
1 Introduction. This paper deals with the problem of numerically determining

a three dimensional vector �eld from its divergence and curl. The need to do this

occurs in several �elds including 
uid dynamics and electromagnetics. The governing

equations are often solved using indirect approaches including potential formulations

or Biot{Savart type integrals [5] and least squares [1].

A good reason to be cautious about direct discretizations is that the equations are

overdetermined, being a system of four equations in three unknowns, and it is not

immediately evident what e�ect this will have at the discrete level. Nevertheless,

since potential formulations can su�er from spurious mode problems [6] and the

Biot{Savart approach requires special handling of boundaries, a direct treatment

may be preferable. We present such a treatment in this paper.

The method we discuss is a generalization of that presented in [3] for planar systems.

As in the planar case we use dual mesh systems made up of \complementary vol-

umes" (or \covolumes") of which the prime examples are classical Voronoi-Delaunay

mesh pairs. In the Voronoi{Delaunay approach the domain is suitably partitioned

into tetrahedra which are considered to form a primal (Delaunay) mesh in the do-

main 
. A dual (Voronoi) mesh is formed by connecting the circumcenters of the

tetrahedra, giving a set of convex polygons each of which encloses a unique tetrahe-

dral vertex. Combinatorial and topological properties of the primal and dual mesh

systems play an important part in our analysis, allowing us to conclude, for example,

that the solution of the discretized equations is exactly determined by the data if the

same is true of the original system. On the other hand, the metric properties of the

mesh system are used in deriving the error estimates. The interplay of topological

and metric properties is a common feature of covolume discretizations.

The paper contains six sections. The second section deals with combinatorial prop-

erties of the mesh system. The third section shows how discrete vector �elds are

de�ned on the meshes and de�nes the basic integral operations for the discrete

�elds. These de�nitions are set up so that an important orthogonality property of

vector �elds is preserved (theorem 4). The discrete approximations and the basic

error estimates are in section 4. In section 5 we specialize the results to rectangu-

lar meshes for which we are able to obtain improved convergence rates. The �nal

section contains some basic numerical veri�cations.

2 Mesh notations and some basic results. We will prove our results for the

case of a domain 
 which is a bounded polyhedron in R3 with boundary �. The

results we present are generally valid for multiply connected domains and domains

with cutouts. The techniques for extending the results are similar to those used in [3]

for the two dimensional case although there is greater variety in three dimensional

cases depending on the genus of the surface(s) bounding the obstacle(s).
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Assume that 
 has a primal family of �nite element style tetrahedral partitions,

parameterized by the maximum side length which is generically denoted by h. We

will assume that the ratios of the radii of the circumscribing spheres and the in-

scribed spheres of all the individual tetrahedra are uniformly bounded above and

below as h approaches 0. A dual mesh is formed by connecting adjacent tetrahedral

circumcenters and, in the case of tetrahedra with a face on a boundary, by connect-

ing their circumcenters with those of their boundary faces. By elementary geometry

the connecting edges are perpendicular to the associated tetrahedral faces. These

connections also form the edges of a set of polyhedra. It follows from elementary

geometry that the edges of the tetrahedra are perpendicular to and in one{to{one

correspondence with the faces of the dual polyhedra (covolumes) and dually. The

reciprocal orthogonality between edges and faces is the key to the results which

follow. A survey of algorithms for generating Voronoi{Delaunay meshes is given

in [4].

For an entirely arbitrary tetrahedral partition the structure of the covolume partition

can be complicated. To obtain a practical algorithm we will restrict the tetrahedral

partition so that the dual partition has two (possibly dependent) properties. These

properties are (1) interior covolumes have faces which are simple (planar) polygons

and (2) each tetrahedral interior node lies in exactly one covolume. This does restrict

the primal tesselation somewhat but not unduly. For instance the two conditions

are certainly satis�ed for a tetrahedral partition in which the dihedral angles are all

acute. In that case, the two meshes form a Delaunay{Voronoi pair and the interior

covolumes are convex. In addition the faces of the covolumes are not merely simple

but convex as well. More generally any Delaunay{Voronoi pair will satisfy (1) and

(2).

The N nodes of the tetrahedral mesh are assumed to be numbered sequentially

in some convenient way, and likewise the T nodes of the dual mesh. Similarly,

the F faces (edges) and E edges (faces) of the primal (dual) mesh are sequentially

numbered. A subscript 1 on one of these quantities denotes the corresponding

interior number. For example F1 denotes the number of tetrahedral interior faces.

The individual tetrahedra, faces, edges and nodes of the primal mesh are denoted

by �i, �j , �k and �l respectively. Those of the covolume mesh are denoted by primed

quantities such as �0j . A direction is assigned to each primal edge by the rule that

the positive direction is from low to high node number. The dual edges are directed

by the corresponding rule.

We will use the following standard results:

Lemma 1 Let N;F;E and T denote the number of nodes, faces, edges and tetra-

hedra of a given tesselation of a polyhedral domain. Then

N + F = E + T + 1 (1)

N1 + F1 = E1 + T � 1: (2)
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These can easily be proven by successive deletions of tetrahedra from the triangu-

lation.

3 Discrete vector �elds.The main theorems in this section (theorems 3 and

4) are discrete analogs of theorems in vector �eld theory. Theorem 3 asserts the

existence of a scalar potential when discrete circulation equations are satis�ed and

theorem 4 gives a discrete Helmholtz decomposition of a �eld of normal components.

Each boundary @�j (@�0k) is assumed to be oriented by a right hand rule applied

relative to the directed edge �0j (�k).

For each strictly interior dual edge �0j we can form a vector whose kth component is

the sign of the orientation of the edge relative to the orientation of the kth strictly

interior dual face. From these vectors we obtain the F1 � E1 matrix G de�ned as

follows:

(G)jk :=

8><
>:

+1 if �0j is oriented positively along @�0k
�1 if �0j is oriented negatively along @�0k
0 if �0j does not meet @�0k:

G has rank E1 �N1. To see the reason for this, note �rst that each column of G is

associated with a dual face. Now take any interior covolume and sum the associated

columns, each weighted �1 according to whether its normal points out of or into the

covolume. Then the contributions from each dual edge appear twice in each sum

with opposite signs. In this way we can form one null vector of Gt for each interior

covolume. It is clear that there are no other vectors in the null space so the result

follows.

In addition to G we will use another matrix B1 containing the orientations of the

tetrahedral faces relative to the outer normals of the tetrahedra. This matrix is

de�ned for interior faces and has dimensions F1 � T . The de�nition of B1 is:

(B1)ji :=

8><
>:

+1 if �j is oriented with @�i
�1 if �j is oriented against @�i
0 if �j does not meet @�i:

;

where \oriented with" means that the normal direction of �j is parallel to the outer

normal of @�i. The T dimensional vector with 1 in every position is in the null space

of B1 and is the only such vector, so that the rank of B is T � 1.

In addition to B1 we will also use the matrix B which is obtained from B1 by aug-

menting it with rows corresponding to the dual edges which are normal to boundary

faces. Recall that these edges pass through the circumcenters of the boundary faces.

The additional values for the domain of B are associated with these circumcenters.

B1 and G are related through GtB1 = 0. To see this, take a standard basis vector

and multiply it by B. Then values �1 or 0 result on the dual edges the positive
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(negative) sign being associated with a dual edge directed out of (into) the node

which carries the unit value. Multiplication by Gt corresponds to forming a signed

sum of these values around the dual faces where the signs are precisely such as to

e�ect a cancellation of the nonzero contributions. Transposing this result shows

that R(G) � N(Bt
1
) where N(�) and R(�) denote the null space and range of their

arguments.

Theorem 1 Let v 2 RF1 . Then 9 � 2 RT such that v = B1� if Gtv = 0.

Proof. Since B1 is F1 � T and of rank T � 1 and using lemma 1 we have

dimN(Bt
1) = F1 � T + 1

= E1 � N1:

Recalling that R(G) � N(Bt
1
) and since dimR(G) = E1 � N1 we have N(Bt

1
) =

R(G). Solvability of the equation

B1� = v

holds if

(v; z) = 0 8z 2 N(Bt
1
);

where ( ; ) denotes the standard Euclidean inner product. From above this is equiv-

alent to

(v;G ) = 0 8 2 RN1

and these are equivalent to the theorem.

The covolume algorithm for the div-curl equations provides approximations to the

quantities u�n, where u denotes the exact solution vector at the center of a primal

face and n denotes a normal to the face. The corresponding approximate quantities

are denoted by uj where j indexes the faces.

Any set of normal components de�ned on faces can be identi�ed with RF . We will

introduce an inner product into RF by

(u; v)W :=
X
�j2�


ujvjsjh
0

j ;

where sj is the area of �j and h0j is the length of �0j . The resulting inner product

space is denoted by U , and U0 denotes the space

U0 := fu 2 U ; u j�= 0g:
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The associated norm is denoted by k�k
W
. Clearly, this is three times a discrete L2

norm.

For each tetrahedron �i discrete 
ux and divergence operators are de�ned on U by

(D̂u)i :=
X

�j2@�i

uj~sj

and

(Du)i := (D̂u)i=Ai:

By ~sj we mean sj negatively signed if the corresponding velocity component is

directed towards the inside of �i and positively signed otherwise.

For each interior covolume face �0k discrete circulation and curl operators are de�ned

by

(Ĉu)k :=
X

�0

j
2@�0

k

uj~h
0

j

and

(Cu)k := (Ĉu)k=s
0

k:

The tilde on h0j means that this quantity is to be taken with a negative sign if the

dual edge is directed against the positive sense of description of @�0k and a positive

sign otherwise.

Denote by S and H 0

b the diagonal matrices S := diag(sj) and H
0

b := diag(h0j). It

can be checked directly that

D̂ = BtS

Ĉ = GtH 0;

where H 0 denotes the restriction of H 0

b to interior dual edges. We also de�ne di�er-

ence operators

Pb� := (H 0

b)
�1B� 8� 2 RT

P� := (H 0)�1B1� 8� 2 RT :

Corresponding to theorem 1 we have

Theorem 2 Let v 2 RF1 . Then 9 � 2 RT such that v = P� if Cv = 0.

Now introduce two subspaces of U0:

Z0 = fu 2 U0; D̂u = 0g

W0 = fu 2 U0; Ĉu = 0g:

Then we have

5



Theorem 3 Let u 2 Z0, v 2 W0, then

(u; v)W = 0:

Proof. From theorem 2 and using summation by parts we have

(u; v)W = (u; P�)W = (u; Pb�)W = (D̂u; �) 8� 2 RT :

Since u 2 Z0 we have D̂u = 0 and the theorem follows.

4 Div-curl systems. In this section we formulate the discrete approximations

for div-curl equations and show that they have a unique solution (theorem 5). The

basic error estimate is given in theorem 6.

We consider the three dimensional div-curl problem for u,

div u = � (3)

curl u = ! (4)

u�n j� = f : (5)

We will assume that the following compatibility conditions hold:

div ! = 0 (6)Z



�dv =

Z
�

fds: (7)

See [2] for the mathematical background to this problem.

Equations (3)-(5) are discretized by

Du = �� (8)

Cu = �!�0 (9)

u j� = �f ; (10)

where

��i =
1

Ai

Z
�i

�dv

(�!�0)k =
1

s0k

Z
�0

k

!�tds

�f =
1

sj

Z
�j

fds �j 2 �:

The equations (8)-(10) are not all independent. In fact, there are at least E1 relations

between the equations (9) corresponding to the fact that the area weighted sums of

the data over covolumes is zero (corresponding to the compatibility condition (7))

as well as a further relation which is equivalent to (7). The discrete equations do

have a unique solution as we prove next.
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Theorem 4 Equations (8)-(10) have a unique solution.

Proof. Consider the homogeneous equations with �!�0 = 0 and f = 0 in (8)-(10).

These equations have at least one solution u, and this solution satis�es u 2 Z0 and

u 2 W0. But then theorem 3 implies u = 0 which implies the uniqueness part of the

result. Let K denote the (T + F1 � F1 coe�cient matrix of the linear system; then

it follows that K has rank F1.

For the existence, we consider the linear system generated by (8)-(10). and let K 0

denote the corresponding augmented matrix of K of order (T + E1)� (F1 + 1). It

follows from the compatibility conditions that this matrix has rank at most T � 1+

E1 � N1 = F1 and existence follows from this.

Next, we introduce two functions u(1) and u(2) de�ned by

u
(1)

j :=
1

sj

Z
�j

u�nds �j 2 �


u
(2)

j :=
1

h0j

Z
�0

j

u�nds �0j 2 
:

If �0j is connected to the boundary �, u
(2)

j := u
(1)

j .

Lemma 2 Assume that u 2W 1;p(
); p > 2; then we have


u(1) � u(2)




W

� Chjuj
1;p;
:

Proof. Let �j denote the polyhedron associated with the face �j and the dual edge

�0j which is obtained by connecting the circumcenters of the primal cells which share

�j to its vertices. By a Sobolev embedding theorem we have

W 1;p(�j) ,! L1(�rj) p > 2 r = 1; 2;

where �1j = �0j and �
2

j = �j . It follows that V : u ! u
(1)

j � u
(2)

j de�nes a bounded

linear functional on W 1;p(�j). Clearly, u
(1)

j � u
(2)

j is zero for constant u so we have
���u(1)j � u

(2)

j

��� � C1(h; p)juj1;p;�j

and a standard rescaling argument then shows that the right side is

� Ch1�3=pjuj
1;p;�j

:

where C is independent of h and u. Summing over the domain we obtain
X
�j2�


ju
(1)

j � u
(2)

j j
2sjh

0

j � C
X
�j2�


h2�6=pjuj2
1;p;�j

sjh
0

j

� Ch5�6=p
X
�j2�


juj
2

1;p;�j
:
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Then by H�older's inequality and taking C such that h3F � C we have




u(1) � u(2)



2
W

= Ch5�6=p

0
@X

�j2�


juj
p
1;p;�j

1
A
2=p0
@X

�j2�


1

1
A
(p�2)=p

� Ch5�6=pF (p�2)=p
juj

2

1;p;


� Ch2juj2
1;p;


which we wanted to show.

From this lemma we can obtain the error basic estimate for the approximate solution:

Theorem 5 Assume that u 2 W 1;p(
); p > 2. Then we have



u� u(1)





W

� Chjuj
1;p;
:

Proof. De�ne v(i) = u � u(i); i = 1; 2, clearly, v(1) 2 Z0 and v(2) 2 W0. Let

�u = (u(1) + u(2))=2. A calculation using Theorem 3 shows that

ku � �uk
W
=

1

4




u(1) � u(2)




W

:

On the other hand, we have

u� �u = u� u(1) � (u(2) � u(1))=2:

Then 


u � u(1)




W

� ku � �uk
W
+

1

2




u(2) � u(1)




W

and the result follows from lemma 2.

5 Uniform meshes. In this section we will look more closely at the situation in

which the domain 
 is a cube and the mesh is a uniform cubic mesh. For this case

the dual mesh is also uniform cubic, being shifted by one half the mesh spacing in

each coordinate direction from the primal mesh.

For this uniform mesh case the basic error estimate can be improved. The di�erence

in the uniform mesh case arises from the improved approximation theory which is

possible. Apart from approximation theory the earlier results have obvious analogs

which it is unnecessary to spell out in detail. The new approximation results corre-

spond to lemma 2 and theorem 5.

Lemma 3 Assume that u 2 H2(
). Then we have



u(1) � u(2)





W

� Ch2juj
2;
:
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Proof. As previously,let �j denote the polyhedron associated with the face �j and

the dual edge �0j . By a Sobolev embedding theorem we have

H2(�j) ,! L1(�rj) r = 1; 2;

where �1j = �0j and �
2

2
= �j . Hence V : u! u

(1)

j �u
(2)

j is a bounded linear functional

on H2(�j). For uniform meshes it is easy to verify that u
(1)

j �u
(2)

j vanishes for linear

u so it follows that ���u(1)j � u
(2)

j

��� � C(h)juj
2;�j

and the usual rescaling argument gives that the right side is

� Ch1=2juj
2;�j

:

Then it follows that

X
�j2�


ju
(1)

j � u
(2)

j j
2sjh

0

j � C
X
�j2�


hjuj2
2;�j

sjh
0

j

� Ch4
X
�j2�


juj
2

2;�j
:

which gives the result.

Theorem 6 Assume that u 2 H2(
);, then we have




u� u(1)




W

� Ch2juj
2;
:

Proof. The proof is similar to the proof of theorem 5.

6 Numerical test. To con�rm the rate of convergence given by the previous

theorem we computed a numerical example. The domain of computation is the unit

cube. The domain was �rst divided into equal small cubes with dimension h�h�h.

Then a dual mesh was generated (dual cubes). We consider the following problem

div u = 0

curl u = !

ux jx=0 = uy jy=0= uz jz=0= 0

ux jx=1 = sin(1)cos(y)cos(z)

uy jy=1 = �2cos(x)sin(1)cos(z)

uz jz=1 = cos(x)cos(y)sin(1)
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where u = (ux; uy; uz) and

! =

0
B@

cos(x)sin(y)sin(z)

�2sin(x)cos(y)sin(z)

sin(x)sin(y)cos(z)

1
CA :

The exact solution of this problem is

u =

0
B@

sin(x)cos(y)cos(z)

�2cos(x)sin(y)cos(z)

cos(x)cos(y)sin(z)

1
CA :

Four meshes were used in the computation, h = 0:5 for the coarsest mesh and

h = 0:0625 for the �nest mesh. The results are shown in the table.

Table 1. Errors Between u and u(1).

h 0.5 0.25 0.125 0.0625

jju�u(1)jjW 0.26d-01 0.56d-02 0.13d-02 0.31d-03

The average rate of convergence for this example is about h2:1 which is slightly

better than the rate given by the theorem.

Conclusions. We have presented an algorithm for discretizing three dimensional

div-curl systems in three dimensions. We proved uniqueness of the solution to

the discretized equations and an error estimate showing �rst order convergence in

general and second order for regular meshes. A basic numerical example was also

shown.
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