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Abstract

We present a new numerical method for calculating an evolving 2-D Hele-Shaw in-

terface when surface tension e�ects are neglected. In the case where the 
ow is directed

from the less viscous 
uid into the more viscous 
uid, the motion of the interface is

ill-posed; small deviations in the initial condition will produce signi�cant changes in

the ensuing motion. This situation is disastrous for numerical computation, as small

round-o� errors can quickly lead to large inaccuracies in the computed solution. Our

method of computation is most easily formulated using a conformal map from the 
uid

domain into a unit disk. The method relies on analytically continuing the initial data

and equations of motion into the region exterior to the disk, where the evolution prob-

lem becomes well-posed. The equations are then numerically solved in the extended

domain. The presence of singularities in the conformal map outside of the disk intro-

duces speci�c structures along the 
uid interface. Our method can explicitly track the

location of isolated pole and branch point singularities, allowing us to draw connec-

tions between the development of interfacial patterns and the motion of singularities

as they approach the unit disk. In particular, we are able to relate physical features

such as �nger shape, side-branch formation, and competition between �ngers to the

nature and location of the singularities. The usefulness of this method in studying the

formation of topological singularities (self-intersections of the interface) is also pointed

out.
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1 Introduction

The displacement of a viscous 
uid by a less viscous 
uid in a Hele-Shaw cell has been

the subject of intense investigation over the last decade, mainly due to newly discov-

ered mathematical analogies with dendritic crystal growth, directional solidi�cation,

and electro-chemical growth. The original motivation behind the pioneering work of

Sa�man & Taylor [36] was the analogy to displacement in porous medium. Reviews

by Sa�man [38], Bensimon, Kadano�, Liang, Shraiman, & Tang [5], and Homsy [16]

summarize the state of a�airs as of the mid-eighties, while some of the the more recent

developments are reviewed by Pelce [31], Kessler, Koplik, & Levine [22], Howison [21],

and Tanveer [42] from a range of di�erent perspectives.

In this paper, we shall limit our investigations to channel 
ow, although our numer-

ical method is quite general, and can be applied to other geometries. The advantage

of this restriction is that our description can be speci�c. Moreover, the phenomena

displayed in channel 
ow have been studied extensively, and are representative of other

Hele-Shaw 
ows.

A steadily advancing 
at interface in a channel is unstable to perturbations when

driven by the less viscous 
uid. The perturbations grow into �ngers, but the subse-

quent behavior depends on the relative strength of capillary e�ects, measured by the

dimensionless number B = �b2=(12�V a2). Here � is the surface tension coe�cient, b

is the gap width of the cell, a is the channel width, V is the speed of displacement well

in front of the interface, and � is the viscosity of the more viscous 
uid (the viscosity of

the less viscous 
uid is assumed negligible). Numerical computations by Tryggvasan

& Aref [45, 46], DeGregoria and Schwartz [9], Bensimon [6], and Meiburg and Homsy

[27] show competition between �ngers resulting in the emergence of a single steady

�nger, provided B is greater than about 0.0004y (but not greater than Bc = 0:025

otherwise the interface is stabilized by capillary e�ects). For still smaller B, DeGre-

goria and Schwartz [9, 10] and Bensimon [6] �nd that the �nger spontaneously splits;

this can be induced for higher values of B by introducing perturbations at the tip,

yThere is a range in B, depending on the level of noise in an experiment or numerical calculation,

in which a transition occurs between steadily moving �ngers and continual unsteady motion. A typical

range is 0:0005 > B > 0:0002. We have taken 0.0004 as a representative value.
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even with small amplitude. Experiments also reveal the emergence of tip splitting and

side-branching instabilities (Park & Homsy [28], Tabeling, Zocchi, & Libchaber [41]).

Bensimon [6] provides numerical evidence supporting heuristic arguments that the size

of the perturbation triggering instability decreases with B. The computations of Dai

and Shelley [8] (in the circular geometry) also show great sensitivity to the level of

numerical precision when the surface tension coe�cient is small. For small enough B,

even noise during experiments can be large enough to set o� a pattern of continual

tip-splitting and �nger competition ( Maxworthy [26], Arneodo, Couder, Grasseau,

Hakim & Rabaud [2]). Indeed, when capillary e�ects are very small, it appears that

the pattern is fractal (Maxworthy [26], Kopf-Sill & Homsy [23], Arneodo et. al. [2]).

Detailed understanding of this unsteady behavior is limited. In particular, the

numerical work has not produced a clear understanding of the asymptotic trends as

B ! 0: Unfortunately, the inclusion of surface tension in the usual mathematical

model makes theoretical studies very di�cult. Instead a large body of knowledge has

been developed for the initial-value problem when B = 0. For example, Gusta�son

[13, 14] has rigorously proved the existence of a solution for �nite time starting with

analytic initial data. Earlier, Galin [11] and Polubarinova-Kochina [32] considered

the mathematically identical problem of the Darcy model for ground water 
ow and

devised analytical techniques to obtain exact solutions for a class of initial conditions.

These were apparently well-known in the Russian literature (see Hohlov [15] and How-

ison [21]). Exact solutions due to Sa�man [37], Howison [18, 19, 20] and Shraiman

& Bensimon [39] can be seen as applications of these techniques though these results

were obtained without knowledge of the earlier Russian work. Howison [21] summa-

rizes the relation between the di�erent techniques. Within the class of known exact

solutions, there are �nger patterns that exist for all times and exhibit behavior similar

to experimental observation (Patterson [30]). Further, there are solutions (Shraiman

& Bensimon [39]) that exist only for a �nite time and culminate in a zero angled cusp

at the interface. Howison [19] uses the class of known exact solutions to point out that

the initial-value problem is ill-posed; it is possible to choose an initial condition for

which the solution exists for all times, whereas there is a neighboring initial condition

for which the interface develops a cusp after a �nite time.
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In essence, these theoretical results use a conformal map z(�; t) which maps the

interior of a unit semi-circle in the � plane to the physical 
ow domain of a channel

(see Figure 1). The location of the free surface at a time t is given by z(�; t) =

x(�; t)+iy(�; t) for � = ei� on the arc of the semi-circle. The equation for the evolution

of (x(�; t); y(�; t)) results from the usual application of the kinematic and dynamic

conditions at the interface. The symmetry in the problem allows us to re
ect the

solution about the real axis. In essence, we include a mirror image of the channel

so that the interface may be considered periodic. Thus, the conformal map must be

analytic inside the unit disk, aside from a logarithmic singularity at � = 0, but it

may have singularities and zeros outside it. These can move towards the boundary

of the unit disk, j�j = 1. In particular, zeros may reach the boundary in �nite time,

causing a cusp to form on the interface. The origin of ill-posedness, then, is that small

perturbations can introduce a zero or a singularity in z� near the unit disk, which

subsequently moves towards it and reaches it quickly. Following the work of Richardson

[35] and Lacey [25], Tanveer [43] showed that all singularities, no matter what type,

will move towards the unit disk, while preserving their type. Indeed, we surmise

that round-o� error in traditional numerical calculations introduces singularities at

some distance from j�j = 1; these subsequently approach the unit disk and lead to

the random pattern of tip-splitting, side-branching and �nger competition seen in

computations for increasingly small B.

Ideally, one would like to understand the Hele-Shaw dynamics for a small non-zero

B perturbatively, thus exploiting the simpler B = 0 case. There are several hurdles

in accomplishing this. One is the ill-posedness of the B = 0 problem in the physical

domain j�j � 1. Another is the fact that information in the B = 0 problem is not

complete. We do not have an exact solution to the general initial value problem, nor

do we have a detailed understanding of the motion of singularities. Furthermore, it

is not known how to numerically compute solutions to the B = 0 problem e�ectively.

Conventional numerical simulation in the physical 
ow domain j�j � 1 su�ers from

uncontrolled growth of round-o� errors (see Aitchison & Howison [1]). Employing a

�ltering procedure such as that used by Krasny [24] in the Kelvin-Helmholtz instability

(another ill-posed problem) allows simulations in the physical domain to proceed. Still,

as is demonstrated by Dai & Shelley [8], the choice of parameterization has a strong
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e�ect on the accuracy of the computation. Moreover, a good parameterization is

very dependent upon the initial data. For data with a general collection of zeros and

singularities, reliable long time calculations in the physical domain become extremely

di�cult.

In a recent development, Tanveer [43] has been able to demonstrate that analyti-

cally extending the initial value problem for z(�; t) into the region exterior to the unit

disk leads to a well-posed evolution problem. It is important to note that when the

initial interface location is known only to a �nite precision, initial data z(�; 0) in the

extended region j�j > 1 cannot be obtained in a well-posed manner. In e�ect, the

ill-posedness of the dynamics is transfered to the ill-posedness of extending the data

from j�j = 1 to j�j > 1. Nevertheless, when data is speci�ed in j�j > 1 (say, with z(�; 0)

given in closed form) the interface evolves without sensitivity to initial conditions.

Tanveer's observation addresses the �rst hurdle mentioned above. In this paper,

we address the second hurdle by presenting a numerical method which e�ciently solves

the initial value problem in the expanded domain when B = 0. Our work extends the

method, developed by Baker & Tanveer [4], to include the trajectories of singularities

of the form

z� � A(t) (� � �s(t))
� ; � 6= 0; 1; 2; . . . (1)

explicitly in the complex plane � when B = 0. Thus we are able to assess directly

the impact of the close approach of pole and branch point singularities to j�j = 1.

We do �nd that singularities induce tip-splitting and side-branching, and that the

relative strength of the singularities control �nger competition. Moreover, our studies

draw connections between the parameters specifying the singularities and the result-

ing physical behavior. In other words, for given initial data we are able to predict

the outcome from knowledge about the initial singularities in j�j > 1. Within this

framework, comparisons with experimently observed features are possible by studying

a random ensemble of initial conditions in j�j > 1, subject to the constraint that they

describe the same initial interface, up to some `experimental' error.

Beside the explicit treatment of singularities, there is another crucial ingredient in

our method. An analytic function, such as a conformal map, is determined completely

by its values on a closed curve. Instead of advancing the conformal map on j�j = 1 in
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time as in standard boundary integral methods, our method advances the conformal

map on a much larger circle. The interpolation of the conformal map to j�j = 1 is

then a well-posed operation. In essence, knowledge of the conformal map on a much

larger circle corresponds to knowledge of the conformal map on j�j = 1 to a higher

degree of precision. In contrast, extrapolation of the conformal map to a larger circle

is an ill-posed operation, an operation not to be attempted numerically. Since our

method uses the discrete Fourier transform to evaluate Laurent series, our results are

spectrally accurate and can be performed in O(N log N) operations. Furthermore,

explicit treatment of the nearest singularities helps avoid point crowding typical of

conformal maps.

There are several limitations to our method. First, there is the matter of the initial

data. We require that all singularities of z� in the extended domain be isolated branch

points or poles. This rules out some types of initial data; for example, structures

such as natural boundaries or essential singularities are not allowed in the extended

domain. Nevertheless, the kinds of data we do allow produce a wide range of interfacial

features such as tip-splitting, side-branching and �nger competition which are similar

to experimental observations.

The second limitation is that, at present, our method is restricted to the zero

surface tension problem. Given this, it is important to discuss the relationship between

B = 0 solutions and those for B > 0. The well-posed formulation of the B = 0

problem allows the e�ects of small surface tension to be addressed perturbatively. It

turns out that, at the initial time, surface tension is a regular perturbation except in

the neighborhood of zeros and certain singularities of z� . Tanveer [43] has examined

the e�ect of small surface tension on isolated singularities in the initial data of the

form (1).z Capillary e�ects on singularities with � � �4=3 cause only a regular

perturbation. Their powers are unchanged but their speed and strengths A(t) are

modi�ed slightly by terms proportional to B. Singularities with �4=3 < � < �1=2

are immediately transformed into a localized cluster of�4=3 branch point singularities,

though the behavior (1) is still relevant in an outer asymptotic sense. Thus, for times

much less than 1=B the interface behaves as though it is una�ected by surface tension,

zOur use of � for the power corresponds to Tanveer's [43] choice of ��.
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provided these singularities do not come within a distance O(B
1

2+� ) from j�j = 1 and

zeros in z� are far from the unit disk.x For initial conditions with zeros present, recent

evidence (Siegel, Tanveer, & Dai [40]) shows that small surface tension e�ects can

signi�cantly perturb the interface in O(1) time. This can happen even when the zeros

do not impinge on the unit disk. The surface tension e�ects occur in predictable ways

when a localized cluster of �4=3 singularities created out of an initial zero (termed

daughter singularity by Tanveer [43]) come within an O(B1=3) neighborhood of the

unit disk. However, there are initial conditions for which daughter singularity e�ects

do not occur in O(1) time. Our computations determine the leading order interfacial

shapes in such cases. Perhaps more importantly, the method presented here provides

a means to determine if and when the zero surface tension evolution of the interface

deviates from the small surface tension evolution.

In the next section, we describe the equations upon which our method is based.

The explicit treatment of singularities is discussed in Section 3. Then we describe the

numerical method in Section 4. In Section 5, we present tests of our method, and

some typical results. Our conclusions are discussed in Section 6.

2 The Equations of Motion

In this section we present the equations which govern interfacial 
ow in a Hele-Shaw

cell without the details of their derivation. We will follow closely the formulation in

Tanveer [43]. Our discussion will be limited to 
ow in the channel geometry. For the

equivalent formulation in a radial geometry, see Tanveer [43].

Consider a Hele-Shaw cell of in�nite length and �nite width a in which air of

negligible viscosity is pushing a viscous, incompressible liquid. Introduce the conformal

map z(�; t) which takes the interior of a unit semi-circle in the � plane into the viscous


uid region of the channel, which lies in the z plane. The circular arc j�j = 1 is mapped

to the interface, and the diameter is mapped to the channel walls. A schematic of the

mapping is provided in Figure 1. Note that we set the width a = 2.

xWhen singularities are initially O(1) distance from the unit disk, they can move to within O(B
1

2+� )

in O(lnB�1) time.
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The functional form of the conformal map is given by

z(�; t) = �
2

�
ln � + i+ f(�; t) (2)

where f is analytic in an open set which contains the unit semi-circle. The analyticity

of f on the circular arc guarantees the smoothness of the interface. We require that

Imffg = 0 (3)

on the real diameter of the semi-circle to satisfy the condition that z maps this diameter

to the channel walls. In addition, we assume that z� 6= 0 in a region containing the

unit semi-circle. The Schwartz re
ection principle then implies that f is analytic and

z� 6= 0 for j�j � 1.

The 
uid velocity u, averaged across the plate gap, satis�es Darcy's law

u =
�b2

12�
rp

where � is the viscosity, b is the plate gap, and p is the pressure (here considered

as a function of x and y). Thus (�b2=12�)p provides a velocity potential �. Incom-

pressibility implies the existence of a stream function  . We can therefore introduce

a complex potential function W (z; t) = �(z; t) + i (z; t) which is an analytic function

of z in the 
uid region of the channel. Considered as a function of �, this potential is

decomposed as

W (�; t) = �
2

�
ln � + i+ !(�; t) (4)

where ! is assumed to be analytic in unit semi-circle, implying (via the Schwartz

re
ection principle) its analyticity for j�j � 1. In (4) the velocity at in�nity is assumed

to be 1; together with a = 2, this choice makes our variables e�ectively dimensionless.

The relation

Imf!g = 0 (5)

is required to hold on the real diameter of S, and is the mathematical statement of

the condition that there is no 
ow through the walls.

The interfacial conditions will determine the evolution of the map z(�; t). The kine-

matic condition states that the normal component of the 
uid velocity is continuous
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across the interface and implies that on j�j = 1

Re

(
zt

�z�
�

�W�

j z� j2

)
= 0 (6)

Details of the derivation of this equation are available in Sa�man [37] and Richardson

[35]. In the absence of capillary e�ects, the dynamic condition requires continuity of

pressure across the interface. When the viscosity of the less viscous 
uid is negligible,

this condition gives

Ref!g = 0 (7)

on j�j = 1. We note in passing that a more complete description of Hele-Shaw 
ow

introduces more complicated interfacial conditions due to a thin �lm left behind by an

advancing interface. However, several numerical (Park & Homsy [29], Reinelt [33, 34])

and analytic (Tanveer [44]) studies have shown that many salient features of interfacial

motion described by the more detailed model are captured by the simpler interfacial

conditions (6-7).

From (5) and (7) it is immediately apparent that ! = 0 for all � in the complex

plane. Thus, (6) becomes

Re

(
zt

�z�

)
= �

2

�jz�j2
(8)

In order to extend (8) into the region j�j > 1, we �rst provide an analytic extension

of the conjugate of an analytic function evaluated on j � j= 1. Let

F (�) =
1X
n=0

an�
n

be an analytic function in j�j � 1. Then

~F (�) =
1X
n=0

�an�
n (9)

is analytic in j�j � 1, where the overbar denotes complex conjugation. For functions

that are not necessarily analytic at the origin, though analytic on a segment of j�j = 1,

we can generalize the above de�nition of ~F (�) through the relation ~F (�) = �F (��).

~F (1=�) is then the analytic extension of �F from j � j= 1. It follows that

RefF (�)g =
1

2

h
F (�) + ~F (1=�)

i
(10)
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for � = ei�. In addition, jF (�)j2 = F (�) ~F (1=�) on � = ei�. Thus (8) can be written as

Re

(
zt

�z�

)
= �

2

�z�(�; t)~z�(1=�; t)
(11)

on � = ei� .

The continuation of equation (11) into the domain j�j < 1 can now be obtained in

a straight forward manner by employing the Poisson Integral Formula. In particular,

we use a variant of the standard formula which gives the value of an analytic function

in the domain j�j � 1 in terms of its real part evaluated on the unit circle. Application

of the formula to the function zt=(�z�) yields (with appropriate choice of imaginary

constant)
zt

�z�
= I(�; t) (12)

for j�j < 1, where

I(�; t) = �
1

�2i

I
j�0j=1

1

z�(�0; t)~z�(1=� 0; t)

�0 + �

�0 � �

d�0

�0
(13)

Equation (12) can be analytically continued into the domain j�j > 1 by deforming

the contour in the usual way, producing an additional term from the residue of the

pole at �. Consequently, we have

zt = �z�I(�; t)�
2�

�~z�(1=�; t)
(14)

for j�j > 1. Note that I(�; t) de�nes di�erent analytic functions in j�j < 1 and j�j > 1.

A useful alternative form for (14) may be obtained by employing (10) to write (8)

as
zt

�z�
= �

�~zt(1=�; t)

~z�(1=�; t)
�

2�

~z�(1=�)
: (15)

Since ~zt(1=�) and ~z�(1=�) are analytic in j � j> 1, this equation provides us with a

second expression for I(�; t),

I(�; t) = �
�~zt(1=�; t)

~z�(1=�; t)
(16)

when j�j > 1.

In order to make the structure of (12) and (14) more apparent, de�ne

q1 = �I(�; t) (17)

q2 =
�2�

~z�(1=�)
: (18)
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Then (12) becomes

zt � q1z� = 0: (19)

for j�j < 1, and (14) becomes

zt � q1z� = q2: (20)

for j�j > 1. These equations, corresponding to equations (3.1) and (3.3) of Tanveer

[43], have the advantage over (8) of allowing studies of the presence and in
uence of

singularities of z� in j�j > 1. Furthermore, they lead to the development of a new

numerical procedure for calculating interfacial motion in a well-posed fashion for a

restricted class of initial conditions.

Since I(�; t) and ~z�(1=�) are analytic in j�j > 1, so too are q1(�; t) and q2(�; t),

except at in�nity, where q1 has a simple pole, i.e., grows as �. Since (20) has a

form analogous to a �rst order hyperbolic system in the complex plane, (although in

reality it is a nonlinear integro-di�erential equation with coe�cients q1 and q2 that

depend nonlocally on z), the analyticity of q1 and q2 has important consequences on

the presence and motion of singularities of z. For the convenience of the reader, we

provide a summary of what is known (Richardson [35], Lacey [25], Tanveer [43]):

1. There is no spontaneous generation of singularities in the �nite complex plane.

Furthermore, the form of a singularity which is present initially in the region

j�j > 1 is invariant with time. Singularities which are present initially at in�nity

do not move to a �nite � location.

2. We de�ne a \characteristic" in the � plane by

d�c(t)

dt
= �q1(�c(t); t): (21)

Let �c(t) = Rc(t) e
i�c(t), then

_Rc

Rc
= Re

(
_�c(t)

�c(t)

)
= �Re

�
q1(�c(t); t)

�c(t)

�
(22)

Tanveer [43] has shown that the right hand side of (22) is less than zero when

j�cj > 1. Consequently, \information" outside of the unit disc 
ows inward

toward j�j = 1.
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3. This is particularly true for isolated singularities of the form (1). The location of

these singularities satis�es (21), i.e. they move with speed �q1(�s(t); t), so they

move towards the unit circle. Incidentally, the singularity in z which is present

initially at � = 0 does not move in time, since the characteristic speed at � = 0

(given by q1(0; t)) is zero.

4. Singularities with � > �1=2 reach the unit circle in �nite time. Singularities

with � � �1=2 come inde�nitely close to, but never reach the boundary j�j = 1.

Several properties of zeros in z� are also relevant. For example, there is no spon-

taneous generation of zeros of z� in the �nite complex plane, although zeros which

are present initially at in�nity can move to a �nite � location. When a zero impinges

on j�j = 1, it produces a zero-angled cusp in the shape of the interface; see Howison

[19, 20] and Shraiman & Bensimon [39] for exact solutions where this happens. There

is no physically sensible way of continuing the solution in time. Unlike singularities,

the zeros of z� do not move generally with the characteristic speed �q1 and it is hard

to predict if a given zero will hit the unit circle or stall at a �nite distance from j�j = 1.

In this paper, our interest will be focussed on initial conditions containing only

isolated singularities of form (1) with � < �1=2, so they do not reach j�j = 1 in �nite

time. We shall also pick cases where zeros in z� do not reach j�j = 1 during the time

of our computations. For these cases, the inclusion of surface tension acts in a regular

perturbative manner, so the results indicate what can be expected in the limit of weak

surface tension.

3 Explicit Treatment of Singularities

Baker & Tanveer [4] use (20) to solve directly for z(�; t) on a circle in the � plane of

radius R(t), assuming that this circle does not contain a zero of z� or a singularity of

f(�; t) = z� i+(2=�) ln�. The advantage of computing the evolution of f(�; t) on the

boundary j�j = R(t) is that during the process no singularities in z� will be introduced

in j�j � R(t). Of course, singularities in z� may be present outside j�j = R(t), but

as long as R(t) shrinks fast enough, singularities will not intrude into j�j � R(t): the

presence of zeros must be checked separately. Furthermore, a function which is analytic
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in j�j � R(t) can be determined throughout this region from its values on j�j = R(t)

through evaluation of its Taylor series - this step is well-posed as demonstrated in the

next section. Thus, the interface, z(j�j = 1; t), can be recovered from the solution on

j�j = R(t).

Unfortunately, R(t) must shrink faster than the approach of any singularity to

j�j = 1. Consequently, the computation may terminate (when R = 1) before any

interesting structures have developed on the interface. For initial conditions containing

isolated singularities of form (1), this obstacle may be removed by explicit treatment of

the singularities. In this section, we derive equations in which singularities in j�j > 1

are treated explicitly; they are in a sense `subtracted' from the data and evolved

separately. In the next section, we show how the resulting equations can be solved in

an e�cient and well-posed fashion.

For initial data containing singularities of form (1) in j�j > 1, the solution may be

written in the form,

z(�; t) =
J1X
j=1

Ej(�; t)

 
1�

�

�j(t)

!�j+1

+
JX

j=J1+1

2
4Ej(�; t)

 
1�

�

�j(t)

!�j+1

+ �Ej(�; t)

 
1�

�
��j(t)

!�j+1
3
5+G(�; t)�

2

�
ln � (23)

where j�j j > 1; �j are real constants (excluding 0; 1; 2; . . .); and Ej(�j(0); 0) 6= 0.

Here �j(t) for j = 1; . . . ; J1 mark the location of singularities on the real line, and �j(t)

for j = J1 + 1; . . . ; J indicate singularities with non-zero imaginary part. In order to

satisfy (3), the amplitudes Ej(�; t) for j = 1; . . . ; J1 must be real. The amplitudes

Ej(�; t) for j = J1 + 1; . . . ; J are, in general, complex. Conjugate singularities ��j(t)

with amplitudes �Ej(�; t) are included to satisfy condition (3). The branch cut is

chosen so that the argument of (1 � �=�j) lies between � and ��: we have chosen

this form to simplify the numerical evaluation of the interfacial location when j�j = 1.

In the region j�j > 1, there can be other singularities at ~�j which are not explicitly

represented. However, it is assumed that the �j are the nearest singularities so that,

given i, the inequality j~�ij > R(t) > j�j j holds for all j = 1; . . . ; J . The functions

Ej(�; t) and G(�; t) are analytic in the annulus 1 � j�j � R(t). If all singularities are

explicitly represented, these functions are analytic in the entire region exterior to the
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unit disk. Unfortunately, it is possible for Ej and G to have singularities in j�j < 1

which cancel in (23) so that z + (2=�) ln � is analytic in j�j � 1.

In order for (23) to be a solution to (20), �j ; E
j; and G must satisfy

d�j

dt
= �q1(�j(t); t) (24)

Ej
t � q1 E

j
� = (�j + 1) Ej

(
q1(�; t) � q1(�j(t); t)

� � �j(t)
�
q1(�j ; t)

�j(t)

)
(25)

Gt � q1 G� = �
2

��
q1 + q2: (26)

In the case of initial data with logarithmic singularities (poles in z�) the solution

has a modi�ed form,

z(�; t) =
J1X
j=1

Ej(�; t) ln

 
1�

�

�j(t)

!
+

JX
j=J1+1

"
Ej(�; t) ln

 
1�

�

�j(t)

!

+ �Ej(�; t) ln

 
1�

�
��j(t)

!#
+G(�; t)�

2

�
ln � (27)

where
d�j

dt
= �q1(�j(t); t) (28)

Ej
t � q1 E

j
� = 0 (29)

Gt � q1 G� = q2 +
JX

j=1

Ej

(
q1(�; t)� q1(�j(t); t)

� � �j(t)
�
q1(�j ; t)

�j(t)

)
(30)

Of course, it is possible to have a combination of the two forms, (23) and (27).

Our numerical method is based on (24-26) or (28-30): in the next section, we

describe how the solution may be updated in a well-posed fashion.

4 Numerical Method

Our numerical treatment is a combination of tracking the positions of the singular-

ities by solving (24) (or (28)) and of advancing Ej(�; t) and G(�; t) in time by the

method of lines. Despite appearances, it is not necessary to update Ej(�; t), and

G(�; t) throughout the computational domain, an annulus 1 � j�j � R(t). Knowl-

edge of these functions on the circles j�j = 1 and j�j = R(t) is su�cient to determine

them everywhere inside the annulus. Nevertheless, we must use a special procedure

to update Ej(�; t) and G(�; t) in a numerically stable way.
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We introduce a decomposition for a function g(�) which is analytic in the annulus

by writing it as the sum of a function g+(�) which is analytic inside a circle j�j = R

and a function g�(�) which is analytic outside the circle j�j = 1. The decomposition is

made unique by requiring g+(0) = 0. By considering the Laurent expansion for g(�),

we note that

g�(�) =
0X

k=�1

ĝk�
k (31)

g+(�) =
1X
k=1

ĝk�
k (32)

where the Taylor series for g+(�) will have a radius of convergence R+ > R, and the

Laurent series for g�(�) will converge outside j�j = R� < 1. We call the function

g+ inner analytic and the function g� outer analytic.

An important feature of an inner analytic function is that its values inside a closed

curve can be determined from the values on the curve in a well-posed fashion. To see

this, consider an inner analytic function g+(�) evaluated on a circle of radius R. Let

� = Rei� , then

g+(�) =
1X
k=1

ĝkR
keik�

In practice, the coe�cients ĝkRk are obtained by the discrete Fourier Transform. Since

the sum converges, these coe�cients must decay with increasing k. There will be a

value, kr say, where the coe�cients reach the round-o� levels of a computer. If su�-

cient resolution is used with the discrete Fourier Transform, then the coe�cients with

k > kr will contain round-o� levels and not their actual values. This has important

consequences when we wish to evaluate g+ on a di�erent circle � = rei� . Then

g+(�) =
1X
k=1

�
r

R

�k

ĝkR
keik� ;

so each coe�cient ĝkRk is multiplied by rk=Rk prior to using the discrete Fourier

Transform again to evaluate the sum. If r > R, then round-o� errors in ĝkRk for k > kr

will be signi�cantly ampli�ed, even to the point that all accuracy in g+(� = rei�) will

be lost. However, if r � R, round-o� errors are decreased. For an outer analytic

function the situation is reversed: evaluation on r � R (here we will take R = 1) is

numerically stable, while on r < R it is not. The exception to our statements is when
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there is a known, �nite number of terms in (31) or (32) with amplitudes well above

round-o� levels. Then the relative errors in the evaluation of g+ or g� on any circle

remains small when we use only the �nite number of terms.

4.1 Basic Algorithm

We decompose both Ej(�; t) and G(�; t) into inner and outer analytic parts and use

the method of lines to update Ej
+, G+ on j�j = R, and E

j
�, G� on j�j = 1. We

obtain evolution equations for these quantities by applying the projection operators,

H+f = f+ and H�f = f�. Thus, from (25) and (26), we have

E
j
�t

= H� fR1(�; t)g (33)

� H�

(
q1E

j
� + (�j + 1)

 
q1(�; t)� q1(�j(t); t)

� � �j
�
q1(�j ; t)

�j(t)

!
Ej

)
(34)

G�t = H�

�
q1G� �

2

��
q1(�; t) + q2(�; t)

�
: (35)

Before giving the results for the other components, we note that q1 and q2 have very

simple decompositions. From (16) and (17):

q1(�; t) = �q̂1(t) + q1� (36)

where q1+ = �q̂1(t) contains only one term, whereas (18) shows that q2 is outer analytic

only,

q2(�; t) = q2� : (37)

The form of the decompositions (36) and (37) is very bene�cial in our design of a

well-posed algorithm. For example, we use the facts that the product of Ej
��

with q1

and the product of Ej
� with [q1(�)�q1(�k)]=(���k) result in only outer analytic parts

to simplify the H+ projection of (25):

E
j
+t

= H+ fR2(�; t)g

� H+

(
q1E

j
+�

+ (�j + 1)

 
q1(�; t)� q1(�j(t); t)

� � �j
�
q1(�j; t)

�j(t)

!
E

j
+

)
(38)

The resulting equation for G+ simpli�es to

G+t = H+

n
q1G+�

o
(39)

when we use the facts that �2q1=(��); q2 and q1G��
are outer analytic.
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The following properties can be easily deduced from (34-35) and (38-39):

1. The evolution of Ej
+ does not depend explicitly on Ej

�. As a result, if Ej(�; 0)

satis�es Ej
+(�; 0) = 0, then E

j
+(�; t) = 0 for all t. The same result holds for

G+(�; t).

2. If Ej
+(�; 0) contains a �nite number of modes in (32) with highest wavenumber

k = M , then no modes with wavenumber k > M will be generated in E
j
+(�; t).

The same result holds for G+.

Similar results hold for the decomposition of Ej and G in (29) and (30) for loga-

rithmic singularities.

To apply the method of lines to (34-35) and (38-39), we assume that we know E
j
+

and G+ at N evenly spaced points on the circle r = R(t), and Ej
� and G� at N evenly

spaced points on the unit circle. Actually, it is not necessary to use the same number

of points on both circles, but we make that assumption for ease of presentation. First,

we describe how to evaluate the right hand side of (34) and (35) on the unit circle. For

the moment we assume that q1 and q2 are known there; we describe their computation

in detail in the next sub-section.

We compute the coe�cients ckR
k in the representation

E
j
+(� = Rei� ; t) =

N=2X
k=1

ckR
keik�

by use of the discrete Fourier Transform. The coe�cients ck are obtained by a division

by Rk and then used to evaluate Ej
+ and Ej

+�
on the unit circle by use of the discrete

Fourier Transform, where

E
j
+�
(�; t) =

N=2X
k=1

kck�
k�1 : (40)

The function Ej
��

is also determined on j�j = 1 by using the discrete fourier Transform.

Then we have all the information needed to evaluate R1 in (34) at N evenly spaced

points on the unit circle. To execute the projection H�, we use the discrete Fourier

Transform to calculate the coe�cients in the representation

R1(�; t) =
N=2X

k=�N=2

r̂k(t)�
k :
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Then we set to zero all the coe�cients with k � 1. The result is an outer analytic

function, which is the forcing term in (34). Balance of the Fourier coe�cients of like

modes on the left and right hand sides of (34) then yields a set of equations

dÊ
j
k

dt
(t) = r̂k(t)

for the Fourier coe�cients Êj
k(t) (k � 0) of Ej

�. In an equivalent procedure, we may

use G+, known on r = R(t), to determine G+� , and use G�, known on the unit circle,

to get G�� . Then the forcing term for (35) is computed by executing the projection

H� as described above.

From our discussion on the importance of \characteristics" de�ned by (21), we

anticipate thatEj
+ and G+ must be evaluated on a circle with a radius that is collapsing

at rate,
1

R

dR

dt
= � max

j�j=R(t)
Re

�
q1(�; t)

�

�
: (41)

Then, information outside the circle j�j = R(t) will not cross the boundary into the

annulus, 1 � j�j � R(t). We include an advection term that accounts for the change

in Ej
+ due to the change in R(t): thus (38) becomes

dE
j
+

dt
= H+

�
R2(�; t) +

�

R

dR

dt
E

j
+�

�
(42)

A similar term is needed in the equation (39) for G+.

We will describe in detail in the next sub-section how q1 and q2 may be evaluated

on j�j = R(t). The quantities Ej
+�
, G+�

can be evaluated by spectral techniques as

described in (40). The expression contained within brackets on the right hand side

of (42) can then be evaluated. The Fourier coe�cients of the right hand side of (42)

are obtained using the discrete Fourier Transform, and the projection H+ is done by

zeroing all modes with k � 0. Equating like Fourier modes then leads to a set of

evolution equations for Êj
k(t), the Fourier coe�cients of Ej

+, for k > 0. The same

procedure may be used on the equation for G+.

Any suitable ODE Solver may be applied to the evolution equations for �j , Ê
j
k, and

Ĝk. For the results used in this paper, we use the standard fourth-order Runge-Kutta

method with �xed step-size.

Since z(�; t)+(2=�) ln � has a Taylor series expansion about � = 0, all the negative

terms in the Laurent expansion for G(�; t) must cancel all the negative terms in the
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Laurent expansions of the sums in (23). This will be only approximately true in the

discrete calculation, so it can be used as a check for numerical accuracy. Although it

is not necessary to compute G�(�; t) to update the interface, we have done so in order

to employ this check.

For certain initial conditions, our algorithm is greatly simpli�ed. For example,

when E
j
+ has only a few terms in its Taylor series expansion, then it is possible to

write down by hand the evolution equations for the Fourier coe�cients, Ê
j
k, since the

products �
q1 +

�

R

dR

dt

�
E

j
+�

and
q1(�; t)� q1(�j ; t)

� � �j(t)
E

j
+

will contribute only a few terms due to the simple decomposition (36) for q1. In

particular, if Ej
+, E

j
�, G+, and G� are time-dependent constants in �, then only Ej

�

need be computed.

4.2 Computation of q1 and q2

Here we provide details of the computation of q1 and q2 in j�j � 1 by using (13), (17),

and (18). First, we calculate Ej
+(�; t), E

j
+�(�; t), and E

j
��(�; t) on j�j = 1 by means of

the discrete Fourier Transform as described in the previous subsection. These values

are used to compute 1=z�(�) = p00(�)=D(�) on j�j = 1 where

D(�) = �
2p00(�)

��
�

J1X
j=1

pj0(�)

"
(�j + 1)

Ej(�)

�j
�E

j
�(�)

 
1�

�

�j

!#

�

JX
j=J1+1

p0j(�)

"
(�j + 1)

�Ej(�)
��j

� �Ej
�(�)

 
1�

�
��j

!#

+ G�(�) p00(�) (43)

and

prs(�) =
J1Y
i=1

i6=r

�
1�

�

�i

���i JY
i=J1+1

i6=s

�
1�

�
��i

���i

This form for 1=z�(�) is obtained by di�erentiating (23) with respect to �, then fac-

toring out 1=p00(�) and taking the reciprocal. We have found it necessary to compute

1=z�(�) using this expression to obtain accurate results for q1 when singularities are

very close to j�j = 1. The function 1=~z�(1=�) can be computed on j�j = 1 by taking

the conjugate of 1=z�(�). Consequently, the function q2 can be computed on the unit

circle using (18).

18



The function q1 is computed as follows. We write

2

�z�(�)~z�(1=�)
= d0 +

1X
k=1

(dk�
k + �dk�

�k) (44)

on � = ei�. We determine approximations to the N coe�cients
n
d1; . . . ; dN=2

o
,n

�d1; . . . ; �dN=2

o
by means of the discrete Fourier Transform. Upon substitution of

(44) into (13) and computation of the residues, one �nds that

q1 = ��

2
4d0 + 2

N=2X
k=1

�dk �
�k

3
5 (45)

Note that dj is real (i.e., �dj = dj) for the channel geometry, as a consequence of z being

real along the real axis of �. The functions q1 and q2 can be analytically continued out

to the circle j�j = R(t) by the ideas expressed in (40). Similarly, q1 can be evaluated

at the location �j(t) of the singularities.

4.3 Computations for Extremely Close Singularities

Many of the interesting interfacial features revealed by our calculations occur when

singularities approach the unit circle within a distance much less than machine preci-

sion. To track these singularities reliably when they are that close to the unit circle

we must express their location as

�j = (1 + �j)e
i�j

The time evolution of the quantities �j(t) and �j(t) = 1=�j are then determined

numerically using the equations

d�j

dt
= �2

jRe
n
q1(�j ; t)e

�i�j
o

d�j

dt
= �

1

1 + �j
Im
n
q1(�j; t)e

�i�j
o
:

We use �j instead of �j so that singularities can be allowed to come extremely close

without the worry of them jumping inside the unit circle due to time-stepping errors.

The computation of q1(�j ; t) is more delicate when �j is extremely close to the unit

circle, since the quantities
1

j �kj j
=

1

(1 + �j)k
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in (45) will be approximated as 1, leading to inaccuracies in the computation. In order

to obtain a better value for 1=�kj we write

1

1 + �j
= 1�

�j

1 + �j
� 1 + f1(�j)

and compute fk(�j), de�ned by

1

(1 + �j)k
= 1 + fk(�j) ; (46)

using the recursion

fk(�j) =
fk�1(�j)� �j

1 + �j
:

The substitution of (46) into (45) then yields q1(�j; t) = q1(e
i�j ; t) + �q1(�j ; t), where

�q1(�j ; t) = �e
i�j

0
@�jd0 + 2

N=2X
k=1

�dk [�j(1 + fk) + fk ] e
�ik�j

1
A : (47)

Then,

Re
n
q1(�j ; t)e

i�j
o
=

2

�jz�(ei�j ; t)j2
Re

�
�q1

ei�j

�
; (48)

where we have used

Re

�
q1(�; t)

�

�
=

2

�z�(�)~z�(1=�)

when j�j = 1, which follows from (13) and (17). By using (48), we avoid any problems

with round-o� errors. On the other hand, Im fq1=�jg is computed with q1 directly

determined from (47).

5 Numerical Results

We use a known exact solution due to Sa�man [37] to help validate our method:

z(�; t) = i+ d(t)�
2

�
ln � +

1

�
ln

 
1�

�2

a2(t)

!
(49)

where 1 < a(0) < 1. The functions d(t) and a(t) are determined by

a(t) =
h
1 +K1e

�2�t
i1=4

and

d(t) = K0 + 2t +
1

2�
ln
h
1 +K1e

�2�t
i
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where K0 and K1 are constants which are determined by the initial conditions. From

(49), it is clear that z� has poles at �1;2 = �a(t), but no zeros. The form of the initial

data (27) used in our numerical method is made to correspond to (49) by setting

E1(�; 0) = E2(�; 0) = 1=� and G(�; 0) = i + d(0). We pick d(0) so that the initial

pro�le has zero mean height. The functions Ej(�; t) and G(�; t) are constants in � for

this problem, and therefore only a single Fourier mode (namely the constant mode)

is necessary to specify them. Nevertheless, we use 512 modes in our computation in

order to check the numerical stability of our algorithm for computing Ej(�; t) and

G(�; t).

The results of our numerical method for a(0) = 2:0 are shown in Figure 2. We use

a time step of �t = 0:005. At t = 3, the calculation gives the positions of the poles as

�1;2 = �1:0000000244216, whereas the exact positions are �1;2 = �1:0000000244215.

Although the di�erence is less than 10�12, the exact and the numerically computed

pro�les di�er by only a little less than 10�6. However, we �nd no growth of round-o�

errors in the modes comprising Ej(�; t) and G(�; t). In this example we set R(0) =

2; 000, and stop the calculation at t = 3 when R is nearly 1. Because there are no

zeros in z� we can take R(0) much larger and run for even longer times.

There are no known exact solutions for channel geometry when branch point sin-

gularities are located in the region j�j > 1 (although exact solutions with branch point

singularities have been found for sector geometry; see Tu [47]). We replace the two

pole singularities in z� of (49) by two branch point singularities of equal power and

amplitude, and locate them symmetrically on the real axis of �. Our choice is mo-

tivated by the desire to understand the role of the power of a singularity in z� on

the shape of the interface. Thus we select initial data corresponding to (23) with

J1 = 2, �1 = �2, and �1(0) = ��2(0). In Figure 3, �1 = �4=5, and in Figure 4,

�1 = �4=3. Initial values for the singularity positions �j(0) and amplitudes Ej(�; 0)

are determined through experimentation; those that lead to solutions in which the

interface becomes well-deformed before zeros impinge on the unit disc are selected

for presentation. In this manner, the initial singularity positions and amplitudes

are chosen as �1(0) = ��2(0) = 1:2, E1(�; 0) = E2(�; 0) = 1:94 for Figure 3, and

�1(0) = ��2(0) = 3:3, E1(�; 0) = E2(�; 0) = �2:2 for Figure 4. In these and all

subsequent computations we set G(�; 0) = i+ c, where c is a real constant selected to
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produce an initial pro�le with zero mean height. Recall that for constant initial data

such as this, only negative Fourier modes in Ej and G are generated. Consequently,

we only need to solve equations (34) and (35). The positive Fourier modes are set to

zero after each time step in the calculation. We use 512 points on the unit circle in

the � plane, and a time step of �t = 0:0005.

We check our numerical results by comparing them with the results obtained when

none of the singularities outside the unit disk are represented explicitly. To perform

the latter calculation, we use the code to solve for G+(�; t) + Ĝ0(t) on a circle of radius

R(t) that is closer than the smallest j�j(t)j. Consequently, we shrink the radius R(t)

as described in section 4. While the calculation must be stopped before long because

R � 1, the output provides a useful check on the present results for some period of

time. In addition, we decrease the time step and increase the number of modes until

there are no detectable di�erences in the solution within plotting accuracy.

Unlike the previous example, we cannot be sure that zeros do not approach the

unit disk. So we monitor the presence of zeros by computing the integral

Nz =
1

2�i

I
j�j=1

z��

z�
d� (50)

which, according to the argument principle, equals the number of zeroes minus the

number of poles of z� inside the unit disk. As long as there are no zeros of z� in

j�j � 1, this integral will equal �1, due to the simple pole of z� at � = 0. For

the results presented in Figures 3 and 4, the value of Nz remains within 1% of -1

throughout the length of the computation. Note further that if a zero in z� is located

near the unit disk, the close presence of a pole singularity in the integrand of (50)

causes a loss of accuracy in its numerical evaluation. Thus we feel con�dent that no

zeros are very near to the unit disk up until the times of the �nal pro�les in Figures

3,4, and 5.

The contrast between Figures 3 and 4 is quite striking. The higher value of

� = �4=5 in Figure 3 correspond to a singularity of weaker e�ect in that the bulge of


uid at the base of the �nger is less rounded, causing a �nger that is more pointed.

The lower value of � = �4=3 in Figure 4 produces a more spherically shaped bulge of


uid, causing a thinner neck at the base of the �nger. In general, our experiments with

various powers � show that for powers � > �1, more pointed �ngers are produced
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from the less pronounced bulges of 
uid at their bases. For � < �1, the �ngers have

parallel sides, but their bases have thinner necks as a consequence of more spherically

rounded bulges of 
uid there.

A representative Fourier spectrum from the calculation with � = �4=3 is pre-

sented in Figure 5. There is no sign of spurious growth in the large jkj modes or any

other indications of numerical instability, although it is necessary to evaluate q1 using

expression (43) in order to avoid such growth. The rise in the tail of the spectrum

with respect to time is due to singularities in the functions Ej, G, q1, and q2 at po-

sitions � = 1=�1 and � = 1=�2 inside the unit disc. Since z � (2=�) ln � is analytic in

j�j < 1, the singularities in Ej and G must cancel out in the expression for z(�), (23).

Nevertheless, these singularities do a�ect the numerical computation of the quantities

Ej, G, q1, or q2. Since the singularities move toward � = �1 from inside the unit

disc as �1;2 ! �1 from the outside, a large number of Fourier modes are required

to obtain accurate representations for these quantities when the singularities are very

close to the unit circle. Another consequence of the close approach of the singularities

to the unit circle is the need for much smaller time steps to maintain accuracy. This

is also true when zeros in z� get close to the unit disk. In general, it is either the

close approach of singularities in Ej and G or zeros in z� to j�j = 1 that force us to

terminate our calculations.

If we ignore the loss of accuracy, we can continue the calculations shown in Figures

3 and 4 a little further in time. We see evidence that zeros are impinging on the unit

disk. For the calculations associated with Figure 3, a zero is approaching j�j = 1 at

a point corresponding to the tip of the �nger. Thus, we expect the �nger to form a

cusp in �nite time. For Figure 4, two zeros approach j�j = 1 at points corresponding

to the tops of either side of the �nger, so we expect cusps to form at these positions.

Asymptotic theory suggests that the initial zeros will give rise to localized clusters

of �4=3 singularities (daughter singularities) when 0 < B << 1. The leading order

motion of each of these clusters satis�es equation (21), i.e., a cluster located at �d

moves with speed �q1(�d(t); t). If such a cluster comes close to j�j = 1, it can cause

the interface to deviate signi�cantly from the B = 0 solution.

We brie
y consider the in
uence of non-zero surface tension on interfacial shapes

by comparing the zero surface tension solution to that for small surface tension. The
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non-zero B solution is obtained using the boundary integral method developed by Hou,

Lowengrub & Shelley [17]. In the �rst case (Figure 6a), we consider initial data with

zeros of z� initially placed at in�nity, and with singularities which satisfy �j � �4=3.
{

The value of surface tension is set toB = :0025. From asymptotic theory, it is expected

that the addition of a small amount of surface tension will make little di�erence in the

evolution of the interface for at least O(lnB) time. The actual agreement between the

interfacial shapes is quite remarkable: the two solutions are indistinguishable over the

entire length of the run. The agreement is una�ected by using real singularities which

only satisfy �j < �1=2, since these singularities behave as though they are essentially

una�ected by capillary e�ects for the time of the computation.

In contrast, when the initial data of Figure 4 is used, the di�erence between the

B = 0 and B = :0025 shapes is very signi�cant. As seen in Figure 6b, the B > 0

�nger eventually diverges from the corresponding zero surface tension solution and

approaches a broad, steadily propagating �nger. The broadening is apparently caused

by the approach of daughter singularities created from an initial zero in j�j > 1 (see

Siegel, Tanveer & Dai [40]).

The above examples show that, in some cases, surface tension causes a singular

perturbation in O(1) time, whereas in other cases it does not. Our method gives

us a means of discerning these cases through computation of daughter singularity

trajectories in the extended domain [43]. We remark that our attempts to calculate

the B = 0 solutions using the boundary integral method with �ltering failed before

the interface had advanced very far. This is because the close presence of strong

singularities causes fast growth of the high wavenumber modes, and numerical noise

quickly contaminates the computation. Thus, boundary integral methods often appear

unsuitable for comparing B = 0 solutions to those for B > 0 over times in which the

interface becomes signi�cantly deformed. Dai & Shelley [8] report related problems in

B = 0 calculations, as discussed in the introduction.

We turn now to a consideration of the in
uence of additional �4=3 singularities

with weak amplitudes during �nger formation. Figure 7a illustrates the interface

evolution resulting from initial data of the form (23) with J1 = 2; J = 3 and with

{This is accomplished by prescribing initial data in z� of the form z�(�;0) = �2(1� �2=�2s )
�=(��).

Here we use � = �3:2 and �s = (1:6; 0:0).
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singularity strengths �j = �4=3 for j = 1; :::; 3. The initial singularity positions

were chosen as �1(t) = ��2(t) = (1:65; 0:0), and �3(t) = (�0:6; 1:83), and the initial

amplitudes as E1(�; 0) = E2(�; 0) = (�0:9; 0:0), and E3(�; 0) = (�0:01; 0:03). The

calculation uses N=512 points and a time step �t = 0:0005. Two of the singularities

(�1 and �2) reside on the real line, and these have large enough amplitude to produce

the wide bulges of 
uid centered at y = 1 and y = �1 which de�ne the main �nger.

As the third singularity approaches the unit disk, it generates a small bulge of 
uid

that gives the appearance of the formation of a dimple on the evolving �nger.

The dimple is clearly stationary in the laboratory frame, despite the overall growth

of the main �nger. Such behavior has been well documented in laboratory experiments

( e.g. Park & Homsy [28], Tabeling, Zocchi, & Libchaber [41]) and in numerical

calculations (e.g. DeGregoria and Schwartz [9, 10]) with B 6= 0. Our results show

that it is the speci�c nature of the trajectory of the singularity �3(t) that accounts

for this behavior. We show the trajectories of all the singularities in Figure 7b. At

�rst, a dimple starts to form as �3(t) approaches the unit disk. As �3(t) begins to

move around the boundary of the unit disk towards � = �1, the dimple continues to

grows but remains stationary in the laboratory frame. With the assumption that the

singularity is close to either � = �1, we can show that its speed is actually the correct

speed for it to remain stationary in the laboratory frame. Details will be provided

elsewhere. The point to be made here is only that certain physical properties can

be understood in terms of the motion of singularities in the complex � plane. Under

the presence of surface tension, the narrow �nger will eventually widen; however, the

formation of the dimple and its relationship to the motion of the singularities will not

be a�ected.

Placing additional singularities in the complex plane produces additional dimples

and leads to the appearance of side-branching. An example of side-branching due to

multiple pole singularities is given in Figure 8a. We use pole singularities, rather than

� = �4=3 singularities, since our ability to track them arbitrarily close to the unit

disc leads to a more dramatic example of sidebranching, but in reality side-branching

is more likely to occur from the patterns of �4=3 singularities created by the initial

transformation of zeros in z� . Initial data corresponding to (27) with J1 = 2 and J = 14

is used to generate the pro�les. The starting amplitudes Ej(�; 0) and singularity
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positions �j(0) are given in Table I. The two main singularities �1 and �2 produce the

�nger centered in the channel, and remaining singularities �j for j = 3; :::; J of smaller

amplitude are located to cause side-branches to form near the base of the �nger.

Additional singularities can be placed to allow side-branching to run the length of the

�nger. As expected, the dimples and the corresponding side-branches are stationary

in the laboratory frame. The motion of the singularities is shown in Figure 8b, and

clearly the singularities with smaller amplitudes are attracted to the points � = �1.

When they get close enough to either of these points, an unperturbed �nger continues

to grow while the dimples remain near its base. If additional singularities are present

that start much further away from the unit disk, they will arrive close to the unit disk

at later times, producing new dimples near the tip of the �nger. The endless presence

of singularities streaming in from in�nity can generate �ngers with side-branching

patterns seen frequently in experiments.

In Figure 7a, the small amplitude of the singularity at �3 causes the formation

of a small dimple on the side of a well-developed �nger. In contrast, when Re E3

is the same order as Re E1 and Re E2, the close approach of �3 to j � j= 1 leads

to a `tip-splitting' event and the formation of two �ngers which eventually compete.

An example is given in Figure 9a for initial data of the form (23) with J1 = 2; J =

3 and �j = �4=3 for j = 1; :::; 3. The initial singularity positions are chosen as

�1(0) = ��2(0) = (2:5; 0:0), �3(0) = (0:0; 4:0) and the initial amplitudes as E1(�; 0) =

(�1:0; 0:0), E2(�; 0) = (�0:8; 0:0), E3(�; 0) = (�0:3;�0:16). We use N = 512 and

�t = 0:0005. As shown in Figure 9b, the singularities initially move radially towards

the unit circle. As the singularity at �3 approaches j�j = 1, a dimple forms near the

�nger tip. As time advances, �3 gets closer to the interface and the dimple elongates

into a large indentation, giving the appearance of two �ngers. Eventually, the motion

of the singularity is predominantly tangent to the circle, and the tangential velocity

of �3 is such that the indentation is �xed in the laboratory frame. The direction the

singularity moves around the circle determines which �nger will dominate. In this case

the singularity at �3 moves towards � = �1. Since the point � = �1 corresponds to

the bottom end of the interface, this motion has the e�ect of stretching the interface

so that the indentation separating the �ngers lies closer to the bottom end. The only

way this can be done while also keeping the indentation �xed in the laboratory frame
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is for the upper �nger to grow signi�cantly more than the lower one, as indicated in

Figure 9a. Unfortunately, the simulation cannot be not run long enough to produce

a clear outcome in the �nger competition, because of the presence of the singularity

in E
j
� and G� at 1=�3(t). Nevertheless, we are able to compute long enough to make

the trend in singularity motion clear.

We conclude this section with a brief examination of some scenarios which may lead

to a self-intersection of the interface. A self-intersection event is often referred to as a

topological singularity; the possible formation of this type of singularity in Hele-Shaw


ow and in other free surface 
ows is a topic of much current interest. A topological

singularity occurs when the conformal map z(�; t) ceases to be univalent, i. e., when

two points on the � semi-circle map to a single point. When this happens, either the

more viscous or less viscous 
uid region is divided into two disjoint sections. Bertozzi,

Brenner, Dupont, & Kadano� [7] and Goldstein, Pesci, & Shelley [12] have investigated

possible topological singularity formation in Hele-Shaw 
ow with surface tension. They

consider a particular geometry, consisting of a vertical cell with a thin layer of 
uid

resting on the bottom, chosen so that a variant of the lubrication approximation can

be applied. Using this approximation, they concluded that in certain cases the top

interface of the layer touches the bottom of the cell in �nite time. However, their

geometry and pressure conditions are signi�cantly di�erent from ours and it is unclear

if their results can be extrapolated to our geometry, where there is a constant pressure

gradient far ahead of the �nger.

In some situations, a loss of univalence is possible even when the singularities and

zeroes of z�(�; t) in j � j> 1 remain a �nite distance from j � j= 1. We used our code to

search for such an event in the zero surface tension problem. Unlike commonly used

boundary integral methods which run into resolution di�culties when the interface

is about to pinch (see Baker & Shelley [3]), our numerical approach based on the

conformal mapping function will not incur di�culties as long as the pinching is not

accompanied by a singularity or zero of z� impinging on j � j= 1.

Unfortunately, we were unable to �nd any occurance of this type of singularity

in the situation where a 
uid of zero viscosity displaces a viscous 
uid. Of course,

the formation of a topological singularity in this case cannot be completely ruled out

from our limited examination and further study is required. When we reversed the
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pressure gradient at in�nity, however, so that the more viscous 
uid on the right of

Figure 1 displaces the 
uid of negligible viscosity on the left, topological singularities

were sometimes observed. It is well known from the Sa�man & Taylor [36] analysis

that a planar interface in this situation is stable and that any small deformation will

reduce with time. This can be expected to be true even for most �nite amplitude

disturbances. However, our �ndings show that if the interface is highly deformed

initially, pinching can occur.

One such example is presented in Figure 10. This �gure shows interfacial pro�les

before and after topological singularity formation for an initial value problem with

two branch point singularities initially close to the unit disk. We picked data in z�

of the form z�(�; 0) = �2(1 � �2=�2s )
�=(��) where � = �1:9 and �s = (1:105; 0:0);

with this choice, zeros in z� are placed initially at in�nity.k The change to liquid

pushing air reverses the direction of the characteristic velocities (given by q1),and

the singularities move outward from the unit circle. Consequently, the evolution of

the interface can be obtained without explicitly representing the singularities. We

therefore set z � (2=�) ln � = G+ + Ĝ0 and solve (39) on the circle j�j = ei� ; there is

no need to evolve the radius of this circle. In the run we set N = 128 and �t = 0:001.

Our example shows that a loss of univalency can occur in zero surface tension


ows without concurrent singularities in z� , and illustrates the ability of our numer-

ical method to contend with such self intersections. The occurance of these singu-

larities appears to be quite sensitive to initial conditions, with fatter initial �ngers

typically evolving to a 
at sheet without pinching. The form of the solution after a

self-intersection remains an open question.

6 Discussion and Conclusions

We have described a numerical method designed to track singularities present in the

conformal map from the unit semi-circle to the physical domain of Hele-Shaw 
ow in a

channel. The method is restricted to those conformal maps that contain singularities

of the form (23), and their initial location �j(0) and power �j must be given if they lie

kThus, the presence of surface tension will not signi�cantly a�ect the evolution of the interface for

the times shown.
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inside the circle of radius R(0). Furthermore, their amplitude Ej(�; 0) andG(�; 0) must

be speci�ed, or at least their inner and outer components must be given on j�j = R(0)

and j�j = 1 respectively. This detailed information of the initial properties of the

conformal map correspond to high precision knowledge of the initial interface location.

Our numerical method then advances the conformal map, and hence the interface,

numerically in a stable way. In other words, round-o� errors do not contaminate the

high precision speci�cation of the interface location.

Besides the restrictions on the initial conditions, there are two other limitations on

our method. Singularities in inner analytic components of Ej(�; t) and G(�; t) occur

inside the unit disk at 1=�j(t). As �j(t) approaches the unit disk, these singularities also

approach the boundary of the unit disk, and cause slow decay of the Fourier modes for

Ej(�; t) and G(�; t). Consequently, we need many Fourier modes to ensure reasonable

accuracy. Also, at present the method is limited to B = 0. When B 6= 0, zeros in z�

are transformed into patterns of �4=3 singularities. Some of these can move toward

the unit circle and a�ect the shape of the interface at later times. Nevertheless, as long

as �j � �4=3 and none of the singularities formed out of initial zeros approach the

unit disk closely, our results will be the correct limiting behavior as B ! 0. Perhaps

more importantly, our method enables accurate B = 0 computations to be obtained

for quite a general distributions of initial singularities, so that comparisons with B > 0

solutions can be made. These kind of comparisons complement the asymptotic theory,

and facilitate an understanding of the in
uence of small capillary e�ects.

Despite the limitations, we �nd singularities induce interfacial structure that is

typical of experiment observations when B is very small. In particular, two singulari-

ties, placed on the real axis on either side of the unit circle, induce formation of a long

�nger. Singularities o� the real axis induce small indentations on this �nger if their

amplitudes are small, giving the appearance of side-branches, or large indentations if

their amplitudes are comparable to the ones on the real axis, giving the appearance

of tip-splitting and �nger competition. In general, we expect that a continual inward

stream of singularities of all amplitudes can account for multiple branching and com-

petition as observed experimentally. Although some aspects of interfacial evolution

due to multiple singularities have been examined previously by Howison [19] using a
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class of exact solutions for simple pole singularities, our algorithm allows a broader

study to be undertaken for collections of isolated singularities of more general form.

We plan to continue studies of the properties of the singularities and the interfa-

cial structure their induce. For example, we wish to explore what role the complex

amplitudes have on the trajectories of the singularities. We hope to �nd ways to rep-

resent the singularities in better forms that may remove some of the limitations in our

method, and we hope to �nd ways to capture the transformation of zeros when B is

very small, but non-zero. The authors would like to acknowledge support from NASA

grant NAG 3-1415 (G.B.), Department of Energy contract DE-FG02-92ER14270 (M.

S. and S. T.), and an NSF Postdoctoral Fellowship (M. S.). S. T. was partially sup-

ported by NASA grant NAS1-18605 while in residence at The Institute for Computer

Applications in Science and Engineering (ICASE).
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List of Figure Captions

1. The unit semi-circle in the � plane is mapped into the viscous 
uid region of the

channel, with the circular arc being mapped to the interface. The points A,B,

and C in the � plane are mapped to the corresponding points in the channel.

2. The � = 1=2 Sa�man-Taylor �nger. In this and each of the subsequent �gures

the viscous 
uid region lies to the right of the curve. The pro�les show the

position of the interface from t = 0 to t = 3:0 in increments of :2.

3. A �nger produced by two branch point singularities of strength � = �4=5,

located at symmetric positions on the real line. The pro�les show the position

of the interface from t = 0 to t = 0:8 in increments of :1, and at t = 0:85. In the

last pro�le (t = 0:85) the singularities are located at �1 = ��2 = 1:0081.

4. A �nger produced by two branch point singularities of strength � = �4=3,

located symmetrically on the real line. The pro�les show the position of the

interface from t = 0 to t = 1:1 in increments of :1. In the last pro�le (t=1.1) the

singularities are located at �1 = ��2 = 1:0054.

5. Plot of log jÊ1(k)j versus �k for the computation in Figure 4. The plots range

from t = 0 to t = 1:1 in increments of :1. Only odd values of k are plotted,

since the values of Ê1(k) for even k are zero by symmetry (in the computed

spectrum these values remain at round-o� levels). The values of Ê1(k) for k � 1

are identically zero.

6. a) Comparison of B = 0 and B = :0025 solutions for data with two branch

point singularities of strength � = �3:2 located on the real line, and with zeros

of z� initially at in�nity. The two solutions are indistinguishable at plotting

resolution. The pro�les are shown for t = 0 to t = :5 in increments of :1.

b) Comparison of B = 0 (solid line) and B = :0025 (dashed line) solutions for

the initial data of Figure 4. The pro�les are shown for t = 0 to t = 1:1 in

increments of :1.
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7. a) An advancing �nger with a side perturbation. The plots range from t = 0 to

t = 0:22 in increments of :02.

b) The singularity trajectories corresponding to 6(a). After reaching the unit

circle, the (upper) complex singularity �3 moves in a counterclockwise direction.

In the last pro�le (t = :22), the singularities are located at �1 = 1:1522; �2 =

�1:1542, and �3 = (�:9381; :3546).

8. (a) An example in which the approach of small amplitude poles causes the ap-

pearance of side-branching. Here N=512 and �t = 0:01. The plots range from

t = 0 to t = 1:2 in increments of .2.

(b) The singularities trajectories corresponding to 7(a).

9. a) An illustration of tip splitting followed by �nger formation and competition,

due to � = �4=3 branch point singularities. The plots range from from t = 0 to

t = 0:6 in increments of :2, and from t = 0:6 to t = 0:7 in increments of :02.

b) The singularity trajectories for the �nger competition shown in 8(a). The

motion of the singularities is towards � = �1.

10. A topological singularity obtained using branch point initial data. The plots

correspond to t = 0 (the rightmost curve) and t = 0:08: Although the code runs

past the self-intersection, the solution no longer has physical meaning.
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