �V +. A semicircle of constant � in the supersonic region is divided by the

critical curve into two arcs �C� in �V �. The arc �C� is the smaller one since its central angle

is arccos 1=M < �=2. The subscript n will be added to �C� when � = �n, n = 1; � � � ;N +1,

with �N+1 equal to t�.

Rule 2a. Partition �V + into 1 + L+ nonoverlapping domains �V +

2l�1, l = 1; 2; � � � ; 1 + L+,

by the L+ large circular arcs, �C+
2l�1, with constant retarded time �2l�1 passing through the

local maximum point �K2l�1 on �J .

Rule 2b. Partition �V � into 1 +L� nonoverlapping domains �V �

2l , l = l; 2; � � � ; 1 +L�, by

the L� large circular arcs, �C�
2l, with constant retarded time �2l passing through the local

maximum point �K2l on �J .

The subdomains and circular arcs in �D� are numbered so that they can be grouped

together as N +2 subdomains �V �

i and N +1 circular arcs �C�i at �i using the plus or minus

superscript for i odd or even. Thus the domain of independence �D is partitioned into I

nonoverlapping subdomains �V �

i , where

I = (1 + L+) + (1 + L�) = 2 +N (3:3a)

is the minimum number.

A subdomain �V �

i is bounded by the �� axis, two circular arcs �C�i�2 , �C�i and two

segments of the critical curve �J�

i�1 and �J�

i . Here, the segment �J0 reduces to the end

point �K0 of �J and the arc �C�i is empty when i � 0.

Rule 3. Find the images of the I nonoverlapping subdomains �V �

i in the �� meridian

plane one by one and denote the images by V �

i using the plus or the minus superscript for

i odd or even. The multiplicity of a V �

i is one.

Since the mapping (1.12) is independent of the radial and polar coordinates, � and �, we

can now de�ne the volumes of integration of the integral in (1.16) in the �; �; � space.
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Rule 4. Rotate each one of the N + 2 subdomains V �

i in the meridian plane about the

� axis to generate a volume of revolution in �; �; � space and denote the volume by the

same symbol V �

i . The volume integral in (1.16) for the acoustic potential in the x space

is expressed as the sum of the N + 2 integrals over the volumes V �

i . The multiplicity of

each volume is one

In case that there is more than one supersonic interval in [0; t], say s of them, we apply

the above rules to these regions one by one. We locate the local maximum and minimum

on the critical curves in the regions, draw the corresponding partition circular arcs in the
��� plane and �nd the images in the �� plane. The total number I of nonoverlapping

domains in the ��� plane or the number of domains of integration in the �� plane is

I = 1 + s+N ; (3:3b)

where N denotes the total number of maxima and minima on the s critical curves. When

s = 1, we recover (3.3a).

A formula or a numerical scheme is needed for the inverse solution of (1.12) to deter-

mine the retarded time � for a point S in a V �

j . Consider a point S0(�0; �0) in a domain

V �

i de�ned under Rule 2a or b. Let points Sl and Sr denote the left and right end points

of the horizontal segment in the domain passing through point S0. Each end point will

either be on a circular arc of constant � or a branch of the critical curve on which �0 6= 0.

Thus we know the values of � and � and �� for both end points. Let us use the subscripts

l and r to denote the values associated with points Sl and Sr. If point S0 coincides with

one of the end points, the inverse solution of (1.12) is found. If S0 is not an end point,

J = d�=d�� 6= 0 in the segment, hence there is a unique inverse solution ��0. Now we

can determine the numerical solution ��0 of (1.12) by Newton's method using the linear

interpolation formula from the end points to get the �rst estimate for ��0. If the point S0
is close to a cusp of the region or to an end point on a branch of the critical curve, we

shall compute the �rst estimate of �0 by the approximate formula for the roots of (1.12)

presented in Appendix C choosing the root lying in between ��l and ��r. Thus we have a

procedure for the determination of the retarded time �0 and provide a quantitative proof

that the multiplicity of point S0 in a domain V �

i is one.

Now we are ready to express the integral in (1.16b) for the velocity potential at

P (x; y; z) as the sum of integrals over the volumes of revolution Vi, under Rule 4,

�(t; x; y; z) = � 1

4�

IX
i=1

Z Z
Vi

�d�d�
�Z 2�

0

d�
q(�; x + �; y + � cos �; z + � sin �)

jRi �Mi
��ij

�
(3:4)

In (3.4), Vi denotes a subdomain in the meridian plane under Rule 3. For each Vi, �i and

hence Ri , Mi and ��i are functions of �, � and t independent of �. This formula does not

need the knowledge of multiplicity.

To demonstrate the meaning of multiplicity and the application of (3.4), we consider

the source distribution to be a point source of unit strength created at point S(x0; y0; z0) for

� > 0. If S lies in Vi1 ; � � � ; Vim , with ij 2 [1; I] and multiplicity m � I, then the intensity
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received at P is

�(t; x; y; z) = �
mX
j=1

1=f4�jRij �Mij
��ij jg : (3:5)

Note that the domain of dependence D of point P (x; y; z) and the associated subdomains

Vj are t-dependent. They were empty for t < 0, grow in size and change in shape as time

t increases. Consequently, the multiplicity of point S is also t-dependent. The multiplicity

changes by an integer and results in the addition or removal of term(s) on the right hand

side of (3.5) and a discontinuity of the intensity at P .

Now we formulate the rules for the change of multiplicity of point S, or point S(�; �) in

a meridian plane, when it enters or leaves a subdomain V �

i . Besides the axis of symmetry,

the � axis, a subdomain is bounded by a segment of the semi-circle B, branch(es) of the
critical curve J and/or circular arc(s) C�i , i � N , partitioning V �. These three types of

boundaries, which are moving, are called wave fronts.

The multiplicity m(t) of point S begins with zero at t = 0. If point S remains outside

of D for all t, we have m(t) � 0. The multiplicity changes when point S crosses a wave

front in entering the domain of dependenceD or rather a subdomain. The rules for crossing

the three types of boundaries are di�erent and hence are stated separately.

Rule B. When S crosses B to enter (leave) the subdomain V + or V � of D, the multiplicity

m increases(decreases) by 1.

Rule J . When S crosses a branch of J with �0(� ) > 0 from the left to the right hand

side, the multiplicity m increases by 2, and with �0 < 0, m decreases by 2. When the

direction of crossing is reversed the change of m is reversed.

Rule C. When S crosses a circular arc, C�i , i � N , partitioning V �, there is no change of

multiplicity, because the Jacobian J does not change sign and S is entering one subdomain

while leaving another.

These three rules can be applied to determine the multiplicity of point S(�1; �1) in D
at an instant t, by moving from a point S0(�0; �0) with known m0, along a path to S1 and

counting the changes of multiplicity along the path. For example, we can pick a point S0
outside of D with �0 = �1 and hence m0 = 0 and the path to S1 is horizontal.

In the next section we shall demonstrate the applications of the rules of partition and

counting of multiplicity for various unsteady velocities U(� ).

4. Examples

For the cases where the velocity U(� )̂{ of the medium relative to the coordinate system

x remains subsonic [2], [3], the Jacobian of the transformation of �D to D remains positive,

and the multiplicity of the domain of dependence D in x is equal to one. These cases are

examples of the class I = 1, where I is the minimum number of nonoverlapping domains

in �D. In the following, we present examples having maximum multiplicity greater than or

equal to 2. These examples must have a critical curve, where J = 0, and hence a supersonic

interval, (t�; t
�) in (0; t). See f2g.

It was stated in f1g and f2g, that the domain of dependence �D in the coordinate

system �x, with the medium at rest, is independent of the velocity of the medium relative to
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the system x, the critical curve �J is dependent on the velocity. The parametric equations

for �J in a meridian ��� plane are given by (2.2). The �rst step is to locate the local

maximum and minimum points on the curve �J , i. e., to locate the roots of �0(� ) = 0,

(2.3a), with �00 6= 0, which are the roots of

F (� ) = (t � � )M 0 �M(M2 � 1) = 0 ; � 2 (0; t) ; (4:1)

with

F 0(� ) = (t � � )M 00 � 3M2M 0 6= 0 :

Here we set C = 1 and hence M = U(� ). To demonstrate the rules of partition and

counting in x3, we present �rst in x4.1 to x4.5 examples with only one supersonic interval

in [0; t] i. e., s = 1, and then in x4.6 and x4.7 examples with more than one supersonic

interval, s � 2. In the last two subsections there are also examples showing that the

maximum multiplicity in D can be less than the number of partitions or the number

of domains of integrations in (3.4), i. e., m � I. With s � 1 and N � 0, we have

I = 1 + s+N � 2. We begin in x4.1 with I = 2.

4.1. Class I = 2, the critical curve �J has no local maximum. From f7g, we see
that the curve does not have a local maximum or minimum. Thus (4.1) has no root, i. e.,

N = 0. The simplest example is that of constant supersonic speed [3], U 0 = M 0 = 0 and

M > 1. In the ��� plane, the critical curve �J is a radial line �P �T which partitions the

domain �D into �V + and �V � under Rule 1. Since �J has neither a local maximum nor

minimum, further partition of �V � is not needed. In Fig. 2, the coordinates �� and � are

scaled by Ct and the concentric circles are circles of constant �=t with radius 1 � (�=t).

The radius of the boundary �B is 1. Thus Fig. 2 remains the same for all t > 0.

The mapping of Fig. 2 onto the �� plane scaled by Ct will also be invariant for all

t > 0, as shown in Fig. 3. The superposition of the images V + and V � yields the domain

of dependence D, i. e., V + [ V �. The domain D is bounded above by the critical curve

PT , a backward Mach line, and by the large circular arc QT of the semicircle B at � = 0

and below by the � axis. Also shown are the semicircles at retarded time � 2 (0; t). These

semicircles are divided by their envelope PT into smaller and larger arcs. The family of

the larger (smaller) arcs covers V + (V �). Thus D = V + and the multiplicity of D\V � is

two and that of D =2 V � is one. Detailed discussion of this partition can be found in [2].

It is well known [3] that the domain of dependence of a point P (x; y; z) with the

medium moving at a constant supersonic speed is the backward Mach cone from P . Since

the source distribution has been turned on all the time, the retarded time is in (�1; t].

The multiplicity for a point in the cone is always 2. In the current initial value problem

the source distribution is turned on at � = 0, therefore, the retarded time has to be in

[0; t] and the domain of dependence shown in Fig. 3 is a �nite part of the backward cone

with multiplicity 1 or 2, as de�ned in the preceding paragraph.

We use this simple example to show the meaning of multiplicity to an observer at P .

We consider a point source at S of unit strength initiated at � = 0. Since both points

P and S are �xed in x, S is a �xed point in the relative coordinates �; �; � and in the

�; � plane. But in Fig. 3, the position of point S is moving along the radial line from

point S(1) towards the origin P (shown as the dotted line) with the instantaneous radial
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distance jS(t)P j equal to jS(1)P j=t where S(1) is the position at t = 1. The point S(1)

shown in Fig. 3 is lying inside the backward Mach cone but outside D. That is, at t = 1 the

multiplicity of point S is zero, or the signal from S has not reached P . At an instant ta > 1,

the radial line intersects the larger circular arc QT of B and enters the region D =2 V � with

multiplicity 1. At a later instant tb > ta, the radial line intersects the smaller circular arc

of B and enters the region V � with multiplicity 2. The observer receives the signal from

S(t1) with intensity 1=(4�R�) when tb > t1 > ta and with the intensity doubled 1=(2�R�)

when t > tb. Here R
� denotes the pseudo-distance (1.17).

Additional examples for this class of I = 2 will be found as \degenerated" cases of

the classes of I > 2 in the following subsections.

4.2. Class I = 3, the critical curve has one local maximum. The simplest example

for this class is the case of constant acceleration from zero to supersonic speed. By choosing

the time scale, we can write M = � and then the the supersonic interval is from t� = 1 to

t� = t > 1. Equation (4.1) has one root, �1 = t1=3. The curve �J begins from the �� axis at

� = 1 with M� = 1 rises to the maximum �K1 at �1 = t1=3 and descends to the origin at

� = t. Thus this case belongs to the class of N = 1 and I = N + 2 = 3. Note that we can

no longer get a time invariant critical curve and partition of the domain of dependence by

using Ct as the length scale and t as the scale for � as we did for constant supersonic speed

in x4.1. We note that when t < 1, M < 1 for � 2 [0; t], �J does not exist. When t > 1,

M > 1, �J exists in the interval [1; t] but �J and the interval do not grow proportionately

with t. We have to construct the critical curve and the partition for a given t.

Figure 4 shows the critical curve �J for t =
p
5. Besides applying Rule 1 to partition

�D into �V + and �V �, we have to apply Rule 2a to partition �V + by the circular arc �C+
1
of

constant �1 passing through point �K1 into �V +

1 and �V +

3 . Thus �D is partitioned into I = 3

nonoverlapping domains, �V +

1 , �V +

3 and �V �.

The images of the nonoverlapping domains in Fig. 4 are the three domains of integra-

tion in � and � in (3.4). The superposition of these three domains for t =
p
5 onto the ��

plane is shown in Fig. 5. The union of these three images gives the domain of dependence

D which is bounded above by the semicircle B and by branch J2 and below by the � axis.

Besides the �-axis, V � is bounded by the two branches J1 and J2, V +

1 by the circular arc

C+1 and the branch J1 and V +

3 by the semicircle B, the arc C+1 and the branch J2. Note
that V � 2 V +

1
, V +

3
\ V +

1
2 V � and V � \ V +

3
6= ;. The multiplicity of V � \ V +

3
is 3,

that of V � =2 V +

3 is 2 and that of D =2 V � is 1. More detailed descriptions of these three

domains of integrations are given in [2].

We use this example to explain that the domain of dependence �D, the semicircular

disc of radius t in the meridian plane, is the domain for all source �elds �q(�; �x; y; z) in

the interval (0; t). But for a given source �eld, there is an e�ective domain of dependence

which is a subdomain �D. For example, if the source �eld is created at a time b > 0, i. e.,

�q � 0 for � < b, then only the part of �D where the retarded time � lies in the interval

[b; t] will contribute to the acoustic �eld at point �P at time t. This e�ective domain of

dependence �De is the subdomain of �D below the semicircle �Be of � = b or radius R = t� b.
Thus only the portion of the critical curve �J and the subdomains �V �

i lying inside this
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semicircular disc �De will be mapped to the �� plane.y For the current example,M(� ) = � ,

(4.1) becomes

F (� ) = t� �3 = 0 ; � 2 (b; t) ; (4:2)

with F 0(� ) = �3�2 < 0. Equation (4.2) has one root �1 = t1=3 provided that b < t1=3.

For b < 1, the supersonic interval (1; t) is in (b; t). Hence the critical curve �J and the

large circular arc �C+1 remain inside �De. The subdomains �V � and �V +

1 shown in Fig. 4 remain

unchanged. Only the subdomain �V +

3 is reduced in size with the semicircular boundary �B
replaced by a smaller one �Be. Consequently, the images J , V � and V +

1 in the �� plane

remain the same as those shown in Fig. 5. The image V +

3
is reduced in size with the

boundary B replaced by Be.
If �1 > b > 1, part of the segment �J2 and the subdomain �V +

3
in addition to that of

�V � in Fig. 4 are outside of �De or cut o� by the semicircle �Be and their images will be cut

o� in Fig.5. Only the image V +

1 remains unchanged.

When b = �1, the semicircle �Be passes through point �K1, coincides with the semicircle
�C1 at �1 and completely cuts o� the segment �J2 and the subdomain �V +

3 in Fig. 4. Thus

the critical curve �Je = �J1 does not have a local maximum. The domain of dependence De

in the �� plane is equal to V +

1 in Fig. 5. The image V �
e is bounded by the �-axis, J2 and

the small circular arc C�
1
which together with the arc C+

1
form the semicircle Be.

When t > b > �1, the semicircle �Be not only cuts o� the entire branch �J2 , the circular
arc �C+

1
and the domain �V +

3
but also parts of the branch �J1 and the domains �V � and �V +

1
.

The critical curve �Je, which is the remaining part of J1, decreases monotonically to the
�� axis as � increase from b to t, i. e., (4.2) has no root. Thus our example degenerates to

the class of I = 2 when t > b � �1.

For a �xed b > 1, (4.2) de�nes a critical time tc = b3 for which F (b) = 0, tc = �1 and

(4.2) has no root. As t increases over tc, I jumps from 2 to 3. That is, an observer at point

P will receive signals from point S, �xed in the coordinate system x, twice if S 2 V � when

t � tc with I = 2 but three times if S happens to be in V � [ V +

3
when t > tc with I = 3.

4.3. The class I = 4. The critical curve �J has one local minimum and one

maximum. We consider the case of constant rate of acceleration from an initial Mach

number M0, i. e., M(� ) = M0 + �2, with F (� ) = 2� (t � � ) � M(M2 � 1) and F 00 =

�2� 6M(M + 4�2) < 0.

If M0 � 1, the supersonic interval begins at � = t� � 0 with M� = 1, �� = 0 and

�0� > 0. Using f8g and F 00 < 0, (4.1) has only one root and the curve �J has only one

maximum point. Thus the case for M0 � 1 belongs to the class I = 3.

To create an example of the class I = 4, we consider M0 > 1 with t� = 0 and t� = t.

With F (0) < 0 and F (t) < 0, or �0(0) < 0 �0(t) < 0 , (4.1) can have two roots or none. It

is clear that M2
0 � 1 has to be su�ciently small so that F (� ) can be nonnegative in (0; t),

i. e., (4.1) has two roots. For a given t, there is an upper bound below which two distinct

roots exist. When M0 is equal to the upper bound Mc0, these two roots coincide in one

double root �c for F (�c) = F 0(�c) = 0. This and the equationMc =Mc0+�
2
c , de�ne �c,Mc

y This problem can be identi�ed with the one with the source �eld created at ~� = 0

while M = b by the time shift, ~� = � � b and ~t = t� b with velocity ~U(~� ) = U(� ).
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and �c0 as functions of t.y For example when t = 2:25, we have Mc = 1:382, �c = 0:3328

and Mc0 = 1:275.

If the initial Mach number M0 � Mc0, (4.1) does not have two distinct roots and

hence the critical curve �J has no local maximum. Hence this case belongs to the class of

I = 2 in x4.1.
For 1 < M0 < Mc0, (4.1) has two distinct roots, the critical curve �J has a local

maximum and a local minimum as shown in Fig. 6 and the image �J has two cusps forming

a "butter
y" as shown in the insert in Fig.7. In those two �gures, we haveM(� ) = 1:15+� 2,

� 2 [0; 2:25], i. e., M0 = 1:15 and t = 2:25. Since M0 < Mc0, (4.1) has two distinct roots

�1 = 0:6093 and �2 = 0:0918. We have N = 2 and I = 4.

As shown in Fig. 6, the critical curve �J begins with �(0) = 1:1111 at point �T on the

semicircle �B, decreases to a minimum at point �K2 along the segment �J3, increases to the

maximum at point �K1 along �J2 and then decreases to the origin �P along �J1. By Rule 1
the critical curve �J partitions the domain of dependence �D into �V �. By Rule 2 and 3,

these two domains, �V �, are partitioned respectively by the large circular arc �C+1 passing

through �K1 and the small circular arc �C�2 passing through �K2 into �V +

1 , �V +

3 and �V �

2 , �V �

4 .

Thus the domain of dependence �D is partitioned into four nonoverlapping domains.

Figure 7 shows the images of the critical curve, the semicircle when � = 0 and the

two circular arcs in the �� plane. Because the initial Mach number M(0) is above 1 and

below the threshold value Mc0, the circular arc C�2 is approaching the semicircle B from

the right hand side while the branches J2 and J3 and the two cusps K1 and K2 can be

seen only in the insert with 20� enlargement. The domain V �

4 bounded by B, C�2 J3 and
the �-axis is disappearing. In addition to the �-axis, V �

2 is bounded by J2, J1 and C�2 , V +

1

by C+1 and J1, and V +

3 by B, J2, J3 and C+1 . The branch J3 begins at point T tangent to

the circle B, goes downwards on the right hand side of B as the envelope of the circles of

constant � 2 [0:�2 and ends at the cusp K2. The branches J3 and J2 and the semicircle B
form a curvilinear triangle which is the intersection of the four domains of integration in

the �� plane. The intersection has the maximum multiplicity 4.

If we increase M(0) to the threshold value Mc0, the two cusps K1 and K2 and the

branch J2 disappear. Branch J1 joins smoothly with J3 to form a smooth critical curve

J with no local maximum or cusp. The partitions by the arcs C+1 and C�2 are no longer

needed. Thus we recover the class of I = 2. If we decrease M(0) to 1, the minimum point

K2 moves down to the �-axis and leftward to B while the branch J3 and the domain V �

4

disappear. Thus we recover the class of I = 3.

Similar to the discussion in x4.2, for a givenM(0) = 1:15, the critical time of observa-

tion, when Mc0 =M(0), is tc = 1:074. When t � tc, an observer will receive signals from

point S at most twice in the class of I = 2. When t exceeds tc, the observer can receive

signals from the same point S four times in the class of I = 4.

y From F 0(�c) = 0 we get �2c = (M2
c � 1)=(6Mc) and from F (�c) = 0, t2 = (M2

c �
1)(3M2

c + 1)2=(6Mc). The second equation de�nes t > 0 for a Mc > 1. The inverse

transformation is also unique. Thus for a given t > 0, the second equation yields a unique

Mc > 1 and then the �rst one, �c > 0. They in turn de�ne the corresponding initial Mach

numberMc0 = (5M2
c + 1)=6Mc > 1.
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4.4. I = 5. The critical curve �J has one local minimum and two local maximum.

It follows from f7g and f8g that �K2 is the local minimum point and �K1 and �K3 are the

two maximum points, with �1 < �2 < �3 and that �0(t�) � 0 and M(t�) = 1 for t� � 0 or

M(t�) > 1 for t� = 0.

We consider the case that the acceleration is a quadratic function of � ,

M 0(� ) = c0 + 2c1� + 3c2�
2 ; (4:3)

and hence M is a cubic function,

M(� ) = [c0 + c1� + c2�
2]� ; (4:4)

with c0+c1+c2 = 1. We have chosen the time scale such thatM(0) = 0 andM(1) = 1. As

explained in x4.2, a nonzero initial valueM(0) can be converted to (4.4) by an appropriate

time shift and change of coe�cients c0 and c1.

We consider the case that the speed U = M is accelerated to supersonic Ma > 1 at

� = a > 1, followed by an interval of deceleration to Mb at � = b and then acceleration to

� = t. To show the accelerating and decelerating intervals explicitly, we rewrite (4.3) asy

M 0 = c(� � a)(� � b) with b > a > 1 and c = 6=[2� 3(a+ b) + 6ab] : (4:5)

To insure that M > 1 during deceleration, we assume that M(b) > 1.

Using (4.5), we �nd F (1) > 0; F (a) < 0 and F 0(� ) < 0 in the interval (1; a), therefore,

(4.1) has only one root in the interval. Since F (b) < 0; F (t) < 0 while F 00(� ) < 0 in the

interval (b; t), (4.1) has either two roots or none in the interval (b; t). Therefore, �J will

have a maximum in the �rst acceleration interval, (1; a) and a minimum and maximum or

none in the second acceleration interval, (b; t), in agreement with f8ag. Whether there is

a pair or not in the second interval, i. e., whether I = 5 or 3, depends on the values of a; b

and t. Let us consider the function M(� ) speci�ed, i. e., a and b speci�ed while t varies,

as we study the signal received at point P from a point S. It is clear that when 1 < t < b,

(4.1) has only one root, and �J has only a maximum. We have the class of I = 3. There

is critical time tc > b when there is a double root �d of (4.1) in the interval (b; tc). By

eliminating (tc � �d) from F (�d) = 0 and F 0(�d) = 0, we get an equation for �d,

M 00(�d)[M
2(�d) � 1]� 3M(�d)[M

0(�d)]
2 = 0 (4:6)

and then compute tc from (4.1). We have an example for the class of I = 5, when t > tc.

Figure 9 shows the domain �D and the critical curve �J for a = 1:7; b = 3:05 and

t = 5. Now tc = 3:666 < t, we have an example for the class of I = 5. The curve �J which

partitions �D into �V �, has a maximum point �K1(0:880; 0:642) at �1 = 3:911, a minimum

point K2(1:941; 0:287) at �2 = 3:077 > b and then a maximum point �K3(3:078; 1:641) at

�3 = 1:511. The larger circular arcs C+
1
of �1 and C+3 of �3 partition the domain �V + into

y Here we assume that the quadratic function (4.4) has two roots in the interval (1; t).

We can have examples of I = 5 with M 0 = [(� + a)2 + b2]=[(1 + a)2 + b2] > 0. See the

report [6]
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three, �V +

1 , �V +

3 and �V +

5 . The smaller circular arc �C�2 partitions the domain �V � into two,
�V �

2 and �V �

4 .

The images of these �ve nonoverlapping subdomains of �D in the �� plane are de�ned

one by one and the acoustic potential �(t; x; y; z) is given by (3.5) as the sum of integrals

over the �ve images V +

1
, V �

2
, V +

3
, V �

4
and V +

5
. These �ve image subdomains are super-

imposed onto the �� plane as shown in Fig. 10a. Their union is the domain of dependence

D. The �ve subdomains V �

i can in turn be identi�ed from Fig. 10a by tracing the images

of the boundaries of �V �

i .

Fig. 10b shows the critical curve J enlarged �ve times in order to display the four

branches and the curvilinear triangle bounded by the three branchesJ1;J2 and J3 which is
the intersection of the �ve subdomains. The critical curve and the part of the semicircular

B in the enlargement are shown in heavier lines than those for the three circular arcs C+1 ,
C�2 and C+3 because multiplicity does not change across these three arcs, according to Rule

C. The numerals in bold face indicate the multiplicities in a region R bounded by B, J
and/or the � axis. We demonstrate the counting of multiplicities by applying Rules B
and J instead of identifying R as the intersection of subdomains V �

i and counting the

number of subdomains in the intersection. For example, we show by counting that in the

curvilinear triangle the multiplicity is 5.

Consider the change of multiplicities from left to right along a horizontal line L of

constant �c below the cusp K1 and above K2, i. e., �2 < �c < �1. A point on L lying to

the left of the semicircle B is outside of D and has multiplicity m = 0. When L crosses

B from left to right and enters V +

5 , the multiplicity m changes to 1 according to Rule

B. When L crosses the branch J4, m = 3 according to Rule J . When L crosses J2 and
enters the curvilinear triangle, m = 5. When L leaves the triangle and crosses J1, J3 (or
J3, J1), and then B, m = 3; 1 and then 0. If it crosses J3, B and then J1, m = 3; 2 and

then 0. If the horizontal line is below K2, m changes from 0; 1; 3; 2 and then 0. If the line

is between K1 and K3, m = 0; 1; 3; 1 and then 0. If the line is above K3 but below � = t,

m = 0; 1 and then 0.

It is clear that we can �nd examples which require an even greater number of par-

titions, but we have given plenty of examples to demonstrate the rules of partitions and

counting of multiplicities. We note that although the velocity U or Mach number M in

the examples are polynomials of � , the rules are applicable when M is not a polynomial.

This is demonstrated in the following example.

4.5. The speed U(� ) is periodic We consider U = M = u0 � (c=a) cos(a� + b) and

t = �=a. Fig.11 shows the domain of dependence �D and the critical curve �J with a =

1; b = 0 and c = 0:8a and u0 =M0 = 2 and t = �. The speed is supersonic in the interval

[0; t]. The critical curve begins on the circle �B and ends at the origin. There is one local

minimum �K2 and one maximum �K1 at � equal to 0:28194 and 0:67991. With N = 2 and

I = 4, the partition of �D into four subdomains is similar to that in Fig. 6. Figure 12a

shows the image of Fig. 11 in the �� plane. Figure 12b shows the 45� enlargement of the

region containing the cusps K1 and K2 and the area bounded by the three branches, J1,
J2, and J3, only in which the multiplicity is the maximum, 4. Again note the similarity

of Fig.12 to Fig. 7.

In the following subsections we shall present examples with more than one supersonic
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interval in [0; t]. Let there be two intervals (�2; �1) and (�4; �3) with 0 � �4 < �3 � �2 <

�1 � t. The speed is subsonic in (�3; �2) and sonic at the end points. From f7g, we see

that there is at least one maximum on the critical curve in the �rst interval (�2; �1). In the

second interval, the critical curve may not have an extremum, if �4 = 0 and the speed is

decelerating from supersonic speedM(0) to sonic speed. Since N � 1 and I = 1+s+N � 4

for s � 2, we deal �rst with the class I = 4.

4.6. Class I = 4, s = 2, two critical curves having only one local maximum. As

a simple example. we consider a linearly accelerating motion in the interval [0; t],

M 0(� ) = � � b ; with b 2 (0; t) : (4:7)

The velocity function is

M(� ) =M0 � b� + �2=2 ; with M0 > 1 and M(t) > 1 : 4:8

We choose M0, b and t such that the minimumMb =M(b) =M0 � b2=2 is subsonic i. e.,

1 >Mb > 0. The speed becomes sonic at �2 and �3, where

�2 = b+
p
b2 � 2c and �3 = b �

p
b2 � 2c ; (4:9)

with c =M0� 1. Here we have two supersonic intervals (�2; t] and [0; �3). Only the critical

curve in the �rst interval has a maximum at point �K1 at the retarded time �1 2 (�2; t).

As shown in Fig. 13, the domain of dependence �D is partitioned into four nonoverlapping

regions �V +

1
, �V �

2
, �V +

3
and �V �

4
. The region �V �

2
is bounded by the �� axis and the two

segments of the critical curve, �J 1
1 as � decreases from t to �1 and �J 1

2 from �1 to �2. The

region �V �

4 is bounded by the �� axis, the small circular arc �B� and the critical curve �J 2

from �3 to 0. The region, where J > 0, is partitioned by the large circular arc �C+1 of

constant retarded time �1 into �V +

1 and �V +

3 . The segments on the �� axis bounding �V �

2 and
�V �

4
, where J < 0, are ��1 ��2 and ��3��4. With ��j = C(t � �j), we have ��j > ��j�1. Here we

have �1 = t , ��1 = 0 and �4 = 0 , ��4 = Ct.

If the images of �V �

2 and �V �

4 do not intersect, i. e., V �

2 \ V �

4 = ;, the maximum

multiplcity of D can only be 3 < I = 4. This requires that the image segments �1�2 and

�3�4 do not overlap. Noting the sign of J , we have �2 > �1 and �4 > �3 while �2 < �3. For

the two segments to be nonoverlapping, it is necessary that �1 < �4, i. e.,

��4 � ��1 >

Z �1

�4

M(� )d� ; or < M > =

R �1
�4
M(� )d�

�1 � �4
< 1 : (4:10)

This says that the average Mach number < M > or speed < U > in the interval [�4; �1],

has to be subsonic. This statement is valid for any M(� ) having two supersonic intervals

and an intermediate subsonic interval in [�4; �1].

In Fig. 13, we have b = 1:0, M0 = 1:18; X(0) = 0 and t = 2:4. The speed is sonic at

�2 = 1:8 �3 = 0:2, Mb = 0:68 and < M >= 0:94 < 1. The images of the four subdomains

in Fig. 13 are shown in Fig. 14a. A 3� enlargement of the region containing the critical

curves is shown in Fig.14b where the bold faced numerals denote the multiplicity. In this
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case the subdomains V �

2 and V �

4 do not overlap and the maximum multiplicity is equal

to 3 < I = 4.

Figures 15 and 16a and b show a counter example of Figs. 13 and 14a and b with the

same t = 2:4, and smaller b = 0:8. The speed is sonic at �2 = 1:33 and �3 = 0:27, with

Mb = 0:70. There is a longer second supersonic interval and the average Mach number

< M >= 1:18 is supersonic. As shown in Fig. 16, the subdomains V �

2 and V �

4 do overlap

and the maximum multiplicity is equal to I = 4.

4.7.More than two critical curves, each having only one local maximum We

consider an example with periodic velocity variation about a mean subsonic speed. Then

there are three subsonic and three supersonic intervals. We choose X(0) = 0, t = 5:0 and

M 0(� ) = 0:5� sin(�� ) and M(� ) = 0:75� 0:5 cos(�� ).

As shown in Fig. 17, the domain of dependence �D is partitioned into seven nonover-

lapping regions by the three nonintersecting critical curves �J i; i = 1; 2; 3 and the large

circular arcs �Ci passing through the maxima �Ki. Therefore I = 3+3+1 = 7. The images

of the seven subdomains in Fig. 17 are shown in Fig. 18a. A 2� enlargement of the region

containing the three critical curves is shown in Fig.18b where the bold faced numerals

denote the multiplicity. In this case the maximum multiplicity is equal to 3 < I = 7.

5. Conclusion

In the interaction of an acoustic �eld with a moving airframe we encounter a canonical

initial value problem for an acoustic �eld induced by an unsteady source distribution, q(t;x)

with q � 0 for t � 0, in a medium moving with a uniform unsteady velocity U(t)̂{ in the

coordinate system x �xed on the airframe. Signals issued from a source point S in the

domain of dependence D of an observation point P at time t may arrive at point P more

than once corresponding to di�erent retarded times, � in the interval [0; t]. The number of

arrivals is called the multiplicity of the point S. The multiplicity equals 1 if the velocity U

remains subsonic and can be greater when U becomes supersonic. For an unsteady uniform


ow U(t)̂{, the acoustic potential �(t; x; y; z) is governed by the convective wave equation

with variable coe�cients, the velocity U(t) and the accelerati on _U(t). The solution �(t;x)

is given indirectly via the solution of the corresponding acoustic �eld �� in the coordinate

system �x with the medium at rest. The solution (1.16) induced by the source distribution

q(t;x) is

�(t; x; y; z) = � 1

4�

Z Z Z
D

d�d�d�
q(�; x + �; y + �; z + �)

jR�M ��j (5:1a)

= � 1

4�

IX
i=1

Z Z Z
Vi

d�d�d�
q(�i; x + �; y + �; z + �)

jRi �Mi
��ij

: (5:1b)

To evaluate the integral over the domain of dependence D in (5.1a) we need to relate � ,

R and �� to t and the coordinates of the source point S(x + �; y + �; z + �). The implicit

relationships are:

�� = � +

Z t

�

U(t0)dt0 and R2 = C(t� � )2 = ��2 + �2 + �2 : (5:2)
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They yield multiple retarded times �i in [0; t] and the corresponding Ri and ��i. We need

to �nd the roots of (5.2) and identify the domain Vi in the �; �; � space for each �i. Then

� is written as the sum of integrals over the smallest number I of domains Vi in (5.1b).

Here I denotes the maximummultiplicity of D. It is the purpose of this paper to formulate
the rules identifying these dom ains Vi for a medium moving at an unsteady speed, U(t).

First we study the Jacobian of the transformation x to �x in x2 and then use these studies

to formulate in x3 the rules for the partition of the domain of dependence, �D in the �x

space, into nonoverlapping subdomains �Vj for an unsteady velocity, U(� ) ; � 2 [0; t]. We

show that the partition has the required property that the value of � and hence R and ��

de�ned by (5.2) for a point (�; �; �) in an image Vj is uniquely de�ned. Thus the domain

of integration in (5.1b) is the sum of those images Vj 's. Since those images may overlap

in the �; �; � space, signals from a point S in the space lying in m of those images will

reach point P m-times. Hence m is th e multiplicity of point S. The rules for counting

the multiplicity of a point in D are also stated in x3. The analyses in x2 and x3 justify

the assertions made in [2] for the case of a constantly accelerating speed. Additional

examples with unsteady velocities, accelerating and/or decelerating at di�erent ranges of

Mach numbers are presented in x4 to demonstrate the applicatio n of the rules of partition

of �D and to show the singularities of J in the �; �; � space.

Appendix A. Domain of dependence and the region of in
uence in a constant

supersonic 
ow We study the domain of dependence D of an observation point P at an

instant t > 0 for an acoustic �eld created in the interval [0; t] and the region of in
uence of

a source point S during the interval [�; t] where � denotes the retarded time. Consider the

meridian �� plane in the coordinate system �; �; � containing points P and S. The �-axis

is in the direction of the 
ow, {̂. Point P is the origin and D is bounded by the � axis,

the backward Mach line from P and the large circular arc of radius R0 = Ct with � = 0

and centered at G on the �-axis with � = �MR0. Note that the region of in
uence of a

source point S for the interval [0; t] is the mirror image of the the domain of dependence

of P with respect to the � axis and point S at the origin. Fig. 19 a and b show the two

domains of integration V + and V � for M =
p
2 in a meridian plane.

The backward Mach line from P is the envelope of the semi-circles C of constant

� 2 [0; t] with radii R = C(t � � ). The Mach line divides a semi-circle into two arcs,

the larger arc C+ is convex while the smaller arc C� is concave from the Mach cone. The

domain V + coincides with D and is covered by the family of convex circular arcs C+. The
domain V � is covered by the family of concave circular arcs, C� with V + =2 V � equal to

the semi-circular disc of radius Ct centered at G. Consider a source point S in V � 2 V +.

Point S lies on the intersection of two circular arcs in V �, the convex circular arc C+
of radius R+ centered at G+ with � = �MR+ in V + and the concave circular arc C� of

radius R� centered at G� with � = �MR� in V �. Note that these two arcs are associated

with di�erent semi-circles or di�erent retarded times ��, with �+ > ��. In Fig. 19a and

19b, we choose �+ = 0:75t and �� = 0:25t. The signal created at the retarded time �� at

point S in Fig. 19b propagates at time t onto a sphere of radius R� while its center travels

parallel to {̂ to S� with jSS�j = MR� = jG�P j. The region of in
uence of point S with

retarded time �� (in the meridian plane) is bounded by the two forward Mach lines from

S and the circular arc of radius R� centered at S�. Since points S, S�, P and G� are the
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vertices of a parallelgram, point P lies on the small circular arc. The signal initiated at

time �� from point S reaches point P at time t. Likewise we see in Fig. 19a how the signal

from S at the retarded time �+ reaches P at time t. Similarly, we can see for the case of

an unsteady moving medium the connection between the region of in
uence of point S in

the interval [�; t] and the propagation of the signal from S initiated at � reaching point P

at time t.

Appendix B. Transformation of a Neighborhood of �J in the ��� plane onto the

�� plane and the Inverse Transformation

We study the transformation of a point �S(��; �c) in the neighborhood of the critical

curve �J onto a point S(�; �c) near J and its inverse transformation. We add the subscript

c to � to shown that � remains unchanged in the transformation.

First we consider the point �S near a branch of �J but not too close to the extremum

point �K1. Using the same ordinate �c for the neighboring point �Sc(��c; �c) on �J1, we use
(1.9) and the equation for � in (2.2) or (2.5) to �nd �c or Rc �rst and then ��c from (2.2),

and �c from (2.5), for the corresponding point Sc(�c; �c) on J . Here the subscript c denotes
the value at �c.

Note that we are considering,

j�� � �cj � 1 and hence j� � �cj � 1 while �0c 6= 0 (B:1)

Here � denotes the retarded time corresponding to point �S by (1.9),

� = t�R=C and R =

q
��2 + �2c : (B:2)

Using (B.1) we simplify the transformation (1.12) from �� to �. Using (1.12) and expressing

M by the Taylor series in (� � �c), we have

���c = ��� ��c+

Z �

�c

CM(~� ) d~� = ��� ��c+CMc(���c)+
C

2
M 0

c(���c)2+O((���c)3) ; (B:3)

Now we express C(� � �c) in power series of �c = (�� � ��c),

C(� � �c) = �(R �Rc) = �(@��R)c�c �
1

2
(@2����R)c�

2

c +O(�3c )

= � 1

Mc
�c �

�2c
2R3

�2c +O(�3c ) :

(B:4)

Using (2.3a) and (B.4) in (B.3), we get

� � �c =
M 0

cRc �CMc(M
2
c � 1)

2CM2
cRc

�2c +O(�3c )

=

p
M2

c � 1 �0c
2CRc

(�� � ��c)
2 +O(�3c ) ;

(B:5)
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which in turn de�nes the inverse transformation,

�� = ��c �
p
2CRc(M

2

c � 1)�1=4
p
(� � �c)=�0c : (B:6)

This implies that a point S in the neighborhood of a branch J1 (B.1), on the side with

�0c(� � �c) > 0 ; (B:7)

is mapped to two points on both sides of �J . For a point S on the other side of J , with
(� � �c)�

0
c < 0, (B.6) says only that there is no inverse solution �S in the neighborhood of

point �Sc. Because of (B.1), (B.6) does not include inverse solution(s) of (1.12) which are

away from the branch �J1. From (2.6), �0c and �
0
c are of oppsite sign and (B.6) implies

(i) Along a branch of �J where �c increases (decreases) with increasing �c, a point �S on

either side of �J is mapped to a point S on the right (left) hand side of J with � � �c
positive (negative) while �c decreases (increases) along J . The multiplicity of the

point S is at least 2.

Now consider the case that the point �S(��; �) is close to an extremum point on �J , say
at point �K1(��1; �1) where �

0
1 = 0. Here we use subscript 1 to denote the value at �1. The

distance between �S and �K1 is small, i. e., j �S �K1j =
p
(�� � ��1)2 + (� � �1)2 � 1, and hence

Cj� � �1j = jR�R1j � j �S �K1j � 1 : (B:8)

Because of �01 = 0, we need to include at least the third order terms in the representation

of the transformation (B.3) by a power series of � � �1 or rather R�R1,

���1 = ��� ��1�M1(R�R1)+
1

2C
M 0

1(R�R1)
2� 1

6C2
M 00

1 (R�R1)
3+O((R�R1)

4) : (B:9)

With �� =
p
R2 � �2, we expand �� � ��1 in a double power series of R � R1 and � � �1.

Using (2.4b), we note

j� � �1j � j�c � �1j = O((�c � �1)
2) ; (B:10)

while jR�R1j can be O(j�c��1j). We keep O(jR�R1j3) terms but not fourth order terms,

e. g., (� � �1)
2 and (R �R1)

2(� � �1), and get

�� � ��1 = (
@ ��

@R
)1(R �R1) +

1

2
(
@2��

@R2
)1(R �R1)

2 +
1

6
(
@3 ��

@R3
)1(R �R1)

3

+ (
@ ��

@�
)1(� � �1) + (

@2 ��

@R@�
)1(R �R1)(� � �1) +O((R �R1)

4) :

(B:11)

With the partial derivatives at �1,

@ ��

@R
=
R1

��1
=M1 ;

@2��

@R2
= ��

2
1

��31
= �M1(M

2
1 � 1)

R1

;
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@3 ��

@R3
=

3�21R1

��51
=

3M3
1 (M

2
1 � 1)

R2
1

;

@ ��

@�
= ��1��1

= �
q
M2

1 � 1 and
@2 ��

@�@R
=
�1R1

��31
=
M2

1

p
M2

1 � 1

R1

;

(B.11) and (B.9) yield

� � �1 =�
q
M2

1 � 1 (� � �1) +
M2

1

p
M2

1 � 1

R1

(� � �1)(R �R1)

� �001M
2
1

p
M2

1 � 1

6C2R1

(R �R1)
3 +O(j�c � �1j4) :

(B:12)

Since �, �1 and R1 are known, (B.12) becomes a cubic equation for (R �R1) or R,

(R�R1)
3 + p(R�R1) + q = 0 ; (B:13)

where

p =
�6C2(� � �1)

�001
; q =

6C2R1H

�00
1M

2
1

p
M2

1 � 1
and H = (� � �1) + (� � �1)

q
M2

1
� 1 :

Here H denotes the horizontal distance from point (�; �) to the tangent line of J at the

cusp point K1. The character of the roots of (B.13) depends on the discriminant of the

cubic, 
 = q2=4 + p3=27. If 
 < 0, (B.13) has three distinct real roots, 
 = 0, three real

roots with two equal and 
 > 0, only one real root.

In order to have three real roots it is necessary for p < 0 that

(� � �1)�
00

1 > 0 : (B:14)

This says that

(ii) For the cubic (B.13) to have three real roots, it is necessary that � should be below

the local maximum �1 on J or above the local minimum.

When 
 � 0, we have

H2 � 8C2M4
1 (M

2
1 � 1)

9�00
1
R2
1

(� � �1)
3 : (B:15)

With the equality sign, (B.15) becomes the equation describing the two branches of J near

the cusp S1. For a point S(�; �) in the interior bounded by these two branches, we have


 > 0, and hence there are three distinct real roots for �� or � . In the exterior there is only

one real root. Thus using (B.14) and (B.15) we conclude that

(iii) For a cusp with a local maximum �1, a point S in the interior bounded by these

two branches has image point �S inside the domain �D+ bounded by �J and two image

points in �D� lying to the right and left of the local maximum point �S1. For a point
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S exterior to the region bounded by the two branches, there is only one image point
�S in �D�.

(iv) For a cusp with a local minimum �2, a point S in the interior bounded by the two

branches has one image point �S in �D� and two image points in �D+ lying to the right

and left of the local minimum point �S2. For a point S exterior to the region bounded

by the two branches, there is only one image point �S in �D+.

Again we note that the above analysis is local and does not account for the roots of (1.12)

not in the neighborhood of an extremum point, if any. Thus we say

(v) The multiplicity of a point S(�; �) near a cusp and in the interior bounded by the two

branches is at least 3.
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Legend of Figures

Fig. 1 The coordinate system (�x; y; z) with the medium at rest and the system (x; y; z), with

x = �x+X(t).

Fig. 2 The domain of dependence �D of point �P at instant t > 0. in a meridian plane, the ���

plane, with origin �P . With length scaled by Ct, the domain �D is the unit semicircular

disk above the ��axis. A �xed point �S shown at t = 1 is moving towards the origin

as t increases. Also shown is the partition of �D into two nonoverlapping regions, �V �

by the radial line �P �T at  = arccos1=M representing the critical curve for a constant

supersonic speed at Mach number M =
p
5.

Fig. 3 The domain D and point P are the images of �D and �P in Fig. 2. The domain D,
which depends on the relative velocity U{̂, is shown here in the meridian �� plane

with origin P for a constant supersonic speed at M =
p
5, with length scaled by Ct.

Fig. 4 The partition of the domain of dependence �D of point �P in a meridian ��� plane for

a constantly accelerating motion. Here U(� ) = C� ; � 2 [0;
p
5], with �nal Mach

number M =
p
5. The critical curve �J has a maximum �(�1) at point �K1 with

�1 = 51=6. The point �K1 divides �J into �J1 and �J2. The critical curve partitions �D
into �V �. The circular arc �C+1 partitions V + into V +

1 and �V +

3 .

Fig. 5 Images of curves shown in Fig. 4 in the �� plane. They are the semicircle B, two
branches of the critical curve J , J1 and J2, and the circular arc C+1 through the cusp

K1 on J . An enlargement of the neighborhood of the cusp K1 is shown in the insert.

Also shown are the common tangent to the two branches, and the tangents at points

on the branches. These tangent lines are the local Mach lines.

Fig. 6 The partition of the domain of dependence �D of point �P in a meridian ��� plane for a

constant rate acceleration from a low supersonic speed. Here M(� ) = 1:15+ � 2 ; � 2
[0; 2:25], with �nal Mach number M = 6:2125. The critical curve �J has a local

maximum at point �K1 and minimum at point �K2. The curve partitions �D into �V �.
�V + is partitioned by the circular arc �C+1 starting from point �K1 into �V +

1 and �V +

3 , and
�V � by arc �C�2 from point �K2 into �V �

2 and �V �

4 .

Fig. 7 Images of curves shown in Fig. 6 in the �� plane. They are the semicircle B, the
three branches of the critical curve, J1, J2 and J3, and two circular arcs C+1 and C�2
from the two cusps K1 and K2 on J . Note the small di�erence between C�2 , and
the semicircle B. A 20� enlargement of the neighborhood of the cusps K2 and K3

is shown in the insert. Note that the branch J3 begins at point T tangent to the

semicircle B and continues downward to the right hand side of B.
Fig. 8 Mapping of a horizontal segment �Sr �Sl in the ��� plane when the segment �Sr �Sl crosses

the critical curve �J twice.

(8a) below a local maximum point, and (8b) above a local minimum point.
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Fig. 9 The partition of the domain of dependence �D of point �P in a meridian ��� plane for

an accelerating, decelerating and accelerating supersonic speed starting from rest at

� = 0. The subsonic and supersonic intervals are [0; 1) and (1; 5] with the deceleration

in (1:7; 3:05). The critical curve �J has a local maximum at point �K1, a minimum at
�K2 and then a maximum at �K3. The curve �J partitions �D into �V �. �V � is partitioned

by the circular arc �C�2 starting from point �K2 into two subdomains �V �

2 and �V �

4 , and
�V + by arcs �C+

1
from point �K1 and �C+

3
from point �K3 into three domains �V +

1
, �V +

3
and

�V +

5
.

Fig. 10 Images of the �ve nonoverlapping subdomains of �D, shown in Fig. 9, are superimposed

onto the �� plane in (10a). Shown in Fig. (10b) is the 5� enlargement of the region

containing the four branches of the critical curve, Ji; i = 1; 2; 3; 4. The numerals in

bold face indicate the multiplicities of the regions bounded by Ji, B and/or the �-axis.

Fig. 11 The partition of the domain of dependence �D of point �P at time t for a supersonic

periodic motion M(� ) = 2� 0:8 cos � for 0 � � � t = � with M 0(� ) � 0.

Fig. 12 Images of the four nonoverlapping subdomains of �D shown in Fig. 11 are superposed

on to the �� plane in Fig. 12a. Shown in Fig. 12b is the 45� enlargement of the region

containing the two cusps.

Fig. 13 The partition of the domain of dependence �D of point �P at time t with two supersonic

intervals,M(� ) =M0 � b� + �2=2 for 0 � � � t, with M0 = 1:18, b = 1:0 and t = 2:4.

Fig. 14 Images of the four nonoverlapping subdomains of �D shown in Fig. 13 are superposed

on to the �� plane in Fig. 14a. Shown in Fig. 14b is the 3� enlargement of the region

containing two nonintersecting critical curves.

Fig. 15 The partition of the domain of dependence �D of point �P at time t with two supersonic

intervals,M(� ) =M0� b� + �2=2 for 0 � � � t, with M0 and t the same as in Fig. 13

but b = 0:8.

Fig. 16 Images of the four nonoverlapping subdomains of �D shown in Fig. 15 are superposed

on to the �� plane in Fig. 16a. Shown in Fig. 16b is the 3� enlargement of the region

containing two intersecting critical curves .

Fig. 17 The partition of the domain of dependence �D of point �P at time t with three supersonic

intervals, M(� ) = 0:75� 0:5 cos(�� ) for 0 � � � t = 5.

Fig. 18 Images of the seven nonoverlapping subdomains of �D shown in Fig. 17 are superposed

on to the �� plane in Fig. 18a. Shown in Fig. 18b is the 2� enlargement of the region

containing two nonintersecting critical curves.

Fig. 19 Propagation of signals from point S initiated at di�erent retarded times to the obser-

vation point P at time t, as explained in Appendix A.
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