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ABSTRACT

Plane viscous channel 
ows are perturbed and the ensuing initial-value
problems are investigated in detail. Unlike traditional methods where trav-
eling wave normal modes are assumed for solution, this work o�ers a means
whereby completely arbitrary initial input can be speci�ed without having
to resort to eigenfunction expansions. The full temporal behavior, including
both early time transients and the long time asymptotics, can be determined
for any initial disturbance. E�ects of three-dimensionality can be assessed.
The bases for the analysis are: (a) linearization of the governing equations;
(b) Fourier decomposition in the spanwise and streamwise directions of the

ow and; (c) direct numerical integration of the resulting partial di�eren-
tial equations. All of the stability data that are known for such 
ows can
be reproduced. Also, the optimal initial conditions can be determined in
a straight forward manner and such optimal conditions clearly re
ect tran-
sient growth data that is easily determined by a rational choice of a basis for
the initial conditions. Although there can be signi�cant transient growth for
subcritical values of the Reynolds number using this approach, it does not
appear possible that arbitrary initial conditions will lead to the exception-
ally large transient amplitudes that have been determined by optimization
of normal modes. The approach is general and can be applied to other
classes of problems where only a �nite discrete spectrum exists, such as the
boundary layer for example.
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1 INTRODUCTION

The subject dealing with the fate of disturbances in well established

ows remains a major topic of 
uid mechanics. As the means of obtaining
quantitative results for any speci�c problem has improved, the number of
contributions in this area has grown almost without bounds. And, indeed,
almost every conceivable prototypical 
ow has been subjected to scrutiny
in this manner. The scheme is well conceived: introduce perturbations into
a de�ned basic 
ow, linearize the governing equations, and then determine
from the initial-value problem the resulting dynamics. In principle this can
be done but, in practice, it is a formidable task. Some of the di�culties entail
non self-adjoint and singular di�erential equations among other obstacles.
Even the use of the computer and numerical methods have not been easily
adaptable. Thus, the net result is that (almost without exception) it was
considered adequate if a 
ow was determined to be stable or unstable. This
was done by assuming a separable normal mode solution in the form of
traveling waves and then establishing the existence of at least one unstable
eigenvalue. No attention was directed to any particular initial-value or the
transient period of the dynamics. Indeed, this part of the evolution was not
thought to have any signi�cance and, in view of the complications involved
in the linear ordinary di�erential equations, it was left to speculation.

More recently the early transient period for the perturbations has been
shown to reveal that a superposition of decaying normal modes may grow
initially albeit decay as time goes on. Although the basic origins and recog-
nition of this type of response should properly be given to Kelvin (1887) and
Orr (1907a, 1907b), there is an ever widening probe being made; cf. Boberg
and Brosa (1988), Gustavsson (1991), Butler and Farrell (1992), Reddy and
Henningson (1993), or Trefethen et al. (1993) as major references. Brie
y, it
has been shown that transient growth can be signi�cant even for subcritical
values of the Reynolds number and therefore nonlinearity may ensue, mak-
ing an exponentially growing normal mode a moot point. In point of fact,
this sort of behavior is not hard to grasp because any non self-adjoint di�er-
ential equation will have eigenvectors that are not orthogonal and therefore
there can be algebraic behavior for early time. It is clear that the least
damped normal modes should be the ones that are dominant during this
early period.

Other approaches for demonstrating algebraic growth have been given
by Gustavsson (1979), Benney and Gustavsson (1981), and Criminale and
Drazin (1990). In the �rst case, Laplace transforms were used for the distur-
bance equations and algebraic behavior was found because there are branch
cuts needed for the inversion of the transforms; poles correspond to expo-
nential growth or decay. In the second work, it was shown that, if three-
dimensional disturbances are considered, then there can be a resonance be-
tween the normal modes of the Orr-Sommerfeld equation and those of the
Squire equation. Such resonance does occur and it is for damped expo-
nential modes. The last paper dealt with the existence of the continuous
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spectrum as well as the discrete normal modes but, again, it is algebraic
temporal behavior that results. The Laplace inversions of Gustavsson that
led to algebraic growth were also due to the continuous rather than the dis-
crete spectrum but, unlike the Criminale and Drazin presentation, general
initial-values were not taken into account.

The results of the various investigations that have been made for channel

ows suggest that the early transient growth can be extremely large (factors
of 20 to 1000) at subcritical values of the Reynolds number when consid-
ering optimal growth determined from variational techniques. It should be
emphasized that not one exponentially growing mode is involved in this
process and, although not explicitly stated, the implication is that no mat-
ter what may be the initial input, this exceptional growth will be present.
Such a premise is subject to scrutiny. Granted variational calculations will
assign values to the coe�cients of the modes of the expansion in terms of
the eigenfunctions, but such a determination may not be the same as for a
speci�c initial-value distribution used to determine the relative values of the
coe�cients of the eigenmodes. As outlined in Betchov and Criminale (1967)
and Drazin and Reid (1981), the use of the eigenfunctions in the initial-value
problem requires the adjoint di�erential equation in order to �x the coe�-
cients. Moreover, it is known Schensted (1960) that the set of such functions
is complete for channel 
ows and consequently there is no conceptual di�-
culty in the prescription. Lastly, there is no continuous eigenspectrum for
viscous channel 
ows. Thus, transient growth in these 
ows is due entirely
to the non orthogonal eigenvectors of the non self-adjoint di�erential equa-
tions. The optimal formulation is due to Farrell (1988), Butler and Farrell
(1992) and has been corroborated by Reddy and Henningson (1993). Up
to thirty eigenmodes were employed in these works with relative amplitudes
ranging from order one to one thousand. Typical output was a display of the
normalized kinetic energy of the perturbations. It is in terms of this quan-
tity that shows explicitly that transient growth leads to the large amplitudes
cited before there is eventual decay. The initial distributions used for the
optimal values are given in Farrell (1988) and Butler and Farrell (1992). In
terms of the initial-value problem this is important information and certainly
bears heavily on the possible physical realization. Examination of the initial
conditions that produce optimal growth show that the optimal initial con-
ditions for strictly two-dimensional disturbances have discernible structure
while those that produce optimal growth of three-dimensional disturbances
are rather nondescript. Thus it should be relatively easy to choose initial
conditions that approximate the three-dimensional optimal conditions while
some care must be taken to choose initial conditions which will approxi-
mate the optimal two-dimensional disturbance. This aspect of realization
of the optimal conditions is a major point of this study. Butler and Farrell
(1994) show that a threshold amplitude exists for optimally con�gured two-
dimensional initial conditions. For amplitudes above the threshold, transient
growth leads to a nonlinear evolution to quasi-steady �nite amplitude struc-
tures, and for amplitudes below the threshold, the decay rate for long time
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behaviour is predicted by the slowest-decaying Orr-Sommerfeld mode. The
optimization procedures using the eigenfunction expansions in these studies
are dependent on the fact that the discrete eigenfunctions form a complete
set and therefore are not directly applicable to a problem such as the bound-
ary layer where the complete set was shown by Salwen and Grosch (1981)
to be a linear combination of discrete and continuum eigenfunctions. Butler
and Farrell (1992) did study the boundary layer optimization problem by
using the channel 
ow solutions to represent the continuous spectrum as a
discrete set of modes. The solution procedure chosen here does not present
the same di�culties in generalization to a problem with a continuous spec-
trum since it does not depend on the expansion of an initial condition in
terms of its eigenfunctions.

The presentation of Gustavsson (1991) was somewhat di�erent. Here,
it was considered su�cient to take only one of the normal modes from the
Orr-Sommerfeld equation and combine this with six from the accompanying
Squire equation. In e�ect, this is an initial-value problem but extremely
limited. Similarly, a measure of the energy is displayed but with the concen-
tration on the energy gained by the Squire mode. The unknown coe�cients
here were determined by requiring the Orr-Sommerfeld mode to have an en-
ergy of unity at time zero. It was shown that, if there is su�cient obliquity
of the waves (nearly 90 degrees), the energy for the Squire mode can tran-
siently increase to almost a factor of 100. In this case, three-dimensionality
is crucial but this in no way makes it accessible as a method for realizing
large transient growth in an arbitrary initial-value problem. Gustavsson did
consider the e�ects of symmetrical and asymmetrical interaction of the two
sets of eigenfunctions. There are decidedly di�erent responses depending
upon which choice is made. In particular, a symmetric Orr-Sommerfeld
mode interacting with an asymmetrical Squire mode leads to the largest
amplitude for the energy. In every case, there is eventual decay after the
maximum as time advances for subcritical values of the Reynolds numbers.

Like the boundary layer, viscosity is critical to the perturbations in chan-
nel 
ows. Without a viscous 
uid, there is no instability in any of these

ows when cast in terms of normal modes. Case (1960) investigated plane
Couette 
ow in an inviscid 
uid and, by the use of Laplace transforms,
demonstrated that there are no normal modes at all, whether decaying or
growing. At the same time he also showed that there are other solutions
to this problem if one makes the proper analysis. The additional solutions
are those due to a continuous eigenspectrum. Although not covered to this
extent, plane Poiseuille 
ow must follow in like manner. Once the 
uid is
viscous, then the results are reversed, i.e., there is no continuous spectrum
for channel 
ows but it has been proven that there is an in�nite number of
normal modes and the set is complete (DiPrima and Habetler, 1969). The
boundary layer (see Gustavsson 1979, e.g) possesses both spectra because it
is a semi-in�nite problem. Parenthetically, however, it is interesting to note
that there are only a �nite number of normal modes for the boundary layer
(see Mack 1976; Grosch and Salwen 1978) with the number depending upon
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the value of the Reynolds number. Salwen and Grosch (1981) showed how
an arbitrary initial disturbance can be expanded in terms of the complete
set of discrete and continuum eigenfunctions, but determining an optimal
initial condition would be di�cult. It is only for in�nite Reynolds number
that an in�nite (all damped) set of normal modes is possible.

Physically, viscosity causes instability in much the same way that a
spring would be unstable if the spring force had a time delay. Mathe-
matically, it is a question of phasing of the perturbations. This is best
illustrated by considering the equation for the total kinetic energy of the
perturbations. The time rate of change for this energy depends upon two
essential terms: dissipation due to viscosity and production manifested by
one of the Reynolds stress components interacting with the mean 
ow to
transfer energy and over-come the viscous dissipation. In the case of chan-
nel 
ows this process is possible for Poiseuille but not for Couette 
ow. And,
the boundary layer is also unstable in these terms.

Because of the Squire theorem and the fact that a stability boundary was
thought to be su�cient, three-dimensionality per se was neglected because
it was recognized that purely two-dimensional disturbances had the largest
growth factors. Another often overlooked reason is the fact that the Orr-
Sommerfeld equation is only fourth rather than sixth order. This result is
fortuitous, makes for ease in the mathematics, but omits important physics.
The link to resolution of this problem is the Squire mode equation that is
coupled to the behavior of the Orr-Sommerfeld equation so long as there is
three dimensionality. It is this pair of governing equations that has formed
the bases for the cited studies in transient temporal behavior. Except for
the investigation of Gustavsson (1979) that uses the Laplace transform for
the boundary layer, the work has relied completely on solutions in terms of
normal modes. If the transient dynamics is to be important, then the e�ects
of speci�c initial conditions must be examined together with any optimum
strategy. Certainly, three-dimensionality must be treated in a thorough
manner. These aspects of the linear perturbation problem are the central
goals of this presentation. This is done with the use of numerical integration
of the governing partial di�erential equations. In no way is an expansion
in normal modes suggested but, at the same time, it will be seen that all
of the known results of classical stability theory as well as the optimization
problem can be reproduced. It is further stressed how important are the
details of the perturbation �eld, most notably the vorticity.

2 BASIC GOVERNING EQUATIONS

For plane viscous channel 
ows, the 
uid is taken as incompressible with
the basic 
ow parallel, U = U(y); V = W = 0. Then, the nondimensional
linearized equations of motion can be written as

@u

@x
+
@v

@y
+
@w

@z
= 0; (1)
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@u

@t
+ U

@u

@x
+
dU

dy
v +

@p

@x
= Re�1

"
@2u

@x2
+
@2u

@y2
+
@2u

@z2

#
; (2)

@v

@t
+ U

@v

@x
+
@p

@y
= Re�1

"
@2v

@x2
+
@2v

@y2
+
@2v

@z2

#
; (3)

and
@w

@t
+ U

@w

@x
+
@p

@z
= Re�1

"
@2w

@x2
+
@2w

@y2
+
@2w

@z2

#
: (4)

Here, Re = Uoh=� is the Reynolds number, where h is the channel half-
width, Uo the centerline velocity and � the kinematic viscosity. Time is
nondimensionalized by the advective time scale h=Uo. On using the Fourier
transformations de�ned with respect to x and z as

�v(�; y; 
; t) =
Z
1

�1

Z
1

�1

v(x; y; z; t)ei(�x+
z)dxdz; (5)

equations (1) to (4) become

� i(��u+ 
 �w) +
@�v

@y
= 0; (6)

@�u

@t
� i�U �u+ U 0�v � i��p = Re�1

"
@2�u

@y2
� ~�2�u

#
; (7)

@�v

@t
� i�U �v +

@�p

@y
= Re�1

"
@2�v

@y2
� ~�2�v

#
; (8)

and
@ �w

@t
� i�U �w � i
�p = Re�1

"
@2 �w

@y2
� ~�2 �w

#
; (9)

respectively, with U 0 = dU=dy and ~�2 = �2 + 
2.
The Squire transformation, written as

��u+ 
 �w = ~�~u (10)

� 
�u+ � �w = ~� ~w (11)

and combined with operations on (6) to (9) enables us to obtain the pair of
equations

�
@

@t
� i�U

� 
@2�v

@y2
� ~�2�v

!
+ i�U 00�v = Re�1

"
@4�v

@y4
� 2~�2

@2�v

@y2
+ ~�4�v

#
(12)

and �
@

@t
� i�U

�
~w = sin �U 0�v + Re�1

"
@2 ~w

@y2
� ~�2 ~w

#
(13)

where sin � = 
=~� and ~w is proportional to the normal vorticity component
(�!y = i~� ~w). The �rst term on the right hand side of (13) is called the vortex
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tilting term which acts as a forcing term to the normal vorticity component.
The vortex tilting term is a product of the mean vorticity in the spanwise
direction (!z = �U 0) and the perturbation strain rate (@v=@z), and for
a three dimensional disturbance, gives rise to the increase of the normal
vorticity component. It is clear that the solutions of (12) and (13) combined
with continuity and the Squire transformation are equivalent to solving (6)-
(9). Likewise, �p can be determined from (9). In either case, solutions of
the equations are subject to imposed initial conditions and the following
appropriate boundary conditions at the channel walls

�v(�1; t) =
@�v

@y
(�1; t) = ~w(�1; t) = 0: (14)

For the mean velocity, we shall consider both plane Poiseuille 
ow

U(y) = 1� y2

and plane Couette 
ow
U(y) = y:

To evaluate the other velocity components, the quantities �v and ~w are
�rst computed from (12) and (13), respectively. Then the Squire transfor-
mation (10)-(11) is inverted to give �u and �w

�u = �
i cos�

~�

@�v

@y
� sin � ~w; (15)

�w = �
i sin�

~�

@�v

@y
+ cos� ~w: (16)

By knowing the velocity components, the vorticity components can be deter-
mined in a straightforwardmanner by appealing to their de�nitions, yielding

�!x =
@ �w

@y
+ i
�v; (17)

�!y = �i
�u+ i� �w � i~� ~w; (18)

and

�!z = �i��v �
@�u

@y
: (19)

Finally, we remark here that, if one seeks solutions to (12) and (13)
of the form e�i!t, then (12) becomes the more familiar Orr-Sommerfeld
equation and (13) the Squire equation. Solutions of these equations will
yield classical normal modes and normally (i) transient dynamics and (ii)
e�ects of various initial conditions are ignored. At sub-critical Reynolds
numbers, where the normal modes are damped, transient behavior may be
extremely important. A variety of authors used eigenfunction expansions
to examine transient dynamics (e.g., Gustavsson, 1991; Butler and Farrell,
1992; Reddy and Henningson, 1993; as main references). In particular,
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since the eigenfunctions form a complete set (DiPrima and Habetler, 1969;
Herron, 1980), solutions to (12) and (13) were sought in the form

"
�v(y; t)
~w(y; t)

#
=
X
j

Aje
�i�jt

"
vj(y)
w
p
j (y)

#
+
X
j

Bje
�i�j t

"
0

wj(y)

#

where f�jg and f�jg are the eigenvalues of the Orr-Sommerfeld and Squire
equations, respectively, with the eigenvalues distinct. As already noted, ei-
ther (i) variational methods are then used to determine optimal growth; or
(ii) a �nite combination of eigenfunctions, though extremely limited, are
then chosen and their subsequent transient behavior followed. This is not
necessarily a weakness because an in�nite set is available but only a �nite
number have been used. An alternative, yet novel, approach is to solve the
system (12) and (13) directly by a simple numerical scheme. While this ap-
proach does not directly select the optimal initial conditions that provide the
optimal algebraic growth for a given set of parameters (~�; �; Re), it does al-
low one to follow rather easily the transient dynamics of any given prescribed
initial condition and to determine if optimal growth can be approximated by
realizable initial conditions. Also, simple maximization methods (see section
4.3) can be easily applied to the numerical solution in order to select the
optimal initial condition in a rational manner. Farrell and Moore (1992) also
integrated the governing equations for oceanic 
ows, but again their focus
was on determining an optimal initial condition by repeated integration of
the perturbation equations and its adjoint and not on the dynamics of spe-
ci�c initial conditions. Here we show that the optimal initial condition can
be determined in a straight forward manner which circumvents the necessity
of using the adjoint solution, is conceptionally easier to understand, and is
easier to implement than the adjoint method or the eigenfunction expansion
method. The approach, however, is not necessarily computationally faster.
Furthermore, this approach is more robust than employing eigenfunction
expansions since it can be applied to other classes of problems where only a
�nite number of normal modes exist; e.g., boundary layers, free shear layers
(see Criminale, et al. 1994 for related work on inviscid 
ows).

3 NUMERICAL SOLUTIONS

The partial di�erential equations (12) and (13) were solved numerically
by the method of lines. The spatial derivatives were center di�erenced on
a uniform grid within the channel while one-sided di�erences were used at
the walls. The resulting system was then integrated in time by a fourth-
order Runge Kutta scheme with all calculations done in double precision.
The results were checked for convergence by increasing the number of mesh
points, varying between 500 mesh points for low Reynolds numbers to a
maximum of 10,000 at larger Reynolds numbers. The table below shows the
numerically computed growth rate for plane Poiseuille 
ow as a function of
grid points for Re = 10; 000, ~� = 1 and � = 0o:
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GRID POINTS GROWTH RATE

500 0.003726

1000 0.003736

2000 0.003739

The exact value from Orszag (1971) is 0.00373967. The number of grid
points were su�cient to resolve the boundary layers near the walls. No ef-
fort was made to optimize the number of grid points by employing nonuni-
form meshes. If this were done, far less grid points would be needed. All
calculations presented in this paper represent converged solutions.

Before investigating the e�ects of various initial conditions and their
subsequent transient behavior, it was �rst instructive to compare for plane
Poiseuille 
ow numerically computed growth rates and eigenfunctions to
those of the Orr-Sommerfeld at super-critical Reynolds numbers. Figure
1(A) shows the growth rates obtained from the numerical solution of (12)
(shown as circles) and those obtained from the Orr-Sommerfeld equation
(shown as the solid curve) for Re = 10; 000 and � = 0o. The agreement is
excellent. The corresponding real and imaginary parts of the eigenfunctions
from both the numerical solution (solid) and the Orr-Sommerfeld solution
(dashed) are displayed in �gures 1(B) and 1(C), respectively, for the case
~� = 1 and � = 0o. Note that the two curves essentially lie on top of each
other. To demonstrate the strength of the procedure, �gure 2 shows similar
results but at Re = 106.

4 PERTURBATION ENERGY

As mentioned above, we are particularly interested in the e�ects of vari-
ous initial conditions and their subsequent transient behavior at sub-critical
Reynolds numbers. In order to examine the evolution of various initial
conditions, the energy density in the (~�; �) plane as a function of time is
computed. The energy density is de�ned as

E(t; ~�; �; Re) =
Z 1

�1

h
j�u2j+ j�v2j+ j �w2

j

i
dy: (20)

The total energy of the perturbation can be found by integrating (20) over
all ~� and �. A growth function can be de�ned in terms of the normalized
energy density, namely

G(t; ~�; �; Re) =
E(t; ~�; �; Re)

E(0; ~�; �; Re)
(21)

measures the growth in energy at time t for a prescribed initial condition at
t = 0.

Various initial conditions are used to explore transient behavior at sub-
critical Reynolds numbers. For the integration of (12) the initial conditions
for �v are provided in the table below; 
0 = 
0(�; 
).
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CASE �v(y; 0)

I 
0(1� y2)2

II 
0

�2
[cos� � cos(�y)]; � = n�

III 
0

�2
[cos� � cos(�y)]e

�y2=4�
p
4��

; � = n�

IV 
0y(1 � y2)2

V y
0

�2
[cos� � cos(�y)]e

�y2=4�
p
4��

; � = n�

Note that the �rst three cases correspond to symmetric initial conditions
while the last two are asymmetric. For the integration of (13) the initial
conditions for ~w are provided in the table below.

CASE ~w(y; 0)

i 0

ii 
1 cos(�0y); �0 = (2n � 1)�=2

iii 
1 sin(�1y); �1 = n�

The second initial condition is symmetric while the last is asymmetric. We
remark here that, in choosing these particular initial conditions, no attempt
was made to �nd an optimal initial condition that correspond to a maximum
transient growth. Also, particular eigenmodes are not investigated since
these were studied previously by Gustavsson (1991). Rather, reasonable ini-
tial conditions consisting of polynomials and transcendental functions were
constructed and their subsequent transient behavior followed. The above
set of initial conditions is general enough that it should be su�cient to test
whether the optimal transient growth previously determined is realizable or
not.

4.1 TWO-DIMENSIONALITY

In this section results are presented for plane Poiseuille 
ow with ~� =
1:48, � = 0o and a Reynolds number of Re = 5; 000, and for plane Couette

ow with ~� = 1:21, � = 0o and Re = 1; 000. For plane Poiseuille 
ow,
this Reynolds number is sub-critical and thus the growth function G will
eventually decay in time to zero. Because plane Couette 
ow is linearly
stable, G will always eventually decay. These values correspond to those
found by Butler and Farrell (1992) who showed that these values are the
best 2-D optimal using variational techniques in the sense that they give the
largest algebraic growth.

The growth function is plotted as a function of time in �gure 3 for plane
Poiseuille 
ow and in �gure 4 for plane Couette 
ow. In both �gures, the
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curves in (A) correspond to all possible combinations of the initial conditions
for �v and ~w with 
0 = 
1 = � = n = 1. Except for some minor algebraic
growth in the case of plane Couette 
ow, the growth function decays. This
decrease in the amplitude of the maximum growth is somewhat unexpected
since previous work shows that by considering optimal initial conditions that
substantial growth can occur even for these two dimensional disturbances.
Therefore, this issue was pursued further by considering initial disturbance
velocity pro�les with more zeroes which, in some sense, corresponds to the
higher eigenmodes whose inclusion in the optimization analysis was neces-
sary to achieving the high growth rates. Figures 3(B) and 4(B) are for the
initial condition (II,i) with various values of n. For plane Poiseuille 
ow and
with n = 7 the maximum value is 12, and for plane Couette 
ow and with
n = 3 the maximum value is 4.8. In both cases, moderate transient growth
is observed, with the maximum growth being lower than that obtained by
Butler and Farrell (1992). It is interesting to note that an \optimal" initial
disturbance will be found for both the Couette 
ow and the Poiseuille 
ow
that is consistent with the optimal conditions determined by Butler and Far-
rell (section 4.3). For Couette 
ow, the maximum optimal energy growth for
this choice of ~� and � occurs at t = 8:7. Here, we observe that the largest
growth is for the initial condition with n = 3 and the maximum occurs at
time t = 7:8. The same can be said of Poiseuille 
ow. The optimal initial
conditions produce a maximum at time t = 14:1 and the largest growth here
is for n = 7 that has a maximum at time t = 14:4. It is easy to see how these
solutions for di�erent values of n can be combined to produce an optimal
solution. This issue is explored further in section 4.3.

4.2 THREE-DIMENSIONALITY

In this section results are presented for plane Poiseuille 
ow with ~� =
2:044, � = 90o and a Reynolds number of Re = 5; 000, and for plane Couette

ow with ~� = 1:66, � = 90o and Re = 1; 000. These values appear in
Butler and Farrell (1992) and the choice of ~� corresponds to the streamwise
vortex with largest growth. For plane Poiseuille 
ow the global optimal
coincides with the streamwise vortex but not so for Couette 
ow. In the
latter case, the global optimal was shown to be at � � 88o. Here, we are
only interested in presenting two representative cases. In all calculations we
set 
0 = 
1 = � = n = 1. Changing the sign of 
1 produced only very
minor changes in the solutions. Numerical experiments were also carried
out for various combinations of n and �. In all cases, the largest value of
G are for the cases presented below, namely n = � = 1, and therefore only
these cases are presented here.

The growth function is plotted as a function of time in �gure 5 for plane
Poiseuille 
ow and in �gure 6 for plane Couette 
ow. The curves in (A) cor-
respond to the initial condition (i) for ~w, while the curves in (B) correspond
to (ii) and the curves in (C) correspond to (iii). Comparing �gures 3 and 5
for the case of plane Poiseuille 
ow, and �gures 4 and 6 for the case of plane
Couette 
ow, we see that the transient growth is signi�cantly larger for three

10



dimensional disturbances than those for two dimensional disturbances. For
plane Poiseuille 
ow, the maxima of the symmetric disturbances (labeled
I, II, and III) and the maxima of the asymmetric disturbances (labeled IV
and V) in �gure 5(A) are within 90% of the global maxima reported by
Butler and Farrell (1992). They point out that the presence of streamwise
vorticity, while passive to nonlinear dynamics (Gustavsson, 1991), can cause
the development of streaks which may themselves be unstable to secondary
instabilities or possibly produce transient growth of other types of pertur-
bations. For plane Couette 
ow, the maxima of the symmetric disturbances
(labeled I, II, and III) in �gure 6(A) are within 97% of the maxima reported
by Butler and Farrell, while the maxima of the asymmetric disturbances
(labeled IV and V) are signi�cantly smaller. The signi�cance of this is that
any initial condition with �v velocity symmetric and no initial vorticity will
give near optimum results when three-dimensionality is considered. This
easily explains the growth observed by Gustavsson (1991) when a limited
normal mode initial condition was chosen.

Since this large transient growth for three dimensional disturbances is
a direct result of the growth of vorticity, it is necessary to ask whether the
growth is a special case because the initial vorticity is neglected, or will
the growth in energy remain once the energy of non-zero initial vorticity
is included in the calculation. Note in �gures 5 and 6 that the symmetric
disturbances all behave in a similar manner when the initial condition for
~w is given by (i), but di�er substantially when conditions (ii) or (iii) are
used. It is clear that the substantial growth in energies shown in �gure 5(A)
is directly attributable to the generation of normal vorticity through the
coupling term in equation (13). This produces growth factors of 3900-4200
for symmetric initial pro�les (I, II, and III) and growth factors of 2200-2400
for anti-symmetric initial pro�les (IV and V). The responses change signif-
icantly when the energy of the initial pro�les (ii) and (iii) are included in
the initial normalization of the growth factor G. The responses to initial
pro�les I and IV are lowered but still show signi�cant growth. The initial
energy of II and IV are larger than those of (ii) and (iii). However, when the
energies of the initial normal vorticities (ii) and (iii) are signi�cantly larger
or comparable to the energies of the initial velocity pro�les II, III, and V, the
substantial transient growth as measured by the total energy can decrease
by a factor of ten. This is not to say that the transient growth shown in (A)
is not also present in (B) and (C), but that the normalization in (B) and (C)
re
ects a more proper measure of growth that includes the total energy of
an arbitrarily chosen initial disturbance and not just an optimal one. This
suggests that the algebraic growth as measured here and in previous work
is extremely sensitive to the presence of any initial normal vorticity, specif-
ically to the inclusion of the energy associated with the initial streamwise
vorticity in normalization of the growth factor. Vorticity components are
presented in �gure 7 for plane Poiseuille 
ow with initial conditions given by
(II,i) and (II,ii), respectively, showing that the maxima in time of the nor-
mal and spanwise vorticity components decrease when the normal vorticity
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component is initially non-zero. The streamwise component decays and is
una�ected by this change of initial conditions.

Table 1: Maximum values at various Re corresponding to the initial condi-
tion (I,i) for plane Poiseuille 
ow with ~� = 2:044 and � = 900.

Re t� G� t�=Re G�=Re2

500 41.0 45.6 0.0820 1.824x10�4

1000 82.0 181.9 0.0820 1.819x10�4

2000 164.0 726.9 0.0820 1.817x10�4

4000 327.0 2907.0 0.0818 1.817x10�4

5000 409.0 4542.0 0.0818 1.817x10�4

Table 2: Maximum values at various Re corresponding to the initial condi-
tion (I,i) for plane Couette 
ow with ~� = 1:66 and � = 900.

Re t� G� t�=Re G�=Re2

500 69.0 291.4 0.1380 1.165x10�3

1000 139.0 1165.2 0.1390 1.165x10�3

2000 277.0 4660.7 0.1385 1.165x10�3

4000 554.0 18642.4 0.1385 1.165x10�3

8000 1109.0 74569.6 0.1386 1.165x10�3

Finally, shown in Tables 1 and 2 are the times (t�) for which the growth
function attains its maximum (G�) at various Reynolds numbers for plane
Poiseuille and plane Couette 
ow, respectively. Note that the time scales
as Re while the maximum scales as Re2, as previously pointed out by Gus-
tavsson (1991).

4.3 OPTIMAL INITIAL CONDITIONS

A mechanism for rapid transient growth when the initial conditions is
expressed as a sum of the eigenfunctions has been explained by Reddy and
Henningson (1993). The concept is that a group of eigenfunctions are nearly
linearly dependent so that, in order to represent an arbitrary disturbance
(say), then it is possible that the coe�cients can be quite large. Now, since
each one of these nearly linearly dependent eigenfunctions have di�ering
decay rates, the exact cancellations that produce the given initial distur-
bance might not persist in time and thus signi�cant transient growth can
occur. This process can (and is) taken a step further in order to determine
the optimal initial condition (still expressed as a sum of the non-orthogonal
eigenfunctions) that produces the largest relative energy growth for a certain
time period. This process is completed and it does have the feature that the
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nearly linearly dependent eigenfunctions are multiplied by coe�cients three
orders of magnitudes greater than the others. This optimal initial condition
produces a growth factor of about 20 for the two-dimensional disturbance
in Poiseuille 
ow. However, this optimal growth is nearly destroyed by not
including the �rst eigenfunction (growth drops to a factor of 6 rather than
twenty) which seems to indicate that the prior explanation of (initial) ex-
act cancellations by the nearly linearly dependent eigenfunctions is not the
entire mechanism. Butler and Farrell (1992) also calculated optimal initial
conditions in terms of a summation of the eigenfunctions (although they
put no particular emphasis on the importance of using this approach) and
re-iterated the importance of nearly linear dependence of the modes to the
transient growth. Butler and Farrell (1992) also explained the transient
growth of the optimal initial conditions in terms of the vortex-tilting mech-
anism and the Reynolds stress mechanism, since these (physical) arguments
apply no matter what the solution method; perhaps in the end they should
be preferred to those based strictly on the mathematical procedure, espe-
cially since owing to the non-orthogonality and near linear dependence of
the eigenfunctions. The resulting optimal initial disturbance is di�cult to
visualize physically for someone who is not privy to the calculations.

Using the method that we have been following, an optimization proce-
dure can be determined without resorting to a variational procedure requir-
ing the numerical determination of the eigenfunctions. Now for these channel

ows, the di�culties of calculating the eigenvalues and eigenfunctions are
well known. A group of eigenfunctions are nearly linearly dependent and the
whole set is not orthogonal. Also, the issue of degeneracies in the parameter
space must be considered. Thus, an attempt to write a speci�c initial con-
dition as an eigenfunction expansion (which also requires the determination
of the eigenfunctions to the adjoint equation) runs into di�culties for the
uninitiated. In this paper, we show that calculating growth for particular
initial conditions does not present great di�culty. Furthermore, a closer
inspection of initial condition II suggests that each of these disturbances is
in essence a single Fourier mode of an arbitrary initial condition. If one
were to consider an arbitrary odd function for the ~u velocity satisfying the
boundary conditions written in terms of a Fourier sine series, then the initial
condition in the �v velocity is given by II. Thus, if one wished to determine
an optimal initial disturbance, a maximization procedure could be applied
to an arbitrary linear combination of these modes, all of which are initially
orthogonal and linearly independent. Clearly, if one wanted to also include
non-zero initial vorticity in such an optimization scheme it would not be
di�cult to include (and these initial conditions are of course very important
when modeling real disturbances as opposed to optimal disturbances). The
results presented here show that, if included in the optimization procedure,
the initial vorticity modes would not contribute to the optimal solution for
the cases considered.
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To start our optimization scheme, we consider the total solution ~u = (�u; �v; �w)
to be the sum

~u(y; t) =
NX
k=1

(ak + ibk)~uk(y; t)

where each of the vectors ~uk(y; t) represents a solution to equations (12) and
(13) subject to the initial conditions

~u(y; 0) =

8<
:

cos� sin k�y
i~�
k�
(cos k� � cos k�y)
sin� sin k�y

9=
;

In order to maximize the growth function, it is su�cient to maximize the
energy

E(t) =
Z 1

�1
~u(y; t) � ~u�(y; t) dy

subject to the constraint
E(0) = 1:

Therefore, we use Lagrange multipliers to maximize the function

�G(t) =
Z 1

�1
~u(y; t) � ~u�(y; t) dy� �

�Z 1

�1
~u(y; 0) � ~u�(y; 0) dy� 1

�

which requires

@ �G

@ak
= 0;

@ �G

@bk
= 0; k = 1; 2; . . . ; N:

The set of equations thus derived produce a 2N �2N generalized eigenvalue
problem. A search over the eigenvectors gives the initial condition with
initial unit energy that maximizes the function �G at time t.

To illustrate the optimization procedure, we perform the calculations for
the two cases reported by Butler and Farrell (1992). The �rst is the compu-
tation of the two-dimensional optimal for ~� = 1:48, � = 0o and Re = 5; 000.
In �gure 8(A) we show the growth factor at t = 14:1 for each individual mode
as well as for the optimal solution for various values of N . The convergence
as N ! 1 is nicely illustrated; compare to Reddy and Henningson (1993),
e.g. In �gure 8(B) the magnitudes of the coe�cients which produce the op-
timum with N = 20 are shown. There are no surprises. Each coe�cient is of
reasonable size, with the largest coe�cient being a factor of ten greater than
the �rst coe�cient, and not a factor of a thousand as is the case when using
eigenfunction expansions. The magnitudes peak for n = k; 7 and 8 which
could be easily predicted from the previous graphs for the responses to each
individual mode. For completeness the initial velocity pro�les are shown in
�gure 9. These are consistent with the the initial perturbation streamfunc-
tion contour plots shown in Butler and Farrell (1992). A similar calculation
could be made for Couette 
ow but is unnecessary since the relevant infor-
mation is easily determined by examination of �gure 4(B). The magnitudes
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of the coe�cients which produce the optimal growth at t = 8:7 peaks be-
tween modes 3 and 4, and converge quickly as N !1. The resulting initial
condition is consistent with the initial perturbation streamfunction contour
plots shown in Butler and Farrell (1992) for the same case. The second cal-
culation is for the optimal three-dimensional disturbance. The parameters
chosen are Re = 5; 000, ~� = 2:044 and � = 90o. The initial conditions that
produce a maximum growth at t = 379 are found. The results are shown
in �gure 10, and the composition of the initial conditions in terms of the
modes chosen here could be easily determined from the individual responses
of each mode. The key to this observation is that the chosen modes are
not nearly linearly dependent as are the eigenfunctions and indeed provide
a rational and easily understood basis for the calculation of arbitrary initial
conditions.

It must be re-iterated that, although it is possible and conceptually easy
to reproduce the optimal initial conditions that have been previously found,
the maximum transient growth is only a measure of what is possible and
not what will actually occur as has been the di�culty in experiments. It is
at least as important to investigate whether such large growth is possible
for arbitrary initial conditions. In this regard, the results presented here
produce a mostly negative answer to this question. For two-dimensional
disturbances in Poiseuille 
ow, the transient growth observed for arbitrarily
chosen initial conditions using this approach are, at best, only 25% of the
optimal. When considering a �xed wavelength ~� and a �xed obliqueness �,
it is seen that very large relative energy growth of the perturbation can be
observed in Poiseuille 
ow for oblique disturbances with arbitrary velocity
pro�les restricted to having zero initial normal vorticity, but the relative
energy growth quickly decreases when arbitrary disturbances are combined
with initial normal vorticity. Similar results are found for Couette 
ow.

5 CONCLUSIONS

Plane Poiseuille 
ow and plane Couette 
ow in an incompressible 
uid
have been investigated subject to the in
uence of small perturbations. In-
stead of using the techniques of classical stability analysis or the more re-
cent techniques involving eigenfunction expansions, the approach has been
to �rst Fourier transform the governing disturbance equations in the stream-
wise and spanwise directions only and then solve the resulting partial dif-
ferential equations numerically by the method of lines. Unlike traditional
methods where traveling wave normal modes are assumed for solution, this
approach o�ers a means whereby completely arbitrary initial input can be
speci�ed without having to resort to the complexity of eigenfunction ex-
pansions. Thus, arbitrary initial conditions can be imposed and the full
temporal behavior, including both early time transients and the long time
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asymptotics, can be determined. All of the stability data that are known for
such 
ows can be reproduced. Finally, an optimization scheme is presented
using the orthogonal Fourier series and all previous results using variational
techniques and eigenfunction expansions are reproduced.

The bene�t of this novel approach is clear: it can be applied to other
classes of problems where only a �nite number of normal modes exist, such
as the boundary layer. In addition, this numerical approach has recently
been successfully applied to free shear 
ows in an inviscid 
uid (Criminale
et al., 1994). These concepts are being extended to the Blasius boundary
layer in an incompressible or compressible medium.
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7 FIGURE CAPTIONS

Figure 1. (A) Plot of growth rates as a function of wavenumber �. The cir-
cles corresponds to the numerically computed values from the partial
di�erential equation, and the solid curve corresponds to the growth
rate computed using the Orr-Sommerfeld equation. (B) The real part
and (C) the imaginary part of the eigenfunction as a function of y for
� = 1. Results for plane Poiseuille 
ow with � = 0o and Re = 104.

Figure 2. (A) Plot of growth rates as a function of wavenumber �. The cir-
cles corresponds to the numerically computed values from the partial
di�erential equation, and the solid curve corresponds to the growth
rate computed using the Orr-Sommerfeld equation. (B) The real part
and (C) the imaginary part of the eigenfunction as a function of y for
� = 0:44. Results for plane Poiseuille 
ow with � = 0o and Re = 106.

Figure 3. Plot of the growth function G as a function of time for various
initial conditions. Results for plane Poiseuille 
ow with ~� = 1:48,
� = 0o, and Re = 5; 000.

Figure 4. Plot of the growth function G as a function of time for various
initial conditions. Results for plane Couette 
ow with ~� = 1:21, � =
0o, and Re = 1; 000.

Figure 5. Plot of the growth function G as a function of time for various
initial conditions. Results for plane Poiseuille 
ow with ~� = 2:044,
� = 90o, and Re = 5; 000.

Figure 6. Plot of the growth function G as a function of time for various
initial conditions. Results for plane Couette 
ow with ~� = 1:66, � =
90o, and Re = 1; 000.

Figure 7. Plot of the vorticity components as a function of time for the
initial conditions (A) (II,i) and (B) (II,ii). Results for plane Poiseuille

ow with ~� = 2:044, � = 90o, and Re = 5; 000.

Figure 8. (A) Plot of the growth function G at t = 14:1; individual mode
results denoted by �; cumulative results from optimization procedure
denoted by �. (B) Plot of the magnitude of the coe�cients ak + ibk
from optimization procedure for N = 20. For plane Poiseuille 
ow
with ~� = 1:48, � = 0o, and Re = 5; 000.

Figure 9. Plot of velocities for plane Poiseuille 
ow from optimization
procedure with N = 20, ~� = 1:48, � = 0o, and Re = 5; 000. (A)
�ur (solid), �ui (dashed) at t = 0; (B) �vr (solid), �vi (dashed) at t = 0;
(C) �ur (solid), �ui (dashed) at t = 14:1; (D) �vr (solid), �vi (dashed) at
t = 14:1.
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Figure 10. (A) Plot of the growth function G at t = 379:0; individual mode
results denoted by �; cumulative results from optimization procedure
denoted by �. (B) Plot of the magnitude of the coe�cients ak + ibk
from optimization procedure for N = 20. For plane Poiseuille 
ow
with ~� = 2:044, � = 90o, and Re = 5; 000.
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