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Abstract

Observations regarding the use of advanced computational 
uid dynamics (CFD) anal-
ysis, sensitivity analysis (SA), and design codes in gradient-based multidisciplinary design
optimization (MDO) re
ect our perception of the interactions required of CFD and our ex-
perience in recent aerodynamic design optimization studies using CFD. Sample results from
these latter studies are summarized for conventional optimization (analysis-SA codes) and
simultaneous analysis and design optimization (design code) using both Euler and Navier-
Stokes 
ow approximations. The SA codes is greater than that required for design codes.
Thus, an MDO formulation that utilizes the more e�cient design codes where possible is
desired. However, in the aerovehicle MDO problem, the various disciplines that are involved
have di�erent design points in the 
ight envelope; therefore, CFD analysis-SA codes are
required at th aerodynamic \o� design" points. The suggested MDO formulation is a hybrid
multilevel optimization procedure that consists of both multipoint CFD analysis-SA codes
and multipoint CFD design codes that perform suboptimizations.
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1 Introductory Remarks

The focus of this work is on only those techniques that are applicable to advanced (high-fidelity)
computational fluid dynamics (CFD) and that are extendable to multidisciplinary design optimization
(MDO) for realistic three-dimensional (3–D) aerovehicles. Table 1 briefly summarizes this research and
gives the chief advantages and disadvantages of each technique.

Table 1. Summary of Techniques Used in Present Focus

TECHNIQUE ADVANTAGE DISADVANTAGE

Advanced CFD Required physical fidelity Nonlinear and high costs

Multiblock (or unstructured) Required geometric complexity Higher costs

Multigrid acceleration Efficient algorithm Tedious code

Gradient-based optimization gradient information in math
models

Local vs. global minima

Automatic differentiation Accurate and robust Efficiency questions

Incremental iterative method Consistent, efficient, and
versatile SA algorithm

Not automatic

Application of these techniques to advanced CFD codes has been proposed and discussed in [1]–[5]. In
[1] and [2], the incremental iterative method (IIM) for calculation of sensitivity derivatives (SD’s) is
discussed. In [3], the application of automatic differentiation (AD) to obtain SD’s from a 3–D thin-layer
Navier-Stokes code is demonstrated. References [4] and [5] are recent summaries of the studies of this
work; the combination of AD and IIM to efficiently obtain consistent discrete SD’s from a two–dimensional
(2–D) thin-layer Navier-Stokes code is demonstrated in [6]. The AD tool ADIFOR (AD of Fortran) of [7]
and [8] has been used throughout this work. Symbols and acronyms are defined as introduced in the text.

The equations summarized in this paragraph can be found in greater detail in [1]–[6]. The conservation
laws of compressible fluid flow,R, and aerodynamic functions,F , of interest can be expressed as

(1) R(Q(b); X(b); b) = 0 (Nonlinear state equation)

and

(2) F = F (Q(b); X(b); b) (Aerodynamic output function)

where Q is the vector of state (field) variables,X is the vector of computational grid coordinates, and
b is the vector of design variables. Direct differentiation of Eqs. (1) and (2) with respect to the design
variables yields

(3) R0
�
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=
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whereQ0
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dQ
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and X0
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are the flow and grid SD’s with respect to the design variables. The
introduction of an adjoint variable (vector)A associated withF gives
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and

(6) F 0 =
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whereT denotes transpose. The IIM solution forms for Eqs. (1), (3), and (5) are, respectively,
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wheren andm are iteration indices andf@R
@Q

denotes an “approximate operator of convenience.” The first-
order SD’s (F0) are obtained from either Eq. (4) withQ0 and X0 or Eq. (6) withA andX0. Second-order
SD’s are also discussed in [6] but not used in the present work.

Calculation of SD’s via finite differences (FD) for large sets of iteratively solved nonlinear equations
can be expensive and inaccurate. A comparison of SD ratios for lift, drag, and pitching moment with
respect to a geometric design variable for transonic turbulent flow about an airfoil [9] is shown in Table 2.
The denominator in these SD ratios is the value of the SD via AD at relative residual,R=R1, and residual
derivatives,

�
dR
db

�
=
�
dR
db

�
1
, reductions of 10—6. If the FD results (SDFD) agreed with the AD results (SDAD),

Table 2. Sensitivity Derivative Ratio Comparisons: A Turbulent Viscous Example

% change of design variable, b
R
R1

SDFD
(SDAD)

10�6 10 1 0.1 0.01 0.001
( dRdb )
( dRdb )1

SDAD
(SDAD)

10�6

lift 0.937 0.926 0.040 — — 0.983

drag 4.862 1.819 4.383 — — 1.15310�3

moment 1.035 2.097 �0.099 — —

10�3

0.989

lift 1.043 0.973 0.873 �0.018 — 0.999

drag 3.792 2.585 7.883 29.154 — 1.00710�4

moment 1.139 0.944 1.129 0.385 —

10�4

0.999

lift — 0.985 1.039 0.973 �0.003 0.999

drag — 1.567 �0.159 6.986 28.851 1.00010�5

moment — 0.995 1.188 1.269 0.397

10�5

0.999

lift — 1.003 0.992 1.112 1.331 1.000

drag — 1.507 0.991 �0.904 2.804 1.00010�6

moment — 1.006 1.003 1.270 1.680

10�6

1.000

all table entries would be like those in the last column (i.e., essentially unity). The table shows that at a
given convergence level for R, different output functions may require different design variable step sizes
(and vice versa) for the SDFD. The similarly shaded areas show comparable SD accuracies for the FD
and AD approaches.

2



Recent overviews of optimization approaches for coupled systems (disciplines) are given, for example,
in [10] and [11]; the present single-discipline optimization observations will be discussed in terms similar to
those introduced in [10]. Conventional optimization utilizes analysis (and perhaps also sensitivity analysis
(SA)) codes in conjunction with an optimization code, as shown in Fig. 1(a); when an analysis is an iterative
one, it must be run to reasonably well-converged solutions many times. In [10], this method is called the
nested analysis and design (NAND) approach; the optimizer and analysis codes are loosely coupled. At
the other extreme is the simultaneous analysis and design (SAND) approach in which the design and state
variables are updated together. For an iterative (state) analysis code, then, the design variable updates are
made within the iterative analysis loops; the optimizer and analysis are implicitly coupled to produce an
iterative design code as shown in Fig. 1(b). In reality, an entire range of design procedures exists between
the two extremes of Figs. 1(a) and 1(b); these procedures differ only in the frequency at which the iterative
analysis and optimization interact.

OPTIMIZER

Iterative
analysis

Conventional

Objective and constraints
Design variables

Equilibrium conditions 
State variables

Loosely coupled

NAND

Simultaneous Analysis and Design
                   Optimization

Simultaneous
analysis (state)
and design (adjoint)
update

Iterative
 design

 State
  and
adjoint

Implicit

SAND

(a) Nested analysis and design (NAND). (b) Simultaneous analysis and design (SAND).

Fig. 1. Approaches for an optimization with iterative (analysis) state equation.

In the next few sections, this paper addresses recent aerodynamic single-point design optimization
studies using both NAND and SAND approaches, with a comparison of computational requirements;
proposed aerodynamic multipoint aerodynamic design optimization approaches; and, finally, a suggested
MDO approach.

2 CFD Single-Point Design Optimization Results

The results discussed in this section are for recent single-discipline (CFD) single-point design optimization
studies; details have been reported elsewhere as noted in the quoted references. Both NAND and SAND
approach results have been obtained, although generally not for identical problems. Even though formal
optimization procedures have been used, these studies produce design improvements as opposed to optimum
solutions, probably because of the accepted convergence levels in the required iterative solutions for the
nonlinear CFD equations.

2.1 Conventional Optimization: NAND with SA

The conventional optimization study results discussed here are for aerodynamic shape optimization using
the NAND approach with SA based on analytical SD’s. The High-Speed Civil Transport (HSCT) 24E
design improvement studies are based on a 3–D marching (supersonic) Euler CFD code, and results are
reported in [12]. The transonic turbulent airfoil study results are based on a 2–D thin-layer Navier-Stokes
CFD code, and results are reported in [9].

2.1.1 HSCT Design Improvement. Initial results for aerodynamic shape optimization studies that in-
vestigate the feasibility of using a 3–D supersonic Euler code with an efficient SA capability are given in
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[12] for a Mach 2.4 HSCT wing-body configuration. A comparison of typical nongeometric SD’s of the
force and moment coefficients with respect to Mach number, angle of attack, and yaw angle is given in [13].
The IIM and FD SD’s agree to four significant digits; the IIM results are computationally less expensive
to obtain. Typical aerodynamic SD’s of the force and moment coefficients with respect to wing geometry
parameters obtained with the IIM are also accurate and computationally less expensive than those obtained
by efficient FD. A comparison of these geometric SD’s with respect to wing-section thickness, twist, and
camber, as well as wing planform and flap deflections is given in [12]. Again, the agreement between the
IIM and FD results is very good, and the IIM results are computationally less expensive to obtain.

The computational flowchart for the aerodynamic shape optimization studies is shown in Fig. 2,
where the (outer) shape design iteration loop is shown. In these studies, extensive use was made of
solution restart files; these inner loops are not shown in Fig. 2. The shape design loop starts at the upper
left with the automated surface-shaping and volume-grid generation codes, which are discussed in [14]
and [15]. These codes are differentiated with ADIFOR ([7] and [8]) to provide the grid SD’s (X0) with
respect to approximately 100 (wing) geometric design variables, as discussed in the appendix of [12].
Both the grid (X) and its SD’s (X0) are required because the geometric (shape) design variables determine
the vehicle surface and its body-fitted computational grid. The marching Euler code is differentiated by

hand
�
@R
@Q

; @R
@X

; and @R
@b

, and likewise for output functionsF
�

to construct the flow derivative code. The
Automated Design Synthesis (ADS) program [16] is used for the present constrained optimization results;
the sequential quadratic programming strategy, the modified method of feasible directions optimizer, and
the Golden Section line search options have been selected. Evaluation of both function and first-order
derivatives (SD’s) is given to the ADS code. Because the SD via the IIM are essentially analytical
derivatives, this combination of methods in ADS gives the most consistent optimization results. However,
many function evaluations are required by the selected search procedure. Increments in the shape design
variables, denoted “Del geom input” in Fig. 2, are returned to the surface shaping code to start the next
design iteration.

Geom
input

Grid
input

Mod
shape
code

 Shape/
grid
code

Del
geom
input

Output  
grid with 
geom SD

Flow
input

Marching
Euler
code

Output  
flow with 
geom SD

Aero cost
function/
optimizer

Design

Fig. 2. Flowchart for aerodynamic shape optimization feasibility studies.

Sample results from two of the eight optimization studies reported in [12] are discussed here. The
HSCT 24E filleted wing-body configuration generated by NASA Langley Research Center is the baseline
shape; the flow conditions are Mach numberM1 = 2:4, angle of attack = 1�, and yaw angle� = 0�.
Convergence of both the nonlinear iterative flow analysis and the linear iterative SA is to a relative
residual reduction of 6 orders of magnitude for all required solutions.

For the wing-section thickness design improvement study, initial and final thickness distributions are
shown in Fig. 3. The 15 design variables consist of 5 parameters each at the wing root, break, and
tip locations. The wing is linearly lofted from root to break and from break to tip to supply thickness
information at all other wing stations. The objective function is drag minimization, with the wing root
bending moment and lift constrained to their baseline values; that is, minimizeCx

Cx
0

subject to CMx
CMx0

� 1:0
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and CZ

CZ0
� 1:0. The baseline drag is decreased by about 10 percent, and both constraints are active. This

improvement is obtained in 8 optimization steps, which requires 117 function evaluations and 8 gradient
evaluations; the Cray-2 run time is about 1.2 hours. For 6 of the 15 design variables, the side constraints
are active (within 5 percent of the specified bounds, which were arbitrarily taken for the thickness variables
to be ±50 percent of the baseline values). For supersonic flow considerations alone, the wing would be
expected to become thinner, as shown in Fig. 3.

2

0

–2 0
x/c

Initial Final

100

Root
Break
Tip

t/c

15 Design variables

Fig. 3. Wing section thickness distributions for HSCT 24E design improvement.

For the wing planform design improvement study, initial and final planforms are shown in Fig. 4.
The five design variables are the wing root, break, and tip chord lengths and the streamwise locations of
both break and tip section leading edges. The objective is to minimize� CZ

CZ
0

subject to
CM

X

CM
X
0

� 1:0 and
CX

CX0
� 1:0. The baseline lift is increased by 5.5 percent, and the drag constraint is violated by 3.8 percent.

Neither the wing bending-moment constraint nor any of the design-variable side constraints are active or
violated. For supersonic flow considerations alone, the wing tip should be swept more than in the baseline
HSCT 24E; Fig. 4 shows that the optimization procedure produces that result. At a Mach number of 2.4,

Final

Initial

5 Design variables

µ2.4 = Sin–1(1/2.4)
2.00

–0.75

–3.50

Fig. 4. Wing planform shape for HSCT 24E design improvement.

the Mach angle (�) is 24.6�. The angle subtended by the wing-tip leading edge from the root leading edge
is 25.9� for the baseline HSCT 24E and 23.8� for the final optimized planform. That is, the planform
optimized for only supersonic flow lies behind the Mach cone.

2.1.2 Turbulent Transonic Airfoil Improvement. Initial results for aerodynamic shape optimization
studies that investigate the feasibility of using a 2–D Navier-Stokes code with an efficient SA capability
are given in [9] for a turbulent transonic airfoil. Comparisons of typical SD’s of force and moment
coefficients with respect to both flow and geometric variables are given in [6] for several methods of
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calculation. The agreement between the IIM via AD and FD is good; the computational costs for the IIM
using AD are comparable to or less than those for the FD.

The flowchart for this airfoil design improvement process is essentially that shown in Fig. 2; a more
detailed flowchart with the restart loops indicated is given in [9]. The automated geometry and grid code
TBGG (two-boundary grid generation) [17] is used for algebraically generated C grids around airfoils.
The airfoil upper and lower surfaces are each represented by a linear combination of four orthonormalized
polynomials [18]; their amplitude (or weights) are the shape design variables. The entire TBGG code is
differentiated with ADIFOR ([7] and [8]) to obtain the grid SD’s (X0) with respect to these eight design
variables. The CFD code ANSERS (algorithm for the Navier-Stokes equations based on a Riemann
solver) [19] is a 2–D Navier-Stokes code based on an upwind cell-centered finite-volume formulation
and simulates turbulence with the Baldwin-Lomax [20] algebraic turbulence model. This code is also
differentiated with ADIFOR; however, the differentiation is done in parts so that an efficient IIM can be
constructed for the SD’s [6]. As in the previous example, the ADS program [16] is used for the present
constrained optimization results. The sequential quadratic programming strategy, the modified method of
feasible directions optimizer, and the Golden Section line search options are selected; evaluation of both
the function and first-order derivatives is provided to the ADS code.

The design optimization problem summarized here (and fully discussed in [9]) is the maximization
of the lift-to-drag ratio of an airfoil in a turbulent transonic flow. The incident flow is at a Mach number
of 0.8, a chord Reynolds number of 5 million, and an angle of attack of 1�. Solutions are obtained on a
C-type mesh of 257 (circumferential direction)� 67 (normal direction) points. In order to maintain the
convexity of the airfoil around the leading edge, 10 constraints of positive curvature are imposed at equally
spaced grid points on both surfaces for the first 5 percent chord.

The initial solution (Q) for the NACA 0012 airfoil is converged to a relative analysis residual reduction
of 10 orders of magnitude, whereas for the SD (Q0) the relative derivative residuals are converged 6 orders.
These solutions were used as initial values for design optimization iterations. An optimal solution was
obtained after three resubmittals to ADS; these resubmissions ensure that the optimization iterations have
not terminated prematurely and are denoted by the black symbols on the objective function history plot
of Fig. 5. The objective functionC`=Cd has been increased to approximately 10 times its initial value in
58 design iterations. This optimization requires the same amount of central processing unit (CPU) time
as required for approximately 36 well-converged single aerodynamic analyses. The strong shocks present
in the initial design have been eliminated from the final design, as can be seen from the surface pressure
distribution plots(Cp) in Fig. 5 and the flow-field Mach-number contour plots shown in Fig. 6. The airfoil
has been thinned and cambered considerably, as would be expected in order to maximize the lift-to-drag
ratio at transonic flow conditions.

1.5

    

0

–1.5

11

9

7

5

3

1
0 Percent chordDesign iterations0

Surface pressure distributionsObjective function history

60

–CpCl/Cd

Cl0/Cd0 Initial
Final

100

Start/restart

Fig. 5. Objective function and surface pressure distributions for turbulent transonic airfoil improvement.

In the results above, the relative residual reductions for bothQ and Q0 were set to 4 orders in the
design optimization; additional solution iterations of Eq. (1) were required to improve the solution quality
of the final design. However, a limited study of several cases to assess the effects of both flow analysis
and SA convergence tolerances on the performance of the aerodynamic design optimization is given in [9].
Different combinations of flow and SA tolerances (differing by factors 10±1) result in different achieved
objective functions (differing by 50 percent to 75 percent); these different combinations require different
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total CPU times and produce different airfoils. Such different results are not unexpected in this gradient-
based optimization procedure, because the (partially converged) values of aerodynamic functions and
derivatives govern the (approximate) objective function surface and the (approximate) search direction on
that surface. The different airfoils that result may also correspond to different local optima on the true
(well-converged) objective function surface.

M

1.300

1.235

1.170

1.105

1.040

0.975

0.910

0.845

0.780

0.715

0.650

0.585

0.520

0.455

0.390

0.325

0.260

0.195

0.130

0.065

0.000

(a) Initial. (b) Final.

Fig. 6. Flow-field Mach number contour plots for turbulent transonic airfoil improvement.

2.2 Simultaneous Analysis and Optimization: SAND

Several simultaneous analysis/optimization demonstration study results are discussed here for aerodynamic
shape optimization using a SAND approach with an SA, based on analytical SD’s or adjoints. The
present procedure, using CFD, has been called SAADO (simultaneous aerodynamic analysis and design
optimization). This procedure incorporates design optimization within CFD analysis to achieve a converged
flow solution and an optimal design at the same time. For advanced 3–D CFD codes, an iterative solution
of the linearized approximations to the nonlinear flow equations is required because of the large matrices
involved. Design optimization is also iterative; the SAADO procedure interacts these two iterations
(before either is converged), allowing a simultaneous relaxation of both the flow-field solution and the
design optimization. Overall computational efficiency is achieved because expensive iterative solutions
for nonoptimal design parameters are not converged (i.e., obtained). Initial demonstration studies are
for quasi-one-dimensional (1–D) nozzle flows described by an Euler equation; the results are reported in
[21] and [22]. The transonic turbulent airfoil results are based on a 2–D thin-layer Navier-Stokes CFD
approximation and the results are reported in [23].

2.2.1 Quasi–1–D Nozzle Demonstration. The basic formulation and several variations of SAADO
have been derived and successfully implemented for design optimization of quasi-1–D nozzles [21, 22].
The feasibility of SAADO is demonstrated for both supersonic and transonic flow described by a 1–D
Euler equation. Optimization results for a supersonic nozzle design are shown in Fig. 7(a). Standard
NAND optimization results with ADS software [16], for both one-sided FD and quasi-analytical (QA) [2]
differentiation for SD’s are compared with the SAADO results. The SAADO procedure produces a better
objective minimization (which, in this case, should tend to zero) in 20 design cycles with fewer equivalent
Newton-Raphson (NR) iterations and in less computer time than either of the standard optimizations. For
the transonic nozzle, the residual (R) history plots in Fig. 7(b). show that SAADO requires approximately
the same number of iterations to reach the optimal solution as is required for a single flow analysis. The
oscillating nature of the SAADO residual history indicates that the incorporation of design changes alters
the normal convergence pattern for flow analysis; these oscillations cease when the design changes cease.
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In both nozzle designs, the objective is to match a prescribed velocity distribution throughout the length
of the nozzle. The results are shown in Fig. 8.

Optimizer

SD calculation

Objective

Equiv. NR iter.

Cray-2 (sec)

ADS

FD

8.8E-4

174

2.19

ADS

QA

8.9E-4

102

1.29

SAADO

8.9E-5

80

0.69

0

–5

–10

–15
0 Iterations

log (R)

1500

SAADO

Analysis

(a) Supersonic. (b) Transonic.

Fig. 7. Convergence results for SAADO quasi-1–D nozzle flow feasibility demonstration.

1.3

1.2

1.1

1.0

Velocity

Supersonic

Target
Initial
Final

3

2

1

0 100
% of duct length

Transonic

% of duct length
1000

Fig. 8. Nozzle velocity distributions for supersonic and transonic flow SAADO feasibility demonstration.

The primary objective of the SAADO formulation is a significant reduction in the CPU time; the
CPU time required for the repeated analyses in standard NAND optimization is impractical. The potential
for SAADO is clearly demonstrated in these sample 1–D nozzle design optimization problems. For the
supersonic flow case, the better solution is obtained by SAADO in 53 percent of the CPU time required by
the NAND (QA for SD) approach; this solution time corresponds to the time required for approximately
9 equivalent analyses. For the transonic flow case, the SAADO approach obtains the design in the time
required for 1 or 2 analyses.

2.2.2 Turbulent Transonic Airfoil Demonstration. The initial results for aerodynamic shape optimiza-
tion with a 2–D SAADO procedure include both Euler and thin-layer Navier-Stokes CFD approximations.
Results for the latter are reported in [23] and are briefly discussed here. The physical problem is de-
scribed in section 2.1.2; however, airfoil thickness constraints have been added to account for a structural
wing box. This 2–D SAADO procedure is constructed from the same grid-generation (TBGG [17]) and
flow (ANSERS [19]) codes briefly discussed in section 2.1.2. Both hand differentiation (Euler, adjoint)
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and ADIFOR (Navier-Stokes, direct differentiation) have been used to generate the required sensitivity
equations for the SAADO versions that have been tested.

Presently, the 2–D form of the SAADO procedure for a thin-layer Navier-Stokes code considers
both airfoil-shape and flow-field variables as independent (design) variables and treats the flow equations
as equality constraints. This large number of variables and constraints is reduced by solving a set of
inexact sensitivity equations; these equations and the flow analysis are solved together in IIM form. The
design optimization problem is to maximize the lift-to-drag ratioC`=Cd of an airfoil in transonic turbulent
flow, subject to 25 geometric constraints: 20 on the surface curvature imposed from the leading edge to
5 percent chord and 5 on the airfoil thickness imposed from 20 to 60 percent chord. Airfoil upper and
lower profiles are each represented by a linear combination of four orthonormalized polynomials, as in
[18]. The initial values of these eight polynomial weighting coefficients (the shape design variables) are
those for the NACA 0012 airfoil.

Sample results for the SAADO approach to improving the lift-to-drag ratio at a Mach number of
0.8, an angle of attack of 1�, and a chord Reynolds number of 5 million, starting from the NACA 0012
airfoil, are obtained on a C-type mesh of 127� 33 points. Figure 9 shows the objective function (versus

Objective function
history

Surface pressure
distributions

Final
Initial

Start /restart

7

5

3

1

1.5

0

-1.5
0 20 0 100SAADO cycles Percent chord

CI/Cd
CI0/Cd0

-Cp

Fig. 9. Objective function and surface pressure distributions
for turbulent transonic airfoil SAADO demonstration.

number of SAADO cycles) history and surface pressure (coefficient, –Cp) distributions on the initial and
final airfoil surfaces. In 18 SAADO cycles (design variable updates), the flow analysis convergence level
was reduced from 10–2 to 10–6, which produces an airfoil with approximately 500 percent improvement in
the objective function. Two thickness constraints, (at 20 and 60 percent chord) were active. These results
show that the shock wave on the lower surface of the airfoil has been eliminated; the shock wave on the
upper surface has been weakened considerably. These different shock wave patterns can also be seen in
the initial and final flow-field Mach number contour plots, which are shown in Fig. 10.

The computational time required for this SAADO case is approximately the same as 22 flow analyses
converged to a relative residual error of 10–6 on this 127� 33 grid. For the inviscid (Euler) approximation,
the relative SAADO time has been reduced further. The set of eight inexact aerodynamic sensitivity
equations is replaced by three previously obtained, hand-differentiated adjoint equations reducing the
computational time by approximately one-third. For a single adjoint equation, which corresponds to
the single output functionC`=Cd, the estimated reduction in computational time would be by a factor of
approximately 3. This reduction is not currently feasible for the Navier-Stokes code because the ADIFOR
tool does not provide a computationally efficient adjoint equation code. Nevertheless, the feasibility for
implementation and use of the SAADO procedure on a 2–D thin-layer Navier-Stokes code in transonic
turbulent airfoil design improvement has been demonstrated; ADIFOR was used to generate the derivative
code.

2.3 Comments on NAND versus SAND Optimization.

A number of previous formulations that differ from SAADO have also involved efficient SAND method-
ologies for aerodynamic design optimization. The works of Rizk [24], Campbell [25], Drela [26], and
Young et al. [27], for example, either incorporated simple design modification rules in the aerodynamic
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Fig. 10. Flow-field Mach number contour plots for turbulent transonic airfoil SAADO demonstration.
analysis iterations or extended the Newton-like methods to include the iteration equation that guides the
change of design variables. Ghattas and Orozco [28] and Ta’asan et al. [29] also developed procedures
for SAND. Ghattas and Orozco derived an equation that relates the design changes to the changes in the
flow solution, based on the sparsity of the Hessian matrix in the design optimization problem formulation.
Ta’asan et al. integrated the aerodynamic design optimization within the multigrid method for aerodynamic
analysis. The error reduction in each grid improves not only the quality of the flow solution but also the
design improvement at that scale. Results from other SAND procedures are given in several papers also
contained in this volume.

The point here is that SAND procedures produce aerodynamic designs much more efficiently than the
NAND procedures. Solution times for the SAND procedures are measured in one to a few single-analysis
times, whereas those for even very efficient NAND procedures are measured in many equivalent single-
analysis times. This difference was shown for the present nozzle example discussed in section 2.2.1, where
the SAND solutions varied from approximately 2 to 9 equivalent single-analysis times and the NAND
solutions were another factor of 2 to 3 times larger. For the turbulent transonic airfoil examples discussed
in sections 2.1.2 (NAND) and 2.2.2 (SAND), this difference is not as clear because structural wing-box
thickness constraints were imposed only in the latter example and the computational grids were different. In
addition, the SAADO was implemented with ADIFOR (forward-mode) direct differentiation rather than the
(reverse-mode) more efficient adjoint formulation. Nevertheless, the efficient NAND procedure required
approximately 36 equivalent single-analysis solution times; the SAND procedure required 22 single-analysis
times. Based on Euler solution comparisons, the estimated time for a single-adjoint SAND procedure for
the Navier-Stokes equations would be equivalent to 7 single-analysis times.

3 CFD Multipoint Design Optimization Plans

Multipoint design for any single-discipline optimization generally exhibits several facets of an MDO
formulation. Features of the solutions at the multiple design points may appear as constraints or objectives
(or parts of them) for the multipoint problem and must be jointly optimized and/or coordinated (which also
may be posed as an optimization) in the space of multipoint design variables. This set of multipoint design
variables may also contain subsets of variables for the different single-point problems. Thus, solutions at
the multiple points can be viewed and treated as different disciplines. When some or each of the multiple
design points involve a local design or determine a subset of the multipoint design variables, then multilevel
optimization arises naturally. Arbitrary decompositions of the multipoint design problem may be based
on lower-level partitionings guided by other considerations such as problem size, computer resources and
codes, domain decomposition, etc.; such decompositions lead to partition interface conditions which are
mismatched and must be rectified by an upper-level coordination.
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Herein, coordination tasks are viewed as those involved in establishing multipoint (or multidisciplinary)
feasibility; that is, upper-level constraints which establish compatibility of shared design variables, target
values, and partition interface conditions for the multiple single-point analyses or sublevel optimizations.
The number of levels of optimization or coordination provide another method for viewing multipoint
design processes. A detailed description of design variables and objective and constraint functions at
each optimization level depends, of course, on the particular decomposition of a given multipoint design
problem. Our intention here is to show the multipoint nature of the MDO problem and suggest the need
for efficient discipline codes for both analysis and design in order to solve the MDO problem efficiently,
without specification of the decomposition details. Formal SA may or may not be implemented along
with the iterative analyses; it is not indicated in the diagrams shown in this section. In the following
subsections, general ideas related to planned CFD multipoint design optimization studies are used to
illustrate the points to be made.

3.1 Single-Level Optimization

In the single-level processes, both optimization and coordination (OC) tasks are performed at the same
level. The conventional, or NAND procedure, places these OC tasks above or in an outer iterative loop
around the multipoint analyses, as shown in Fig. 11(a). The OC tasks provide design variables as input to
the multipoint analyses, which upon inner iterative convergence provide the output functions (and perhaps
the SD information) required by the OC tasks. A design variable update then initiates the next outer loop
iteration. This procedure requires well-converged analyses at each of the multiple points for every change
of design variables or iteration step in the outer (design) loop.

The single-level simultaneous, or SAND procedure, can be viewed either as incorporating the OC
tasks within the multiple point iterative analysis loops or as running a modified NAND procedure with
nonconverged inner or analysis loops. Both design and state variables are simultaneously updated, and the
multiple point analyses are not converged until the desired design is obtained. As indicated in Fig. 11(b),
both state and adjoint (costate or derivative) equations are iterated together, which simultaneously improves
all multiple-point flow residuals and OC task objectives.
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analysis

Iterative
analysis

MULTIPOINT OPTIMIZER

NAND

        

SAND

State and
  adjoint

State and
  adjoint

State and
  adjoint

MULTIPOINT ITERATIVE
              DESIGN

(a) NAND. (b) SAND.

Fig. 11. Multipoint, single-level optimization with iteratively solved state equations.

3.2 Multilevel Optimization

In the multilevel processes, optimization and coordination tasks need not be performed at the same level;
suboptimizations may be done at a lower or inner iteration level. Subsets of design variables that have
been essentially determined at one design point may not be needed or relevant at other design points, or
they may only be required to be not incompatible. For example, many design variables for the high-lift
system are determined at takeoff and landing conditions but are not relevant at cruise conditions, where
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efficient flight conditions drive the detailed aerodynamic shape design. Design variables which appear in
more than one suboptimization must be subject to coordination, generally at a higher level. When more
than one level of optimization exists, the procedure at each level is specified. A NAND-NAND procedure
that involves CFD appears too expensive to be considered.

A multipoint, multilevel SAND-NAND procedure is pictured in Fig. 12 for three sublevel design
points. The coordination task is assumed to be in the top-level multipoint SAND optimizer. The iterative
analysis at each multiple design point is the innermost of three nested loops and may be called many
times per optimization cycle, particularly if SA is not used to provide SD information. Repeated use of
the iterative analysis has a dire effect when that iterative analysis is expensive CFD. Design variables
at the top-level multipoint SAND optimizer generally include target values or parameters in the sublevel
optimization objective functions. Aerodynamic shape optimization for the configuration or parts of it at low
subsonic, transonic, and supersonic flow conditions might be the three sublevel design problems and the
resulting shapes must be made compatible by the upper-level coordination at convergence in the outer loop.
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analysis

Optimizer

Iterative
analysis

Optimizer

Iterative
analysis

MULTIPOINT OPTIMIZER

Fig. 12. Multipoint, multilevel SAND-NAND optimization with iteratively solved state equations.

A multipoint, multilevel SAND-SAND procedure is pictured in Fig. 13 for the same three sublevel
design points as depicted in Fig. 12. Again, the coordination task is assumed to be in the top-level
multipoint SAND optimization, where design variables include target values or parameters for the sublevel
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Fig. 13. Multipoint, multilevel SAND-SAND optimization with iteratively solved state equations.
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objective functions. Use of SAND procedures for the sublevel iterative designs should be computationally
more efficient than the corresponding NAND procedures with SA at the sublevel.

3.3 Hybrid Optimization

A combination of the single-level and multilevel processes will be called the hybrid optimization process.
In Fig. 14, the multilevel part is pictured as a SAND-SAND procedure, whereas the single-level part is
shown as a NAND procedure which may or may not include SA. Again, the coordination is assumed to be
at the top-level multipoint optimization, or in the outer loop shown in Fig. 14. In a multipoint aerodynamic
wing design that utilizes CFD techniques, for example, the three sublevel iterative design points (at the left)
may be viewed as corresponding to takeoff and landing (low speed), transonic cruise, and supersonic cruise,
as previously discussed. The iterative analyses (at the right) may correspond to other flow conditions (i.e.,
aerodynamic “off-design” points) where, for example, wing root bending moment, shock strength, lift, or
drag (or other functions) need to be assessed at each multipoint design step for constraint evaluation or
other considerations. Often, such constraints arise from other discipline considerations and are, therefore,
required in a realistic single-discipline optimization. Updated input at these off-design analysis points
would be determined by the coordination at the upper level multipoint design step.
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Fig. 14. Multipoint, multilevel hybrid optimization with iteratively solved state equations.

4 Suggested MDO Procedure

A given discipline multipoint design, however, differs from that shown in Fig. 14 because many of the
required simultaneous analyses will be from other disciplines and will generally occur at the off-design
points of those disciplines. For example, in the multipoint aerodynamic wing design pictured in Fig. 15,
structural analyses will be required at each sublevel aerodynamic design point for a flexible wing and also
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Fig. 15. Multipoint, multilevel hybrid aerodynamic optimization with MDA.

(possibly) at the aerodynamic off-design points. None of these points may be those that correspond to
the structural design points. In addition, other discipline analyses may also be required for the multipoint
aerodynamic optimizer. The same is true for the corresponding structural multipoint design; aerodynamic
analyses are required at the “load-case” flow conditions, as shown in Fig. 16. Generally, these points
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are not the aerodynamic (shape) design points. Thus, the set of multipoint MDO design points appears
to be a collection of hybrid multilevel “discipline-design” multidisciplinary analysis (MDA) procedures,
each with a different subset of design points or flow conditions. A practicable implementation of these
procedures requires efficient computational code for both the discipline analysis and the iterative design.
For the expensive iterative analyses of advanced CFD, the iterative design should be a SAND procedure
rather than a NAND procedure with SA.
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Fig. 16. Multipoint, multilevel hybrid structural optimization with MDA.

The suggested MDO formulation is a coordinated combination of hybrid multilevel processes such
as those pictured in Figs. 15 and 16. The multipoint hybrid multilevel optimizations will be sublevel
optimizations in an MDO coordination level as shown in Fig. 17. This suggested MDO formulation
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MULTIDISCIPLINARY OPTIMIZER
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design with
MDA

Hybrid other 
disciplinary
design with
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Fig. 17. Suggested MDO procedure: coordinated hybrid multilevel suboptimizations.

is much closer to the currently practiced design procedures than an “all at once” MDO procedure as
described, for example, in [11]. In effect, each discipline actively participates in its sublevel hybrid design,
with supporting MDA and MDO coordination from the top level or the outer loop. This suggested MDO
formulation can also be viewed as a multilevel coordinated or a collaborative suboptimization procedure.

5 Concluding Remarks

Observations have been made regarding the use of advanced computational fluid dynamics (CFD)
analysis, sensitivity analysis (SA), and design codes in gradient-based multidisciplinary design optimization
(MDO). These observations reflect our perception of the interactions required of CFD and our experience
in recent aerodynamic design optimization studies using CFD. Sample results from these latter studies
have been summarized for conventional optimization (analysis-SA codes) and simultaneous analysis and
design optimization (design code) using both Euler and Navier-Stokes flow approximations. The amount
of computational resources required for aerodynamic design using CFD via analysis-SA codes is shown to
be greater than that required via design codes. Thus, an MDO formulation that utilizes the more efficient
design codes where possible is desired. However, in the aerovehicle MDO problem, the various disciplines
that are involved have different design points in the flight envelope; therefore, CFD analysis-SA codes are
required at the aerodynamic “off-design” points. It is concluded that the appropriate MDO formulation
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include hybrid multilevel optimization procedures that consist of both multipoint CFD analysis-SA codes
and multipoint CFD design codes that perform suboptimizations.
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