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Abstract

We present a convergence theory for pattern search methods for solving bound con-

strained nonlinear programs. The analysis relies on the abstract structure of pattern

search methods and an understanding of how the pattern interacts with the bound con-

straints. This analysis makes it possible to develop pattern search methods for bound

constrained problems while only slightly restricting the 
exibility present in pattern

search methods for unconstrained problems. We prove global convergence despite the

fact that pattern search methods do not have explicit information concerning the gra-

dient and its projection onto the feasible region and consequently are unable to enforce

explicitly a notion of su�cient feasible decrease.
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1. Introduction. This paper extends the class of pattern search methods for un-

constrained minimization, considered in [14], to bound constrained problems:

minimize f(x)

subject to ` � x � u;
(1)

where f : Rn ! R, `; x; u 2 Rn, and ` < u. We allow the possibility that some of the

variables are unbounded either above or below by permitting `j ; uj = �1, j = 1; . . . ; n.

Our convergence analysis is guided by that for pattern search methods for un-

constrained problems [14]. We can guarantee that if the objective f is continuously

di�erentiable, then a subsequence of the iterates produced by a pattern search method

for problems with bound constraints converges to a stationary point of problem (1).

By a stationary point of problem (1) we mean a feasible point x that satis�es the �rst-

order necessary condition for optimality: for all feasible z 2 Rn, (rf(x) ; z � x) � 0.

Equivalently, x is a Karush{Kuhn{Tucker point for problem (1). As in the case of

unconstrained minimization, pattern search methods for bound constrained problems

accomplish this without an explicit representation of the gradient or the directional

derivative. In particular, we prove global convergence in the bound constrained case

even though pattern search methods do not have explicit information concerning the

gradient and its projection onto the feasible region and consequently do not explicitly

enforce a notion of su�cient feasible decrease.

The general speci�cation of pattern search methods for bound constrained mini-

mization gives one broad latitude in designing such algorithms. Moreover, as we shall

discuss, classical pattern search methods for unconstrained minimization|such as co-

ordinate search with �xed step sizes and the original pattern search of Hooke and Jeeves

[9]|can be generalized without modi�cation to the bound constrained case. We also will

show that not all pattern search methods for unconstrained minimization immediately

generalize to bound constrained problems: in x5.2 we will present a counterexample

that defeats G.E.P. Box's method of evolutionary operation using two-level factorial

designs [1], [3, 12] and show how the convergence theory guides us to a remedy that

uses composite designs [2], instead of the simpler factorial or fractional factorial designs.

The multidirectional search algorithm of Dennis and Torczon [7, 13] also requires us to

augment the pattern used for the algorithm; again we �nd a straightforward exten-

sion, but one that reveals much about the interesting behavior of the simplices which

characterize that method.

Notation. We denote by R, Q, Z, and N the sets of real, rational, integer, and

natural numbers, respectively.

Unless otherwise noted, norms are assumed to be the Euclidean norm. The feasible

region for problem (1) we denote by 
:


 = f x 2 Rn j ` � x � u g :
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The projection onto 
 we denote by P . If for scalar t we de�ne

pj(t) =

8><
>:
`j if t < `j
t if `j � t � uj
uj if t > uj,

then the projection of x = (x1; � � � ; xn)T is given by

P (x) =
nX

j=1

pj(xj)ej;

where fejg, j = 1; � � � ; n are the standard basis vectors. On those few occasions where

we must denote components of subscripted vectors, we use the following notation: qk;j
denotes the jth component of the vector qk.

We will denote by g(x) the gradient rf(x) of the objective. Finally, let

L
(y) = f x 2 
 j f(x) � f(y) g :

2. Pattern Search Methods. We begin by de�ning the general pattern search

method for the bound constrained problem (1); it di�ers from that for unconstrained

problems [14] in only a few particulars, which we summarize in x2.5.

2.1. The Pattern. As with pattern search methods for unconstrained problems,

to de�ne a pattern we need two components: a basis matrix and a generating matrix.

The basis matrix is a nonsingular matrix B 2 Rn�n.

The generating matrix is a matrix Ck 2 Zn�p, where p > 2n. We partition the

generating matrix into components

Ck = [ Mk �Mk Lk ] = [ �k Lk ]:(2)

We require that Mk 2M � Zn�n, where M is a �nite set of nonsingular matrices, and

that Lk 2 Zn�(p�2n) and that it contains at least one column, a column of zeroes.

A pattern Pk is then de�ned by the columns of the matrix Pk = BCk. For conve-

nience, we use the partition of the generating matrix Ck given in (2) to partition Pk as

follows:

Pk = BCk = [ BMk �BMk BLk ] = [ B�k BLk ]:

We also require the matrix BMk to be diagonal:

BMk = diag(di
k
); i = 1; . . . ; n:(3)

This condition, absent in the case of unconstrained minimization, is needed in order to

ensure that we can �nd feasible points in the pattern that will also produce decrease in

the objective. As we shall see, this condition is not especially restrictive and is satis-

�ed by all of the commonly encountered pattern search algorithms or straightforward

variants of them.

Given �k 2 R, �k > 0, we de�ne a trial step sik to be any vector of the form

si
k
= �kBc

i
k
, where ci

k
denotes a column of Ck = [c1

k
� � � c p

k
]. We call a trial step si

k

feasible if (xk+s
i
k) 2 
. At iteration k, a trial point is any point of the form xik = xk+s

i
k,

where xk is the current iterate.
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2.2. The Bound Constrained Exploratory Moves. Pattern search methods

proceed by conducting a series of exploratory moves about the current iterate xk to

choose a new iterate xk+1 = xk + sk, for some feasible step sk determined during the

course of the exploratory moves. The following Hypotheses on Bound Constrained

Exploratory Moves allows a broad choice of exploratory moves while ensuring the prop-

erties required to prove convergence. By abuse of notation, if A is a matrix, y 2 A

means that the vector y is a column of A.

Hypotheses on Bound Constrained Exploratory Moves.

1. sk 2 �kPk � �kBCk � �k [B�k BLk].

2. (xk + sk) 2 
.

3. If minf f(xk + y) j y 2 �kB�k; xk + y 2 
 g < f(xk),

then f(xk + sk) < f(xk).

2.3. The Generalized Pattern Search Method. Algorithm 1 states the gen-

eralized pattern search method for minimization with bound constraints. To de�ne a

particular pattern search method, we must specify the basis matrix B, the generating

matrix Ck, the bound constrained exploratory moves to be used to produce a feasible

step sk, and the algorithms for updating Ck and �k.

Algorithm 1. The Generalized Pattern Search Method for Bound Constrained Prob-

lems.

Let x0 2 
 and �0 > 0 be given.

For k = 0; 1; � � � ;
a) Compute f(xk).

b) Determine a step sk using a bound constrained exploratory moves algorithm.

c) Compute �k = f(xk)� f(xk + sk).

d) If �k > 0 then xk+1 = xk + sk. Otherwise xk+1 = xk.

e) Update Ck and �k.

2.4. The Updates. Algorithm 2 speci�es the requirements for updating �k. The

aim of the update of �k is to force �k > 0. An iteration with �k > 0 is successful;

otherwise, the iteration is unsuccessful. Note that to accept a step we only require

simple, as opposed to su�cient, decrease.

Algorithm 2. Updating �k.

Let � 2 Q, � > 1, and fw0; w1; � � � ; wLg � Z, w0 < 0, and wi � 0, i = 1; � � � ; L. Let

� = �w0, and �k 2 � = f�w1; � � � ; �wLg.
a) If �k � 0 then �k+1 = ��k.

b) If �k > 0 then �k+1 = �k�k.

The conditions on � and � ensure that 0 < � < 1 and �i � 1 for all �i 2 �. Thus,

if an iteration is successful it may be possible to increase the step length parameter �k,

but �k is not allowed to decrease.
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2.5. Di�erences between Pattern Search Methods for Unconstrained and

Bound Constrained Minimization. There are only two additional restrictions re-

quired of pattern search methods to ensure convergence for the bound constrained case.

First, we note that pattern search methods are feasible point methods; the search

begins with a point that satis�es the bounds and maintains feasibility throughout the

search. This can be seen in Algorithm 1, where we require x0 2 
. This requirement

also appears in the Hypotheses on Bound Constrained Exploratory Moves: if simple

decrease on the function value at the current iterate can be found among any of the

feasible trial steps contained in the columns of �kB�k, then the exploratory moves

must produce a feasible step sk that also gives simple decrease on the function value at

the current iterate.

The second, and more interesting, restriction is that the core pattern BMk must

be de�ned by a diagonal matrix. Because the columns of the pattern matrix determine

the directions of the steps that may be considered, we need to ensure that if we are

not at a constrained stationary point, we have at least one feasible direction of descent.

Practically, we must ensure that we have directions that allow us to move parallel to

the constraints. Requiring BMk to be a diagonal matrix is su�cient. And as we will

show in x5.2, this requirement is unavoidable.

We note an equivalence between pattern search methods for bound constrained

problems and an exact penalization approach to problem (1). Applying a pattern

search method for problem (1) produces exactly the same iterates as applying such an

algorithm to the unconstrained problem

minimize F (x);

where

F (x) =

(
f(x) if x 2 


1 otherwise.
(4)

In fact, this is one classical approach used with direct search methods to ensure that

the iterates produced remain feasible (see, for instance, [10, 11]). In the case of pattern

search methods this formulation is not simply a conceptual approach; pattern search

methods are directly applicable to this exact penalty function since they do not rely

on derivatives. However, as we will demonstrate in x5.2, this exact penalization ap-

proach cannot be applied with an arbitrary pattern search method for unconstrained

minimization; we must require that BMk be diagonal.

2.6. Results from the Unconstrained Theory. We recall the following results

from [14], to which we refer the reader for the proofs. The �rst result indicates one

sense in which �k regulates step length.

Lemma 2.1 (Lemma 3.1 from [14]). There exists a constant �� > 0, independent

of k, such that for any trial step sik 6= 0 produced by a generalized pattern search method

(Algorithm 1) we have k si
k
k � ���k.

The next result is key to the convergence of pattern search methods. It states that

the iterates produced by a pattern search method have a rigid algebraic structure.
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Theorem 2.2 (Theorem 3.2 from [14]). Any iterate xN produced by a gener-

alized pattern search method (Algorithm 1) can be expressed in the following form:

xN = x0 +
�
�rLB��rUB

�
�0B

N�1X
k=0

zk;(5)

where

� x0 is the initial guess,

� �=� � � , with �; � 2 N and relatively prime, and � is as de�ned in the

algorithm for updating �k (Algorithm 2),

� rLB and rUB depend on N ,

� �0 is the initial choice for the step length control parameter,

� B is the basis matrix, and

� zk 2 Zn, k = 0; � � � ; N � 1.

The last result we recollect says, in conjunction with Lemma 2.1, that if we bound

the size of the elements of the generating matrix (which is a reasonable thing to do),

then �k completely regulates the size of the steps a pattern search method takes.

Lemma 2.3 (Lemma 3.6 from [14]). If there exists a constant C > 0 such that

for all k, C > kcikk, for all i = 1; � � � ; p, then there exists a constant  � > 0, independent

of k, such that for any trial step si
k
produced by a generalized pattern search method

(Algorithm 1) we have �k �  �ksikk.

3. Convergence Theory. We now present the �rst-order constrained stationary

point convergence theory for pattern search methods for bound constrained problems.

We begin by de�ning, for feasible x, the quantity

q(x) = P (x� g(x))� x:

In the bound constrained theory the quantity q(x) plays the role of g(x) in the un-

constrained theory, giving us a continuous measure of how close we are to constrained

stationarity, as in the theory for methods based explicitly on derivatives (e.g., [6], where

we got the idea). The following proposition summarizes properties of q that we will

shortly need, particularly the fact that x is a constrained stationary point for (1) if and

only if q(x) = 0. While stated for the particular domain 
, the proposition holds for

any closed convex domain.

Proposition 3.1. Let x 2 
. Then

k q(x) k � k g(x) k ;(6)

k q(x) k � k P (g(x)) k ;(7)

and

x is a stationary point for problem (1) if and only if q(x) = 0.(8)
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Proof. We need the following properties of the projection:

(a) If z 2 
 then (P (x)� x; z � P (x)) � 0 for all x 2 Rn.

(b) For all x; y 2 Rn, k P (y)� P (x) k � k y � x k.
(c) If T (x) is the tangent cone of 
 at x, then

minf (g(x); v) j v 2 T (x); k v k � 1 g = �k P (g(x)) k :

The proofs of (a) and (b) may be found in [8], and the proof of (c) may be found in

[5] (there is a di�erence in sign between P (g(x)) here and the quantity r
f(x) as it is

de�ned in the latter reference).

We �rst prove (6). If x 2 
, then P (x) = x and so from (b),

k q(x) k = k P (x� g(x))� P (x) k � k (x� g(x))� x k = k g(x) k ;

which is (6).

Next we establish (7). Since P (x�g(x))�x 2 T (x), we obtain from (c) the estimate

(g(x) ; P (x� g(x))� x) � �k P (g(x)) k k P (x� g(x))� x k

or

(g(x) ; q(x)) � �k P (g(x)) k k q(x) k :(9)

Meanwhile, from (a) we obtain

(q(x) + g(x) ; �q(x)) = (P (x� g(x))� (x� g(x)) ; x� P (x� g(x))) � 0;

whence

(g(x) ; q(x)) � �k q(x) k2 :(10)

Combining (9) and (10) we arrive at

k q(x) k � k P (g(x)) k ;

which is (7).

Now consider (8). First suppose that x is a stationary point for problem (1). Then

P (g(x)) = 0, so from (7) it immediately follows that q(x) = 0. Conversely, suppose

that q(x) = 0. Then P (x� g(x)) = x, so from (a) we have, for all z 2 
,

(P (x� g(x))� (x� g(x)) ; z � P (x� g(x))) � 0;

or

(g(x) ; z � x) � 0:

But this is nothing other than the �rst-order necessary condition for optimality for

problem (1) at x.
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We can now state the �rst convergence result for the general pattern search method

for bound constrained minimization.

Theorem 3.2. Let L
(x0) be compact and suppose f is continuously di�erentiable

on L
(x0). Let fxkg be the sequence of iterates produced by a generalized pattern search

method for bound constrained minimization (Algorithm 1). Then

lim inf
k!+1

k q(xk) k = 0 :

The proof of this theorem is given in x4.1, after we have established the necessary

intermediate results.

We can strengthen the result given in Theorem 3.2 in the same way that we do in

the unconstrained case [14]. First, we require the columns of the generating matrix Ck

to remain bounded in norm, i.e., that there exists a constant C > 0 such that for all

k, C > kcikk, for all i = 1; � � � ; p. Second, we replace the original Hypotheses on Bound

Constrained Exploratory Moves with a stronger version, given below. Third, we require

that limk!+1�k = 0. All the algorithms described in x5, except multidirectional

search, satisfy this third condition because of the customary choice of � = f1g � f� 0g.
However, it is not necessary to force the steps to be non-increasing.

Strong Hypotheses on Bound Constrained Exploratory Moves.

1. sk 2 �kPk � �kBCk � �k [B�k BLk].

2. (xk + sk) 2 
.

3. If minf f(xk + y) j y 2 �kB�k; xk + y 2 
 g < f(xk),

then f(xk + sk) < minf f(xk + y) j y 2 �kB�k; xk + y 2 
 g.

Theorem 3.3. Let L
(x0) be compact and suppose f is continuously di�erentiable

on L
(x0). In addition, assume that the columns of the generating matrices are uni-

formly bounded in norm, that limk!+1�k = 0, and that the generalized pattern search

method for bound constrained minimization (Algorithm 1) enforces the Strong Hypothe-

ses on Bound Constrained Exploratory Moves. Then for the sequence of iterates fxkg
produced by the generalized pattern search method for bound constrained minimization,

lim
k!+1

kq(xk)k = 0 :

The proof will be found in x4.2.

4. Proof of Theorems 3.2 and 3.3. Given an iterate xk, let gk = g(xk) and

qk = q(xk). Let ! denote the following modulus of continuity of g: given x 2 Rn and

" > 0,

!(x; ") = sup f � > 0 j k g(y)� g(x) k < " for all y such that k y � x k < � g :

We begin with an elementary proposition concerning descent directions.
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Proposition 4.1. Let d 2 Rn and suppose that f restricted to the closed line

segment connecting x and x+d is continuously di�erentiable. Assume, too, that g(x) 6= 0

and g(x)Td � �" k d k. Then, if k d k < !(x; "
2
),

f(x+ d) � f(x) � �
"

2
k d k :

Proof. From the mean-value theorem, we have, for some y on the line segment

between x and x+ d,

f(x+ d)� f(x) = g(x)Td+ (g(y)� g(x))
T
d

� �" k d k+ k g(y)� g(x) k k d k :

If k d k < !(x; "
2
), then k g(y)� g(x) k � "

2
and the result follows.

In the proof of the next result the bound constrained and the unconstrained cases

most di�er. The proof of Proposition 4.2 implicitly relies on the fact that in the bound

constrained case, the directions in the pattern de�ned by the columns of BMk are

coordinate directions and thus are oriented normal and tangent to the faces of the

feasible region. That this is not merely convenient is made clear by the counterexample

in x5.2.

Proposition 4.2. Suppose that f is continuously di�erentiable on L
(x0) and

q(xk) 6= 0. Then there exists a �k > 0 such that if �k < �k, then there is a trial step sik
de�ned by a column of �kB�k for which (xk + sik) 2 
 and

gTk s
i

k � �cn k qk k



 sik 


 ;

where cn = n�
1

2 .

Proof. We restrict our attention to the steps de�ned by the columns of �kB�k; by

hypothesis, �kB�k � �kB[Mk �Mk] = �k[diag(d
i
k
) � diag(di

k
)] (see (3)). Choose an

index m for which

j qk;m j = k qk k1 �
1
p
n
k qk k ;(11)

where qk;m is the mth component of qk. Note that it is also the case that

j gk;m j � j qk;m j(12)

and sign(gk;m) = sign(qk;m).

Let sik = � sign(gk;m)�k j dmk j em; this vector will be among the columns of �kB�k.

Since xk + qk = P (xk � gk) is feasible, we have ` � xk + qk � u and thus

`m � xk;m + qk;m � um:

It follows that if �k j dmk j � j qk;m j, then the trial point xi
k
= xk + si

k
will be feasible.

Moreover, from (11) and (12),

gTk s
i

k = � sign(gk;m)�k j d
m

k j gk;m = �



 sik 


 j gk;m j � �

1
p
n




 sik 


 k qk k :
8



De�ning �k = k qk k1 = j d
m
k
j then does the trick.

Proposition 4.3. Suppose that L
(x0) is compact and that f is continuously

di�erentiable on L
(x0). Then given any � > 0, there exists � > 0, independent of k,

such that if �k < � and k q(xk) k > �, the pattern search method for bound constrained

minimization will �nd an acceptable step sk; i.e., f(xk+ sk) < f(xk) and (xk+ sk) 2 
.

If, in addition, the columns of the generating matrix remain bounded in norm and

we enforce the Strong Hypotheses on Bound Constrained Exploratory Moves, then, given

any � > 0, there exist � > 0 and � > 0, independent of k, such that if �k < � and

k q(xk) k > �, then

f(xk+1) � f(xk)� � k q(xk) k k sk k :

Proof. Since g(x) is uniformly continuous on L
(x0), there exists !� > 0 such that

!
�
xk; n

� 1

2�
�
� !�

for all k for which k qk k > �.

Next, choose d� > 0 such that dik � d� for all i and k. This we can do because the

set fdikg is �nite (see (3) and the conditions on Mk given in x2.1). Let

�� =
�

n
1

2d�
;

then

�� =
�

n
1

2d�
�
k qk k

n
1

2 d�
�
k qk k1
d�

� �k

for all k for which k qk k > �, where �k is as in Proposition 4.2.

Finally, let

� = min(��; !�=d
�) :

Now suppose k q(xk) k > � and �k < �. Since �k < �k, Proposition 4.2 assures us of

the existence of a step sik de�ned by a column of �kB�k such that (xk + sik) 2 
 and

gT
k
si
k
� �cn k qk k




 si
k




 :
At the same time, we also have


 si

k




 � �kd
� � !� � ! (xk; cn k qk k) :

So by Proposition 4.1,

f(xk + si
k
)� f(xk) � �

cn

2
k qk k




 si
k




 :
Thus, when �k < �, f(xi

k
) � f(xk + si

k
) < f(xk) for at least one feasible s

i
k
2 �kB�k.

The Hypotheses on Bound Constrained Exploratory Moves guarantee that if

minf f(xk + y) j y 2 �kB�k; xk + y 2 
 g < f(xk);
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then f(xk+sk) < f(xk) and (xk+sk) 2 
. This proves the �rst part of the Proposition.

If, in addition, we enforce the Strong Hypotheses on Bound Constrained Ex-

ploratory Moves, then we actually have

f(xk+1)� f(xk) � �
cn

2
k qk k




 sik 


 :
Lemma 2.1 then ensures that

f(xk+1) � f(xk)�
cn

2
���k k q(xk) k :

Applying Lemma 2.3, we arrive at

f(xk+1) � f(xk)� � k q(xk) k k sk k ;

where � = cn

2
�� �.

Corollary 4.4. Suppose that L
(x0) is compact and that f is continuously dif-

ferentiable on L
(x0). Suppose, too, that lim infk!+1 k q(xk) k 6= 0. Then there exists

a constant �� > 0 such that for all k, �k > ��.

Proof. By hypothesis, there exists N and � > 0 such that for all k > N , k q(xk) k >
�. By Proposition 4.3, we can �nd � such that if k > N and �k < �, then we will �nd

an acceptable step. In view of the algorithm for updating �k in x2.4, we are assured
that for all k > N , �k > ��. We may then take �� = minf�0; � � � ;�N ; ��g.

The next theorem combines the strict algebraic structure of the iterates with the

simple decrease condition of the generalized pattern search algorithm for bound con-

strained problems, along with the algorithm for updating �k, to give us a useful fact

about the limiting behavior of �k.

Theorem 4.5. Assume that L
(x0) is compact. Then lim infk!+1�k = 0.

Proof. The proof is like that of Theorem 3.3 in [14]. Suppose 0 < �LB � �k for

all k. Using the algorithm for updating �k found in x2.4, it is possible to write �k as

�k = � rk�0, where rk 2 Z.
The hypothesis that �LB � �k for all k means that the sequence f� rkg is bounded

away from zero. Meanwhile, we also know that the sequence f�kg is bounded above

because all the iterates xk must lie inside the set L
(x0) = fx 2 
 : f(x) � f(x0)g and
the latter set is compact; Lemma 2.1 then guarantees an upper bound �UB for f�kg.
This, in turn, means that the sequence f� rkg is bounded above. Consequently, the

sequence f� rkg is a �nite set. Equivalently, the sequence frkg is bounded above and

below.

Next we recall the exact identity of the quantities rLB and rUB in Theorem 2.2; the

details are found in the proof of Theorem 3.3 in [14]. In the context of Theorem 2.2,

rLB = min
0�k<N

frkg rUB = max
0�k<N

frkg:

If, in the matter at hand, we let

rLB = min
0�k<+1

frkg rUB = max
0�k<+1

frkg;(13)

10



then (5) holds for the bounds given in (13), and we see that for all k, xk lies in the

translated integer lattice G generated by x0 and the columns of �rLB��rUB�0B.

The intersection of the compact set L
(x0) with the lattice G is �nite. Thus, there

must exist at least one point x� in the lattice for which xk = x� for in�nitely many k.

We now appeal to the simple decrease condition in Algorithm 1 (d), which guar-

antees that an iterate cannot be revisited in�nitely many times since we accept a new

step sk if and only if f(xk) > f(xk + sk) and (xk + sk) 2 
. Thus there exists an N

such that for all k � N , xk = x�, which implies that �k = 0.

We now appeal to the algorithm for updating �k (Algorithm 2 (a)) to see that

�k ! 0, thus leading to a contradiction.

4.1. The Proof of Theorem 3.2. The proof is like that of Theorem 3.5 in [14].

Suppose that lim infk!+1 k q(xk) k 6= 0. Then Corollary 4.4 tells us that there exists

�� > 0 such that for all k, �k � ��. But this contradicts Theorem 4.5.

4.2. The Proof of Theorem 3.3. The proof, also by contradiction, follows that

of Theorem 3.7 in [14]. Suppose lim supk!+1 k q(xk) k 6= 0. Let " > 0 be such that

there exists a subsequence k q(xmi
) k � ". Since

lim inf
k!+1

k q(xk) k = 0;

given any 0 < � < ", there exists an associated subsequence li such that

k q(xk) k > � for mi � k < li; k q(xli) k < �:

Since �k ! 0, we can appeal to Proposition 4.3 to obtain for mi � k < li, i su�ciently

large,

f(xk)� f(xk+1) � � k q(xk) k k sk k � �� k sk k ;

where � > 0. Then the telescoping sum:

(f(xmi
) � f(xmi+1))+(f(xmi+1)� f(xmi+2))+ � � �+(f(xli�1)� f(xli)) �

liX
k=mi

�� k sk k

gives us

f(xmi
)� f(xli) �

Pli
k=mi

�� k sk k � c0 k xmi
� xli k :

Since f is bounded below, f(xmi
) � f(xli) ! 0 as i ! +1, so k xmi

� xli k ! 0

as i ! +1. Then, because q is uniformly continuous, k q(xmi
)� q(xli) k < �, for i

su�ciently large. However,

k q(xmi
) k � k q(xmi

)� q(xli) k+ k q(xli) k � 2�:(14)

Since (14) must hold for any �, 0 < � < ", we have a contradiction (e.g., try � = "

4
).
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5. Examples of Pattern Search Methods for Bound Constrained Min-

imization. A section of [14] is devoted to showing that each of the following four

algorithms:

� coordinate search with �xed step lengths,

� evolutionary operation using two-level factorial designs ([1] and [3, 12]),

� the original pattern search method of Hooke and Jeeves [9], and

� the multidirectional search algorithm of Dennis and Torczon ([7] and [13])

are pattern search methods for unconstrained minimization. In this section we will

discuss how these algorithms may be extended to bound constrained problems. We

shall see that coordinate search and the pattern search method of Hooke and Jeeves

extend without modi�cation to the bound constrained case. On the other hand, in the

case of multidirectional search, we must require the initial basis matrix to be a diagonal

matrix (in the unconstrained case, we can allow any nonsingular basis matrix); in

addition, we must augment the columns of the generating matrix to ensure a su�cient

set of search directions. In the case of evolutionary operation, we also must augment

the columns of the generating matrix, which we do using a classical variant of factorial

designs [2].

The di�erence between pattern search methods for unconstrained problems and

bound constrained problems lies in the two additional conditions discussed in x2.5.
First, pattern search methods for bound constrained problems must start with a feasible

iterate and choose feasible trial steps. Second, the core pattern BMk must be de�ned

by a diagonal matrix.

We assume that we begin with a feasible iterate; by design pattern search methods

for bound constrained problems thereafter accept only feasible iterates. Thus, the only

thing we will really need to check is that the core pattern BMk is de�ned by a diagonal

matrix.

It is this latter condition that causes us to restrict the admissible choice of the

basis matrix in multidirectional search and then augment the columns of the generat-

ing matrix. Moreover, G.E.P. Box's method of evolutionary operation using two-level

factorial designs does not satisfy this diagonality condition; we will present a simple

counterexample that show how evolutionary operation can fail as a consequence in the

bound constrained case and propose a straightforward remedy for the problem.

5.1. Coordinate Search and the Pattern Search Method of Hooke and

Jeeves. Coordinate search and the pattern search method of Hooke and Jeeves extend

to bound constrained problems without change. In both cases the basis matrix B is

typically chosen to be a diagonal matrix: either the identity or a matrix whose entries

re
ect the relative scaling of the variables. Furthermore, the �rst 3n columns of Ck,

which are �xed for all iterations k of both algorithms, are composed of all possible

combinations of f�1; 0; 1g. In [14] these columns are organized so that the �rst 2n

consist of the identity matrix I and its negative �I. In terms of our formalism, then,

Mk = I for all iterations k. It follows that BMk is a diagonal matrix, as required.
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f(x) > f(x0)

Fig. 1. An illustration of what can go wrong with factorial design in the bound constrained case.

5.2. Evolutionary Operation Using Factorial Design. For the evolutionary

operation algorithm using factorial designs, the basis matrix B is usually selected to be

the identity or a diagonal matrix chosen so that the entries along the diagonal represent

the relative scaling among the variables. However, this convention is not su�cient to

ensure that BMk is a diagonal matrix.

The problem lies with the generating matrix C = [M �M L]. (The generating

matrix C is �xed across all iterations of evolutionary operation.) The generating matrix

contains in its columns all possible combinations of f�1; 1g to which is appended a

column of zeroes. Clearly, no subset of n columns of C can be chosen to form a diagonal

matrix M .

The need for such a requirement in the bound constrained case can be seen from

the following example. Consider the pattern search method of evolutionary operation

using two-level factorial designs applied to the problem

minimize f(x) = �(x1 + 2x2)

subject to 0 � x1 � 1

x2 � 0:

Suppose that we take as our initial iterate the point (0; 0); the pattern for factorial

design would consist of the points indicated by the open circles in Figure 1 (we show

a pattern with �k = 1=4). We see that for any choice of �k � 1 there only ever will

be one feasible step produced by the pattern: the step given by the point in the lower

right-hand corner of the pattern|in the �gure, the point (1=4;�1=4)|and that this

step will only produce increase in f . So evolutionary operation will never move from

its starting point.

One remedy can be found in related work by G.E.P. Box and K.B. Wilson [2]. This

would be to use a composite design instead of the two-level factorial design usually

proposed. An example of such a design|one that satis�es the requirements of the
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f(x) > f(x0)

Fig. 2. An illustration of how the problem can be circumvented using a composite design.

bound constrained global convergence theory|chooses M to be the diagonal matrix

with entries of 2 along the diagonal. With the additional 2n columns that would then

augment the original pattern, the algorithm would not fail for the example given above,

as shown in Fig. 2. We now have a feasible step along the active constraint x2 � 0 that

will produce descent for any choice of �k � 1=2.

As noted in our discussion of Proposition 4.2, by requiring BMk to be a diagonal

matrix, we are guaranteed that the directions in the core pattern are oriented normal and

tangent to the faces of the feasible region. As our example illustrates, this requirement

is essential.

5.3. Multidirectional Search. The reader should be forewarned that our de-

scription and discussion of multidirectional search takes a point of view that is osten-

sibly at odds with the formalism of x2.1. The generating matrix � is viewed as �xed;

typically � = [M �M ] � [I �I]. The basis matrix, on the other hand, is viewed as

varying from iteration to iteration so that Bk corresponds to the edges in the current

simplex that are adjacent to the current iterate xk. This is the reverse of the discussion

in x2.1, where B is �xed and �k varies. However, the former view of multidirectional

search is not incompatible with the formalism of pattern search methods, as noted in

[14], and as we shall have reason to discuss here.

The extension of multidirectional search to problems with bound constraints re-

quires us to restrict the choice of a starting simplex and to augment the columns of the

generating matrix.

The �rst restriction is minor and is usually satis�ed by the customary choices made

in practice. In multidirectional search, the columns of B0 are formed from the edges of

an initial simplex adjacent to the initial iterate x0. In the case of bound constraints,

we restrict the starting simplex to be a right-angled simplex, i.e., the n + 1 vertices of

the simplex are x0 and the points x0+ �iei, where �i 2 R and i = 1; � � � ; n. Because of
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this choice, B0 = diag(�i). Since M � I, the product B0M is a diagonal matrix.

However, even if the initial simplex is restricted to be a right-angled simplex so

that B0M is diagonal, there is no guarantee that in subsequent iterations BkM will be

diagonal. To understand why this is so, and how this may be corrected by augmenting

the columns of the generating matrix, we need to discuss how multidirectional search

�ts within the formalism of pattern search methods. These details are absent from [14],

so we present them here.

At iteration k, the basis matrix is

Bk =
h
b1k � � � b

n

k

i
=
h
(v1k � v0k) � � � (v

n

k � v0k)
i
;

where vik, i = 0; � � � ; n are the vertices of the simplex associated with multidirectional

search at this iteration. De�ne

Ti =

(
I i = 0

�
�
I � eie

T
i �

P
n

m=1 eie
T
m

�
i = 1; � � � ; n:

Now consider what happens in the next iteration. If the iteration is unsuccessful, then

v0k+1 = v0k and the new basis for the pattern, which is determined by the edges of the

simplex emanating from v0k+1, is

Bk+1 = Bk = BkT0:

If, on the other hand, the iteration is successful, then v0k+1 = v0k � (vjk � v0k) for some

j = 1; . . . ; n, and the new basis will be the set of vectors

bik+1 =

(
b
j

k if i = j

�bi
k
+ bj

k
otherwise.

In this case,

Bk+1 = BkTj:

Thus, in general,

Bk+1 = BkTjk+1 ;(15)

and so

Bk = Bk�1Tjk = Bk�2Tjk�1Tjk = � � � = B0

kY
i=1

Tji :(16)

Our next goal is to simplify this relation further.

A short calculation shows that for i; ` = 1; . . . ; n,

TiT` = I � e`e
T

`
�

nX
m=1

e`e
T

m
� eie

T

i
+ �i

`
eie

T

`
+ �i

`

nX
m=1

eie
T

m
+ eie

T

`
;
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where �i
`
is the Kronecker delta. If i = `, this reduces to

TiTi = I(17)

and if i 6= `,

TiT` = I � e`e
T

` �
nX

m=1

e`e
T

m � eie
T

i + eie
T

` = �T` � eie
T

i + eie
T

` :(18)

If i 6= `,

T`ei = �

 
I � e`e

T

` �
nX

m=1

e`e
T

m

!
ei = e` � ei(19)

and

(Ti (�T`)) ei =

 
�I + e`e

T

` +
nX

m=1

e`e
T

m + eie
T

i � eie
T

`

!
ei = e`:(20)

From (17), (18), and (19) we obtain

T`TiT` = T`
�
�T` � eie

T

i + eie
T

`

�
= �I � T`eie

T

i + T`eie
T

`

= �I � (e` � ei)e
T

i
+ (e` � ei)e

T

`

= �
�
I � eie

T

i
� e`e

T

`
+ e`e

T

i
+ eie

T

`

�
:(21)

This latter matrix we recognize as the negative of the elementary permutation matrix

E(i; `) that swaps the ith and `th columns when acting on matrices from the right. Using

(17) and (21), we obtain the rule

TiT` =

(
I if i = `

�T`E(i; `) otherwise:

We can then use this formula to reduce (16) to

Bk = �B0T`k�k;

for some T`k and permutation matrix �k.

This relationship reveals several things. The �rst is that it reconciles the usual

description of multidirectional search with the formal abstract de�nition of a pattern

search method; the pattern matrix is given by

BkC = �B0Tjk�k[I �I 0] = B0[Tjk � Tjk 0]�k � BCk:(22)

That is, we may interpret multidirectional search in terms of a �xed basis B and a

changing generating matrix Ck.
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We can also see that while B�0 will be diagonal, this diagonality may be lost in

subsequent iterations. However, the form of the generic pattern from the unconstrained

algorithm suggests one way to circumvent this problem in the bound constrained case.

This remedy will, moreover, preserve the geometric interpretation of the pattern in

multidirectional search in terms of a simplex.

First, if we ignore the permutation in (22), which only a�ects column ordering, the

pattern at iteration k in the unconstrained case is given by

BkC � BCk = B0[Tjk � Tjk 0]:

Suppose we augment the columns of C to include all the Ti:

C = [�T0 �T1 � � � �Tn 0]:

At any iteration k, up to a column permutation, the basis matrix is the matrix Bk =

�BTjk, jk 2 f0; � � � ; ng. When we then form the pattern Pk = �kBkC, we have

Pk = �kBkC = �kB[�TjkT0 �TjkT1 � � � �TjkTn] � �kBCk:

Now note that (20) means that for jk 6= l the jthk column of �TjkT` is the `
th basis

vector. Consequently, we are guaranteed that by a permutation of the columns of Ck,

Ck = [I �I Lk] � [� Lk];

where Lk changes at each iteration, but � does not. Since we require the initial simplex

to be a right-angled simplex, we may then be assured that B� = [diag(�i) �diag(�i)],
as required.

Moreover, this augmentation of C and the search through its columns can be imple-

mented in a way that preserves the relationship of the pattern to the moving simplex

that characterizes multidirectional search. This is possible because the matrices Ti,

i = 0; � � � ; n capture how the basis changes in association with a change of simplex.

This is the gist of (15). The implications for any implementation of this modi�cation

to multidirectional search to handle bound constraints will appear elsewhere.

6. Conclusion. We have presented a reasonable extension of pattern search meth-

ods for unconstrained minimization to bound constrained problems. The extension is

supported by a global convergence theory as strong as that for the unconstrained case.

The generalization makes few additional requirements and as we have seen in x5, the
classical pattern search methods for unconstrained minimization or straightforward vari-

ants thereof carry over to the bound constrained case.

The extension to bound constrained problems also points the way to handling

general linear inequalities. General linear inequalities will require a su�ciently rich set

of directions in the pattern so that at any face of the feasible region, one will have

directions both normal and tangent to the constraints. This we will pursue elsewhere.

One issue we have not discussed is that of identifying active constraints, as in

[4, 5]. One would wish to show that if the sequence fxkg converges to a nondegenerate
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stationary point x�, then in a �nite number of iterations the iterates xk land on the

constraints active at x� and remain thereafter on those constraints.

There are three di�culties in proving such a result for pattern search methods for

bound constrained minimization. The �rst is relatively minor. If the iterates xk are

to identify the active constraints for a stationary point on the boundary of the feasible

region, we must ensure that the lattice manifest in Theorem 2.2 actually allows iterates

to land on the boundary. This requires additional but straightforward conditions on

such quantities as x0; �;�0, and the pattern matrices Pk. A related but more subtle

di�culty is that the relative sizes of the steps in the core pattern and the remaining

points in the pattern must obey certain relations in order to ensure that the algorithm

does not take a purely interior approach to a point on the boundary. This rules out, for

instance, certain of the composite designs suggested by G.E.P. Box and K.B. Wilson

[2].

The most serious obstacle, which remains to be overcome, is showing that ultimately

the iterates will land on the active constraints and remain there. For algorithms such as

those considered in [4, 5], this is not a problem because the explicit use of the gradient

impels the iterates to do this in the neighborhood of a nondegenerate stationary point.

However, pattern search methods do not have this information. On the other hand, the

kinship of pattern search methods and gradient projection methods makes us hopeful

that ultimately we will be able to prove that pattern search methods also identify the

active constraints in a �nite number of iterations.
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