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ABSTRACT

In this paper we study the shock/longitudinal vortex interaction problem in axisymmet-

ric geometry. Linearized analysis for small vortex strength is performed, and compared with

results from a high order axisymmetric shock-�tted Euler solution obtained for this purpose.

It is con�rmed that for weak vortices, predictions from linear theory agree well with results

from nonlinear numerical simulations at the shock location. To handle very strong longitu-

dinal vortices, which may ultimately break the shock, we use an axisymmetric high order

essentially non-oscillatory (ENO) shock capturing scheme. Comparisons of shock-captured

and shock-�tted results are performed in their regions of common validity. We also study

the vortex breakdown as a function of Mach number ranging from 1:3 to 10, thus extending

the range of existing results. For vortex strengths above a critical value, a triple point forms

on the shock, leading to a Mach disk. This leads to a strong recirculating region downstream

of the shock and a secondary shock forms to provide the necessary deceleration so that the


uid velocity can adjust to downstream conditions at the shock.
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1 Introduction

Over the last 15 years, there have been numerous experimental (Cattafesta & Settles 1992;

Cattafesta 1992; D�elery, Horowitz, Leuchter & Solignac 1984; Dosanjh & Weeks 1965; Nau-

mann & Hermans 1973), theoretical (Chang 1957; Ribner 1954), and computational (Ellzey,

Henneke, Picone & Oran 1995; Erlebacher, Jackson & Hussaini 1996; Kopriva 1988; Las-

seigne, Jackson & Hussaini 1991; Meadows 1991; Meadows, Kumar & Hussaini 1991; Mead-

ows 1995; Pao & Salas 1981; Rizetta 1995; Zang, Hussaini & Bushnell 1984) studies of the

shock-vortex interaction problems. Major e�ort has been devoted to investigating the inter-

action of a shock with either plane waves (Ribner 1954; Ribner 1986; McKenzie & Westphal

1968; Chang 1957; Erlebacher et al: 1996; Lasseigne et al: 1991) or with a vortex whose axis is

aligned with the shock (Naumann & Hermans 1973; Ellzey et al: 1995; Erlebacher et al: 1996;

Chang 1957; Pao & Salas 1981; Zang et al: 1984). In these studies, the main interest was

to understand the shock distortion, the vorticity ampli�cation mechanisms engendered by

the shock, and the properties of the radiated noise. The observations of the experiments

(Naumann & Hermans 1973; Cattafesta 1992; D�elery et al: 1984; Dosanjh & Weeks 1965),

have been in general substantiated by the theoretical work of Ribner (1954) and Ribner

(1986), based on linear theory. Numerical simulations have recently begun to quantify some

of the experimental results, in both the linear and nonlinear regimes (Ellzey et al: 1995;

Erlebacher et al: 1996; Meadows et al: 1991; Meadows 1995).

The con�guration in which the vortex has its axis normal to the shock occurs in practice,

for example, when a wing tip vortex shed from a canard of a supersonic �ghter plane intersects

the shock that lies over the wing. The resulting deceleration of the vortex can lead to vortex

breakdown (if the vortex and shock strengths are appropriate), resulting in destabilizing

forces on the airplane (D�elery et al: 1984). Thus, a theoretical, or heuristic determination of

the conditions under which this breakdown occurs is of practical interest for both the design

of �ghter planes, and for the problem of controlling the resultant destabilizing forces.

There have been only a handful of experiments concerned with the longitudinal vor-
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tex/shock interaction (Cattafesta & Settles 1992; Cattafesta 1992; D�elery et al: 1984). In

these cases, particular care was taken to ensure that the vortex was axisymmetric, and that

it interacted with a planar normal shock. The experiments di�ered in the shock creation pro-

cess. For example, Cattafesta & Settles (1992) and D�elery et al: (1984) created a shock using

a 2-D pitot type air intake mounted in a section of uniform 
ow. In addition, Cattafesta

& Settles (1992) also created a normal shock wave by over-expanding the exit 
ow from a

supersonic nozzle. The associated numerical simulations were able to reproduce the gross

features of the experimental results.

To enhance our understanding of the shock-induced vortex breakdown phenomena, we

study the case of a shock of in�nite extent interacting with a longitudinal vortex. We �nd

that the 
ow is not always steady. However, for moderately weak vortices, a steady state

appears possible. The vortex breakdown is known to be a function of the helix angle which

is de�ned as the arctangent of the ratio of the maximum azimuthal velocity and the mean

axial velocity. In the incompressible case, it is observed that once the helix angle attains

the critical value of 57�, the vortex is prone to breakdown (D�elery et al: 1984; Spall, Gatski

& Grosch 1987). The critical helix angle is lower for compressible 
ows. In the presence

of a shock, the critical value of the helix angle decreases further due to the higher 
ow

deceleration. It is attained more easily for stronger vortices and higher shock Mach numbers

(Cattafesta 1992; D�elery et al: 1984). If the vortex circulation is further increased, strong

nonlinear e�ects come into play. The pressure associated with the vortex core, which scales

quadratically with circulation, leads to nonlinear e�ects responsible for the formation of a

Mach disk along with a strong downstream recirculating zone with a complex structure. As

in the previous work by Erlebacher et al: (1996) where the vortex axis was parallel to the

shock, nonlinear e�ects are directly related to the product of vortex strength and shock Mach

number. This is the direct result of a linear scaling of vortex strength with circulation, and

a quadratic scaling of the maximum pressure variation within the vortex core.

The paper is organized as follows: Section 2 contains the mathematical formulation of the
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problem. Section 3 provides details of the linear analysis, including a simpli�ed high Mach

number expansion of the Rankine-Hugoniot conditions. Section 4 describes both the shock-

�tted compact (S-F) and the shock-capturing essentially non-oscillatory (ENO) numerical

algorithms. Section 5 presents the consistency checks of both algorithms against linear

theory and against each other. In Sections 6 and 7, we study the in
uence of the variation

in vortex strength and shock Mach number on vortex breakdown and shock bifurcation. We

�rst compute the vortex breakdown curve as a function of shock Mach number ranging from

1.3 to 10. Then, in Section 7, we consider vortex strengths leading to the formation of a

Mach disk and strong recirculating zones downstream of the shock. Unsteady e�ects and the

in
uence of initial conditions are also addressed in this section. Some concluding remarks

are made in the �nal section.

2 Problem Formulation

We seek to study the interaction of a longitudinal vortex with an in�nite shock. For sim-

plicity, the vortex is assumed to be axisymmetric with its axis perpendicular to the shock of

in�nite radial extent. The geometry is shown in Figure 1.

xs (r)

U1 < 0U2 < 0

X2 = 0 X2=1

N
X1=1

Y=1

Y= 0

Figure 1: Geometry.
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The 
ow is assumed to be governed by the axisymmetric compressible Euler equations

(in conservative form):
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where � is the density, (ux; ur; u�) is the velocity vector in the axial, radial, and azimuthal

directions, and E is the total energy,

E =
p


 � 1
+
1

2
�(u2x + u2r + u2�) (2.2)

with the ratio of speci�c heats 
 = 1:4 for air. The pressure, density, and temperature are

nondimensionalized with respect to their mean upstream values P1, �1, and T1 respectively

and are related by the ideal gas law

p = �T: (2.3)

The velocity is scaled by the reference velocity c� =
p
T1, related to the upstream mean

sound speed c1 =
p

c�. In the frame of reference in which the mean shock is stationary, the

mean upstream Mach number is therefore M1 = jU1j=
p

, where M1 is the upstream Mach

number in a frame of reference in which the mean shock is stationary. Note that the chosen

nondimensionalization leaves the Euler equations (2.1) invariant. Finally, lengths are scaled

by the vortex core radius r0.

The shock is initially located at x = 0 plane; the axial extent of the upstream domain

extends to x = b, while the leftmost boundary on the downstream side is located at x = a.

The 
ow is from right to left so that a < 0, and b > 0. The axis of symmetry is r = 0, and the
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radial coordinate extends to r = c, where c is su�ciently large so that all 
ow disturbances

are e�ectively zero at this freestream boundary.

At t = 0, we choose a mean 
ow consistent with a stationary shock at x = 0. Upstream

of the shock (x > 0),

� = 1; U1 = ux = �p
M; ur = u� = 0; P1 = p = 1; (2.4)

while the downstream mean solution is (x < 0),

� =
(
+1)M2

1

(
�1)M2

1
+2
; U2 = ux = �

p

((
�1)M2

1
+2)

(
+1)M1

;

ur = u� = 0; P2 = p =
2
M2

1
�(
�1)

+1

:
(2.5)

Next, we superimpose on the mean 
ow an isentropic vortex with its axis along r = 0.

Analytical forms of such vortices which are steady-state solutions of the Euler equations

exist with arbitrary radial pro�les. We choose an exponentially decaying pro�le to reduce

interactions of the vortex with the outer domain boundary in the radial direction. The

perturbations of azimuthal velocity u0� and temperature T 0 due to the vortex are given by

u0� =
� r

2�
e0:5(1�r

2) T 0 = �(
 � 1)�2

8
�2r20
e1�r

2

(2.6)

where r0 is the vortex core radius and � is a nondimensional circulation at r = 1, related to

the dimensional circulation � by

� =
�

r0c�
: (2.7)

The axial and radial velocities u0x, u
0
r and the perturbation entropy S0 = log(p=�
) are

constant inside the vortex; u� is maximum at r = 1. Because of the particular radial pro�le

of u0�, the vortex circulation decays exponentially fast to zero as r !1. Another measure

of the relative strength of the vortex is given by the ratio of the maximum u0� to U1. This

quantity, denoted by � , measures the inclination of the streamlines with respect to the

symmetry axis of the vortex (D�elery et al: 1984). It is also the tangent of the helix angle.

The relationship between � and � is

� =
�

2�M
p


: (2.8)
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The upstream vortex de�ned by (2.6) has the following features:

� It is a steady-state solution of the Euler equation (2.1) if ux = 0. Otherwise, it is

passively convected by the 
ow with velocity ux,

� it has constant entropy,

� it is regular at the symmetry axis,

� it decays exponentially fast as r!1, thus ensuring that freestream boundary e�ects

are virtually absent. In fact, in most calculations we set the computational boundary

at r = 5, at which the relative e�ect of the perturbation on the pressure and density

is on the order of 10�10.

Previous studies (Cattafesta 1992; D�elery et al: 1984) have indicated that for low and

moderate vortex strengths, a steady state is eventually reached. However, the shocks in

these simulations were kept stationary by either placing the shock in a divergent nozzle

(D�elery et al: 1984), or by attaching a Mach disk at the end of an underexpanded jet

(Cattafesta 1992). Such artifacts accelerate convergence to a steady state. Should a steady

state exist, one often assumes that the �nal state is independent of initial conditions. For

example, Delery et al: (1984) assume that the total enthalpy is independent of time. They

therefore simplify their calculations by building this constraint into their equations. However,

this precludes even genuinely unsteady solutions. In contrast, we do not presume that steady

solutions exist, but compute them as they evolve in time.

To lessen possible transients during the initial stages of the simulation, we multiply the

initial conditions by a function s(x). We have considered three di�erent functions:

IC-a

s(x) = 1:0 (2.9)

IC-b

s(x) =

(
0 x � 0

1 x > 0
(2.10)
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IC-c

s(x) =

8>>><
>>>:

0 x < �

1 �
�
1�

�
x��
���

�3�3
� � x � �

1 x > �:

(2.11)

In case IC-a, the vortex structure (de�ned by u0� and T
0) is independent of the axial location

and exists across both upstream and downstream domains. Then a shock is externally

generated along x = 0 at t = 0. The initial conditions satisfy steady-state Euler equations,

but the pressure and density jumps across the initial shock do not satisfy the steady Rankine-

Hugoniot conditions, (which then causes the shock to adjust itself.) In case IC-b, the vortex

is only de�ned in the upstream domain, and abruptly ends at the shock, and it o�ers a clean

model con�guration. Finally, case IC-c is intermediate between the �rst two cases. The

transition function smoothly varies from zero to one and is only nonzero in the upstream

domain. Thus, the Rankine-Hugoniot conditions are initially satis�ed, but the upstream

modi�ed vortex is no longer a solution to the steady-state Euler equations. Note that IC-b

is a special case of IC-c where � ! 0, � ! 0. Numerical tests presented in a later section

will show that IC-b and IC-c actually produce similar transient structures, albeit shifted in

time.

The boundary conditions are chosen as follows. We prescribe all variables at the super-

sonic in
ow on the upstream side (x = b). At the subsonic downstream boundary, we employ

the characteristic boundary conditions for the ENO method, or a bu�er domain technique

for the S-F method. The details are discussed in Section 3. The freestream boundary (r = c)

is su�ciently removed from the vortex so that a simple Neumann boundary condition is suf-

�cient for the ENO algorithm. The shock-�tted (S-F) algorithm permits a choice between

characteristic conditions and Dirichlet boundary conditions. Naturally, we impose symme-

try conditions at r = 0. Radial derivatives of all variables are set to zero, except for the

azimuthal and radial velocities which vanish.
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3 Numerical Methods

We adopt two numerical algorithms of high order accuracy to solve the unsteady axisymmet-

ric compressible Euler equations for the shock/vortex interaction problem { i) a shock-�tted

(S-F) algorithm and ii) an essentially nonoscillatory (ENO) algorithm which captures the

shock. The former is based on a sixth order compact scheme and has the advantage of

precluding Gibb's phenomena associated with shock capturing; however, its disadvantage

is that it cannot handle very weak shocks or situations of strong shocks with triple points.

The latter is based on adaptive stencil interpolation and nonlinearly stable time discretiza-

tion, which ensures formally third order accuracy in the smooth part of the solution while

maintaining sharp, essentially nonoscillatory shock transitions.

3.1 Shock-�tting method

We provide here a brief description of the numerical method (see Erlebacher et al: (1996)

for more details). All spatial derivatives in the shock-�tting method are computed with

a compact 6th order discretization scheme (Carpenter, Gottlieb & Abarbanel 1993) which

is stable for Dirichlet boundary conditions. Both x and r coordinate directions are non-

periodic. Derivatives at the �rst and second points at both ends of the computational

domain are explicitly de�ned by

hu00 =
7X
i=0

ai ui

hu01 =
7X
i=0

bi ui

where the parameters ai and bi are given by

ai = f296
105

;
415

48
;
125

8
;
985

48
;�215

12
;
791

80
;�25

8
;
145

336
g (3.1)

bi = f� 3

16
;�211

180
;
109

48
;�35

24
;
115

144
;�1

3
;
23

240
;� 1

72
g; (3.2)

and h is the uniform grid spacing. Identical explicit formulas are derived for u0N and u0N�1,

where N is the number of grid points along the nonperiodic direction. This stencil is com-
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monly referred to as 52 � 6 � 52 (Carpenter et al: 1993). The derivatives at interior nodes

(i = 1; � � � ; N � 1) are computed via the standard scheme (Lele 1992)

1X
j=�1

�ju
0
i+j = h�1

2X
j=�2

�jui+j (3.3)

with coe�cients ��1 = 1, �0 = 3, ��2 = 1=12, ��1 = 7=3 and �0 = 0.

To maintain the 6th order accuracy of derivatives in the radial direction at the axis, we

build in the required symmetry properties into the matrix derivative operator. This requires

modifying the formulas for the �rst two radial points which are now solved as part of the

implicit system. Let uj be the value of any variable at the jth radial point, with j = 0

corresponding to the symmetry axis. Symmetry conditions imply that u�j = uj, while

antisymmetric conditions imply u�j = �uj. Combining these requirements with the interior

formula (3.3), we obtain for the point on the axis under symmetric conditions, �0 = 3,

�1 = 0, �i = 0. The �rst point o� the axis has �2 = ��0 = 7=3, �3 = ��1 = 1=12,

while the �0s take on the interior values for the �rst point o� the axis. The requirement of

antisymmetry leads to �0 = 3, �1 = 2, �0 = 0, �1 = 14=3, �2 = 1=6, �3 = 0 for the axis

point, while �1 = ���1 = 7=3, �0 = �2 = 1=12, and once again, the �0s take on the interior

values, for the �rst point o� the axis.

The symmetry axis is a geometric singularity, and requires special treatment. We rec-

ognize that it is an interior point, and the 
ow variables satisfy the Euler equations on the

axis. We therefore impose the Euler equations, where singular terms have been evaluated

using L'Hospitale rule. For example, ur=r is replaced by @ur=@r at the axis.

The grid is stretched in the radial direction according to

r = r0

 
sinh (Y � Y0)�

sinh �Y0
+ 1

!
(3.4)

where

Y0 =
1

2A
log

1 + (eA � 1)(r0=rmax)

1 + (e�A � 1)(r0=rmax)
(3.5)

where 0 < Y < 1 is the computational coordinate in the radial direction. This choice of

stretching allows the grid points to concentrate around r = 1 and extend to a maximum
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radius of rmax; the stretching of the grid is controlled by the parameter A. As detailed in

Erlebacher et al: (1986) we transform the downstream physical axial coordinate x using the

coordinate transformation

X =
x� a

xs(r; t)� a
(3.6)

where xs(r; t) is the shock shape, and x = a is the leftmost boundary of the downstream

domain.

At the downstream boundary, we implement the bu�er domain technique introduced

by Ta'assan & Nark (1995). We modify the downstream Euler equations in a �nite bu�er

domain abutting the downstream boundary, by replacing @=@t by @=@t+U0(X)r, to control

the direction of the characteristics and the characteristic speeds. At the exit plane, X = 0,

the characteristic speeds become u2(b) + U0(b), U0(b) + U0(b) � c2(b). The axial pro�le for

U0(x) is a power function of x described in Erlebacher et al: (1996).

We brie
y present the derivation of a time evolution equation for the shock motion

(Hussaini, Kopriva, Salas & Zang 1984, Canuto, Hussaini, Quarteroni & Zang 1987; Kopriva

1991). Given the shock shape, x = xs(r; t) and the Euler equations in the form ut = Ru and

pt = Rp, the characteristic normal to the shock pointing in the upstream direction has the

form

(p;t �Rp) + � n � (u;t �Ru) = 0 (3.7)

where � = �2
p

T2 is a function of the downstream temperature and density, and n is the

unit normal to the shock pointing in the upstream direction:

n =

0
@ 1q

1 + x2s;r
;

�xs;rq
1 + x2s;r

1
A : (3.8)

Ru and Rp are numerically computed as part of the Runga-Kutta advancement. To apply

Eq. (3.7) at the shock requires the time derivatives of pressure and velocity. These are ob-

tained by solving the Rankine-Hugoniot conditions the downstream pressure p2 and velocity

u2:

p2 =
2


 + 1
(

 � 1

2
p1 + �1�

2
1)
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�2 =

 � 1


 + 1
�1 +

2



 + 1

p1

�1�1
; (3.9)

and di�erentiating (p2; �2) with respect to time. Here, �i = ui �n�us, where us = wsx̂�n is the

shock velocity normal to the shock, while x̂ and ws are the unit vector and the instantaneous

shock velocity respectively. The required time derivatives are readily computed and inserted

into the characteristic equation above, to obtain the �nal evolution equation

(nxws);t =
(F � �A)(n � u1);t + � (u2 � n;t) + (D � �B) p1;t + (E � �C) �1;t �R

F + �(1�A)
(3.10)

where

R = Rp � � n;t �Ru; (3.11)

and the constants A, F , D, B, E, C are functions of the upstream 
ow variables, and the

shock velocity (Erlebacher et al: 1996).

Time advancement is based on a low-storage, 5 stage, 4th order accurate Runga-Kutta

scheme (Carpenter & Kennedy 1994). Although 5=3 more expensive than Williamson's 3rd

order low-storage scheme at �xed CFL, the achievable CFL is higher by a factor of 1.9, which

is greater than 5/3, so with no change in memory requirement, there is a net gain of CPU

time, along with the increased accuracy. The interior equations and shock motion equations

are advanced simultaneously in time. The Rankine-Hugoniot conditions are applied at the

end of each Runga-Kutta stage to update the downstream variables at the shock.

3.2 Shock-capturing method

The shock capturing method we use in this work belongs to the class of high order nonlinearly

stable essentially nonoscillatory (ENO) methods developed by Shu & Osher (1988); Shu &

Osher (1989); and Shu, Zang, Erlebacher, Whitaker & Osher (1992). The detailed description

of the algorithm, along with information on e�cient implementation can be found in these

references. Here we only highlight a few key points and describe issues which relate to the

applications of ENO schemes to the particular system (2.1).
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The main idea underlying an ENO scheme lies at the approximation (interpolation)

level. For piecewise smooth functions and a �xed stencil, high order interpolation schemes

inevitably cross the discontinuities, causing not only loss of accuracy but also over- and under-

shoots (Gibbs phenomenon). ENO (Harten, Engquist, Osher & Chakravarthy 1987) is an

adaptive stencil interpolation, with the local stencil chosen as the smoothest possible among

all candidates. This, together with upwinding (realized through 
ux splitting), characteristic

decomposition (which e�ectively decouples the system locally), and a nonlinearly stable time

discretization, ensures that the scheme achieves high order resolution in the smooth part

of the solution while maintaining sharp, non-oscillatory shock transitions. For the shock-

vortex interaction problem considered in this paper, which contains both strong shocks and

complex structures in the smooth part of the solution, a high order ENO scheme is an ideal

candidate. We use the uniformly third order ENO scheme (fourth order in L1), based on

a Lax-Friedrichs building block, and a third order total-variation-diminishing Runge-Kutta

time discretization (Shu et al: 1992).

The procedure underlying ENO schemes is best described with reference to the one-

dimensional scalar version of (2.1):

@u

@t
+
@f(u)

@x
= 0; (3.12)

and then indicate how it can be generalized to solve the full system (2.1). The spatial

derivative in (3.12) is discretized by the conservative di�erence

@f(u)

@x
� 1

�x

�
f̂j+ 1

2

� f̂j� 1

2

�
: (3.13)

A linear combination of the point values of the 
ux function f(u),

f̂j+ 1

2

=
k1+r+1X
k=k1

c(k1; k)f(uj+k) (3.14)

is used to represent the numerical 
ux. Here, r is the order of accuracy in L1 (i.e., the

scheme is (r+1)th order L1), c is a constant matrix independent of f(u), hence is computed

only once and stored (precise formulas are found in Shu et al: (1992), and the leftmost point
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location k1 is decided locally by the ENO interpolation procedure (the exact procedure is

detailed in, e.g., (Shu et al: 1992), and can di�er from point to point.) Upwinding is used

in this stencil choosing process.

With an explict ENO scheme, a multi-dimensional problem scalar equation is handled

dimension by dimension. Each derivative is treated as one-dimensional in computational

space, and the above algorithm is applied. For systems of multidimensional equations, a local

characteristic decomposition is �rst performed to transform the equations into a decoupled

set of multidimensional scalar equations whose unknowns are the Rieman invariants of the

original system of equations (Shu et al: 1992). Derivatives of the Rieman invariants are

computed according to the one-dimensional algorithm.

The ENO scheme treats the symmetry axis di�erently from the compact scheme algo-

rithm. The point value ENO procedure stores solution variables at the cell centers and

computes 
uxes at cell edges. The axis r = 0 is placed at a cell edge rather than at a cell

center. Therefore, the computational domain is extended to the other side of the axis and

uses of ghost points. Symmetry conditions are imposed on all the variables at the end of

each iteration at the ghost points, except for the radial and tangential velocities which are

antisymmetric about r = 0.

4 Linear Analysis

This section examines the linearized Euler and Rankine-Hugoniot (R-H) conditions with

a view to obtaining some analytical and physical insight into the behaviour of the 
ow.

Consider a shock normal to the mean 
ow and label the upstream and downstream sides by

subscripts 1 and 2 respectively. From the steady-state Rankine-Hugoniot (R-H) conditions,

one readily deduces the relations

M2
2 =

2 +M2
1 (
 � 1)

2
M2
1 � (
 � 1)

�21 =
�2

�1
=

(
 + 1)M2
1

2 +M2
1 (
 � 1)
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P2

P1
=

2
M2
1 � (
 � 1)


 + 1
(4.1)

between mean upstream and downstream variables.

Now consider an in�nitesimal perturbation wave (denoted by primes) superimposed on

the mean 
ow, but not necessarily aligned with it. These perturbation velocities are decom-

posed normal and parallel to the mean shock position. This in turn induces a perturbation

in the shock position and orientation. Together with an assumed shock shape given by

x = xs(r; t); (4.2)

and the introduction of a �nite shock velocity into the R-H conditions, their linearization

with respect to perturbation amplitude leads to a linear system of equations for the down-

stream variables. For simplicity, we set the upstream axial and radial perturbation velocity

components, and the upstream perturbation entropy, to zero. Solving the linearized R-H

conditions for the downstream perturbation variables yields

s02



= �12

p01

p1

+�1

xs;t

c1
(4.3)

p02

p2

= �22

p01

p1

+�2

xs;t

c1
(4.4)

u0x2
c2

= �32

p01

p1

+�3

xs;t

c1
(4.5)

u0r2
c2

= �4xs;r: (4.6)

Here, s02 =
p0
2

p2
� 
�0

2

�2
is the downstream perturbation entropy.

The nomenclature for the matrix coe�cients is taken from Chang (1957) where the gen-

eral solution for arbitrary upstream disturbances was derived. With the previous de�nitions,

the matrix coe�cients are

�12 = +
M2

2

1 �M2
2

(
(1� �21)[1 + (
 � 1)M2

2 ] + [1� �221

�
M2

M1

�2
]

)
< 0
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�22 = � M2
2

1 �M2
2

(
(1� �21) + (1 � �21

M2
1

)[1 + (
 � 1)(1� �21)M
2
2 ]

)
> 0

�32 =
M2

2

M1(1 �M2
2 )
(1� �21)f2 + (
 � 1)(1� �21)M

2
2g < 0

�1 = (
 � 1)
(1 � �21)

2

�21
M2 > 0

�2 = � M2

1 �M2
2

1� �21

�21
[2 + (
 � 1)(1 � �21)M

2
2 ] > 0

�3 = � 1

1 �M2
2

1� �21

�21
[1 +M2

2 + (
 � 1)(1 � �21)M
2
2 ] > 0

�4 = �M2(�21 � 1) < 0: (4.7)

The inequalities in the expressions above hold for the range of upstream Mach numbers

M1 > 1 Several conclusions can be drawn from Equations (4.3). First, note that u0� is con-

tinuous across the shock, and is therefore absent from the linearized R-H relations. Second,

u0r2 has the same radial pro�le as the shock slope xs;r(r; t). If the shock moves in the positive

x direction, then xs;t > 0. In addition, if the axial velocity decreases away from the axis,

then xs;r < 0, which implies that u0r2 > 0. The sign of u0x2 is also positive since p
0
1 < 0 in the

upstream vortex core. Thus, if the shock is displaced in the upstream direction, its velocity

is relatively fast at the axis, and a counter-clockwise (in region r > 0) downstream vortex

ring is generated. This vortex ring then convects downstream with the mean axial velocity

U2, while new vortex rings are continuously generated by the steady upstream. The �nal

result is a perturbation velocity u0x2 pointing upstream at the axis, and pointing downstream

at the top of the vortex ring. Superimposed on this ring of azimuthal vorticity is a down-

stream axial vortex characterized by the same azimuthal velocity distribution as upstream

(to leading order), but with a lower relative (with respect to the downstream mean pressure)

pressure variation within the vortex (0:67 < �22 < 0:72, for 1 < M <1). As expected, the

signs of �12 and �1 are consistent with positive entropy generation across the shock.

Several numerical simulations of shock/vortex interactions (with the vortex axis parallel

to the shock), have shown that a wave propagates along the shock at a velocity di�erent

from either the upstream or the downstream sound speed (Erlebacher et al: 1996; Meadows
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Figure 2: Propagation speed of disturbances along the shock in the linear regime, normalized by

downstream sound speed.

1995). The acoustic wave, created by the shock perturbation, expands outward from its

source at the downstream mean sound speed. The center of the instantaneous acoustic pulse

convects downstream at velocity U2. Its speed along the shock is easily calculated to be

c� = c2

q
1�M2

2 .

5 Discussion of Physical Results

In this section, results from the S-F and ENO algorithms, as applied to the problem of

shock/vortex interaction, are compared to the predictions of linear theory and against each

other. Because of the low-order accuracy of ENO results in the vicinity of the shock, detailed

veri�cation of shock-related information is rather di�cult. However, it is possible to verify

results of ENO scheme in the downstream region away from the shock where pointwise or

integrated quantities can be checked. Therefore, after providing a mutual veri�cation of

S-F method and linear theory in the linear regime, we use the S-F results to establish the

limitations of linear theory. Then we use the S-F results to validate the ENO results for

moderately strong vortices, especially with reference to the structure of the 
ow away from

the shock. Finally we venture with the ENO scheme into the highly nonlinear regime of
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stronger vortices, which cannot be handled by the S-F method.

5.1 Linear regime

The validity and accuracy of the S-F algorithm have been veri�ed in numerous situa-

tions involving plane acoustic, shear or entropy waves (Zang, Kopriva & Hussaini 1983,

Zang et al: 1984, Lasseigne et al: 1991, Erlebacher et al: 1996). We consider speci�cally ax-

ial vortices (2.6) with strengths in the range of � 2 [10�3; 3] interacting with a M = 2 shock.

After the downstream solution computed by the S-F method has evolved for a �xed period

of time, the downstream values of �eld and thermodynamic variables are extracted at the

shock. These results are then compared with the corresponding predicted values obtained

from the linear equations (4.3)-(4.6) using the upstream values and the shock speed at the

particular instance in time.

We compute the error (both absolute (a.e.) and relative (r.e.)) for entropy, pressure and

velocity normal to the shock. Results at the symmetry axis (where the maximum error is

found to occur) are presented in Table 1 and 2. As expected, the linear theory prediction

is found to be accurate and match the shock-�tted results in the range of vortex strength

� < 1 (� < 0:067).

Since the perturbation p01 = O(�2), u01x = 0, and u0� is continuous across the shock, it

follows that all downstream perturbation variables are O(�2). The absence of O(�) terms

implies that the absolute error is O(�4) in the linear regime, and the relative error is O(�2).

These results are clearly con�rmed in Table 1, except for where absolute errors reach the

roundo� error of the computer (< 10�13).

A threshold of nonlinearity was previously established in Erlebacher et al: (1996) where

it was deduced that nonlinear e�ects become signi�cant when M� > 2, at least when the

vortex axis is parallel to the shock. Although this derivation does not strictly hold when the

vortex axis is perpendicular to the shock, Table 2 does indicate that relative errors related

to nonlinear e�ects grow beyond 1% when � is in the 1 to 2 range. Note that by � = 3
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� 1 0.1 0.01 0.001

� 0.067 0.0067 0.00067 0.000067

S (a.e.) 5:8� 10�5 5:8� 10�9 9:1� 10�13 2:1� 10�14

S (r.e.) 2:4� 10�2 2:4� 10�4 3:7� 10�6 8:5 � 10�6

p (a.e.) 5:3� 10�4 5:1� 10�8 2:7� 10�12 7:8� 10�14

p (r.e.) 4:9� 10�3 4:6� 10�5 2:5� 10�7 7:0 � 10�7

un (a.e.) 6:0� 10�5 6:1� 10�9 9:1� 10�13 3:1� 10�15

un (r.e.) 1:3� 10�2 1:4� 10�4 2:1� 10�6 7:2 � 10�7

Table 1: Error of downstream variables at the shock between S-F and linear

theory. Error is computed on the symmetry axis. Both absolute (a.e.) and

relative errors (r.e.) are shown.

(� = 0:2) the relative error between the linear theory prediction and the S-F computation

is already 24% for entropy, suggesting strong nonlinear e�ects. The data also suggests that

pressure is less a�ected by high � than are entropy and normal velocity. Results in Table 2

also suggest that for � = 2 and beyond, cubic nonlinearities seem to come into play because

the relative error is growing slightly faster than quadratically with the vortex strength. Note

that at M = 2, 
ow reversal occurs at � � 3:7 which is beyond the nonlinear threshold (see

Section 5.2). In all the cases considered, the linear results underestimate the magnitude of

the nonlinearly computed perturbations of s02, p
0
2, and u

0
2x.

Further detailed checks of the accuracy of the S-F scheme have been performed in the

two-dimensional context (Erlebacher et al: 1996). The numerical algorithm is identical to

the current one, except for modi�cations required to accomodate the cylindrical geometry.

After the successful comparison between linear theory and S-F results, we compute the

vortex/shock interaction with ENO and S-F schemes and compare the solutions in the down-

stream domain, speci�cally for the case of M = 2 and � = 2. We initialize the vortex ac-

cording to IC-c (2.11) with � = 2, and � = 6. The shock is initially located at x = 0. For

the S-F simulation, the upstream domain extends to x = 8, and the downstream domain

extends to x = �10, with the bu�er domain starting at x = �9. Parallel to the shock,
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� 3 2 1 0.1

� 0.2018 0.1345 0.06726 0.006726

entropy S 24.05% 9.95% 2.37% 0.024%

pressure p 4.38% 1.90% 0.49% 0.005%

velocity un 13.17% 5.69% 1.33% 0.014%

Table 2: Relative error of downstream variables at the shock between S-F and

linear theory. Error is computed on the symmetry axis.

the grid stretching parameters are A = 2:5, rmax = 20 (see Equation 3.5). In computational

space, the grid is uniform in both upstream and downstream domains, but with di�erent grid

spacings in the two domains. There 60 axial grid points in the upstream domain. Coarse

(100 � 48) and �ne (200 � 96) downstream grids produce almost identical contour plots of

u0x, indicating a converged solution.

Conditions for the ENO scheme are as follows. The physical domain is de�ned by the

region x 2 [�10; 8] and r 2 [0; 5], with a uniform grid in both directions. Coarse and �ne

resolutions grid densities are 100� 50 and 200� 100 respectively. Although the results from

the two algorithms were compared at various times, we present only the results at t = 6.

19



Figure 3: Superposition of ENO versus S-F in the region x 2 [�4; 0], r 2 [0; 1:5]. Contour levels of

ux range from -9.0 to -0.6 by increments of 0.1. Solid lines: S-F, dashed lines: ENO with 200� 100

resolution, dotted lines: ENO with 100� 50 resolution.

Figure 4: Cut of Figure 3 at x = �1:9 and x = �6, r = 0:5 and r = 1:5 to show quantitative point

by point comparison.

Figure 3 compares contour plots of axial velocity obtained from ENO and S-F in the region

x 2 [�5;�1] and r 2 [0; 3]. There are 4 equally spaced contour levels ranging from �9:0 to

�0:6, with a maximumof �0:53 near x = �0:3. With a freestream velocity U1 = �0:887, the


ow has not yet reversed. (The 
ow in the downstream domain is de�ned to have su�ered
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reversal, i.e., incipient vortex-breakdown, if the axial velocity points upstream at least at one

point.) According to Table 3, the circulation must approach the value 4 for breakdown to

take place. The solid line represents the S-F results which may be considered as converged

solutions. As expected, the ENO solution approaches the S-F solution as the grid is re�ned.

When the axial grid resolution is doubled, the ENO contours lie approximately half way

between the S-F contours and the ENO contours with a coarser grid. Cuts through the

contours of Figure 3 at r = 0 and r = 1 are shown in Figure 4 to quantify the di�erences

between the solutions. The re�ned ENO solution is approximately half way between the

coarse ENO and SF. This is consistent with a �rst order accurate solution. As explained by

Casper & Carpenter (1995), the �rst order accuracy is the result of the propagation of the

�rst order error near the shock through the downstream characteristics.

5.2 Vortex breakdown regime

The comparisons performed in the previous section demonstrate that linear theory accurately

predicts the phenomena associated with the interaction a shock wave with an axial vortex for

the range of vortex circulations � and shock Mach numbersM such that �M < O(1). As the

vortex strength is increased beyond this linear limit, the deceleration of the axial 
ow across

the shock increases the likelihood of the vortex breaking down. This is best understood by

considering the angle formed by the streamlines and the symmetry axis, (which we called in

the Introduction as helix angle),

� = arctan � = arctan
u�max

u1
; (5.1)

where u1 is the freestream axial velocity. This equation shows that � increases if either

u1 decreases (stronger shock), or u�max increases (stronger vortex). In the case of the

incompressible axisymmetric vortex it is known that breakdown is highly probable when

� reaches a critical value around 57� (Spall et al: 1987). Experiments (Cattafesta 1992;

D�elery et al: 1984), and numerical simulations (D�elery et al: 1984) indicate that the vor-

tex strength � required to induce 
ow reversal downstream of the shock decreases with
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increasing Mach number. We are interested in reproducing these results with an accurate

time-dependent simulation.

Although both ENO and S-F are adequate to trace out the envelope of incipient break-

down, we opted to use ENO for expediency. Spot checks at M = 2 and M = 5 with S-F

con�rm the ENO results. The initial conditions used for this were IC-b.

The computational domain for ENO is x 2 [�4; 2], r 2 [0; 5], with a uniform grid of

100 � 75 points. A uniform axial vortex is placed in the upstream domain x > 0. For each

shock Mach number, several runs are conducted with values of � on either side of its critical

value. To this end, we compute the maximum axial velocity in the downstream domain. If

this value is greater than zero, we consider that the 
ow has reversed. In the absence of

reversal, the minimum axial velocity eventually oscillates around a constant negative value,

which we take as an indication that the solution has reached a quasi-steady state.

The results of the parametric study are recorded in Table 3 and Figure 5. Table 3

shows a range of Mach numbers from 1.3 to 10. The value of � for which the incipient

breakdown occurs is given in the second column, and is the average of the two numbers in

the third column. These are the two closest values of � we tested which are on either side

of the breakdown curve. Clearly, determining the critical value of � to arbitrary precision

is naturally di�cult and prohibitively expensive, as is the case with physical or numerical

experiments. Several re�ned ENO simulations were performed on a 200�150 grid to con�rm

the results obtained on the coarser mesh.

The variation of � = �1 versus Mach number is shown in Figure 5. As expected, the

upstream vortex strength necessary to initiate breakdown decreases with increasing Mach

number. Intuitively, this makes sense since a stronger shock leads to a stronger deceleration

of the axial 
ow, thus pushing the helix angle towards its critical value. An alternative

way to quantify the relationship between shock and vortex strength is to plot the degree of

nonlinearity of the shock-vortex interaction versus Mach number (Fig. 5). A good curve �t
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M � range of � �

1.3 4.93 (4.90, 4.95) 0.510

1.5 4.53 (4.50, 4.55) 0.406

1.7 4.18 (4.15, 4.20) 0.331

2.0 3.78 (3.75, 3.80) 0.254

2.5 3.33 (3.30, 3.35) 0.179

3.0 3.02 (3.00, 3.03) 0.135

3.5 2.73 (2.70, 2.75) 0.105

4.0 2.64 (2.63, 2.65) 0.0888

4.5 2.51 (2.50, 2.51) 0.0750

5.0 2.51 (2.50, 2.51) 0.0675

6.0 2.28 (2.25, 2.30) 0.0511

7.0 2.18 (2.15, 2.20) 0.0419

8.0 2.16 (2.15, 2.16) 0.0363

9.0 2.11 (2.10, 2.12) 0.0315

10.0 2.08 (2.05, 2.10) 0.0280

Table 3: The vortex breakdown or 
ow reversal values.

is provided by the straight line

�M = 1:7M + 4:0 (5.2)

over the range of M 2 [1; 10]. Above M = 6, the linear approximation �M = 1:8M + 3:2

provides a better �t to the data. Below this Mach number, the latter equation slightly

underpredicts the numerical values. Equation (5.2) could serve as a practical curve for

experimentalists and engineers.

As explained in D�elery (1984), the presence of the shock decelerates the mean upstream

vortex thus increasing �. A rule of thumb for incompressible 
ow is that when � reaches

57�, the vortex is susceptible to an axisymmetric breakdown. A simple model of vortex

breakdown was given in Cattafesta (1992) who expressed the downstream �2 as a function

of upstream quantities to obtain

�2

�1
=
ux1

ux2
=

�21

�21 sin
2  + cos2  

(5.3)

where uxi, (i = 1; 2) are axial velocities upstream and downstream of the shock respectively,
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Figure 5: Plot of �1 = � and �M versus Mach number for M 2 [1:5; 10]. Results based on ENO.

and  is the angle between the shock and the shock normal (Figure 1). The density ratio

cross the shock is

�21 =
(
 + 1)M2 cos2  

(
 � 1)M2 cos2  + 1
: (5.4)

Cattafesta (1992a) assumed that the shock was normal ( = 0�) and determined a best

constant value of �2 over the range of Mach numbers considered by D�elery et al: (1984).

This yielded �2 = 0:6, or �2 � 30� which is at variance with the critical �2 = 57� for the

incompressible vortex. Assuming that the incompressible limit for �2 should be reached

at M1 leads to the conclusion that the critical value of �2 at which breakdown occurs

is a function of the upstream shock Mach number. Therefore, we compute �2 based on

Equation (5.3), with the values of �1 taken from Table 3 to obtain the variation of �2

with M shown in Figure 6. Note that the curve is approximately linear for M < 3:0.

Extrapolated to M = 1, the �2 curve predicts a critical angle �2 = 55�, consistent with

incompressible results. In the limit M = 1, the two curves join, and �1 = �2 � 55�. At

higher Mach numbers, the critical angle �2 decreases down to 10�. D�elery et al: (1984)
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obtained experimental points on the reversal curve for M = 1:7; 2:0; 2:3. They obtained

�2 = 47�; 40� and 30:5�, respectively. Based on our observations relating the e�ects of the

pressure core, and the resulting shock motion, the discrepencies could be partially explained

by the presence of an axial velocity de�cit present in the experiments, but absent from the

simulations.

Figure 6: �1 and �2 versus Mach number.

If � is increased beyond the point where the vortex breaks down, the shock eventually

forms a triple point, with a more complicated structure in the recirculating region. This

regime cannot be computed by the S-F code because of the appearance of internal shocks in

the downstream This regime is now studied exclusively with the ENO algorithm.

5.3 Shock bifurcation regime

To complete the study of 
ow con�gurations as a function of vortex strength and shock

Mach number, we perform ENO calculations for � = 7 and 9, at M = 2 and 4. The physical

domain extends from x = �4 to x = 8 in the axial direction, and to r = 5 radially. Grid

resolution is 450 � 150. These parameters were chosen to ensure the occurrence of a triple
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point in the shock, hereafter referred to as shock bifurcation. The triple point is expected to

form at r = O(1) since the vortex core radius is the only physical length scale in the problem.

The chosen values of � far exceed the breakdown criterion; the 
ow is highly nonlinear.

We consider two di�erent set of initial conditions | IC-a and IC-c. Recall that IC-a

refers to a vorticity pro�le and perturbation temperature constant across the upstream and

downstream domains; whereas IC-c has zero vorticity downstream and an upstream vorticity

multiplied by a spatial blending function (Section 2). The structure of the 
ow is a function

of the initial conditions (compare �gures 8 and 11).

Contour plots of jr�j and jrpj for a M = 2, � = 7 
ow with IC-c at t = 11 are shown in

Figure 7. For comparison, density contours are shown in Figure 8. The gradient functions

are normalized so that their maximum is unity. Contours in the range [0.03,0.04] are plotted.

The choice of variables is consistent with the features visible in a typical Schlieren photo. The


ow slip lines are easily identi�ed from the features present in the density gradient contours,

and absent from the pressure gradient plot (E1, E2, and H in Figure 7). The upstream

pressure is minimum in the vortex core, speci�cally at the axis, and increases radially to

its freestream value. As the plane shock interacts with the vortex (at P1), the local shock

Mach number is therefore higher in the core region than elsewhere. In other words, the

shock bulges forward in the vicinity of the axis. As the obliqueness of the primary shock (A)

increases, a local region of supersonic 
ow eventually forms downstream of (A), necessarily

terminated by another shock (B) to match with the downstream subsonic 
ow, thus forming

a lambda shock with the so-called triple point (P2). Another weak shock (C) is evident in the

supersonic region, between shocks (A) and (B). The sliplines (E1) and (E2) are separated by

the foot of the shock (C), and they coincide with the Mach=1 contour line which emanates

from the point of intersection of the primary shock (A) with the axis of symmetry (P1).

Thus, the supersonic region is delimited by the shocks (A), (B) and the sonic lines (E1) and

(E2). As the primary shock (A) begins to move upstream in the region near the axis, an

azimuthal vortex ring is formed. This vortex ring, which has an elliptical cross section in the
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Figure 7: Schematic of 
ow con�guration for a smooth start case.

x� r plane whose major axis slowly rotates counterclockwise, moves steadily away from the

axis. The 
ow in the neighborhood of the elliptic vortex closest to the center is supersonic,

while the rest is subsonic. As the 
ow turns supersonically within the vortex (Figure 9), it

is decelerated through the shocks (B) and the triple point structure at the tip of the normal

shock (D). The velocity vectors near the axis in Figure 9 suggest a structure analogous to

that of an expanding nozzle with a shock consistent with subsonic exit conditions.
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Figure 8: Time history t = 3; 7; 11 of density. Computed with ENO, M = 2, � = 7. Smooth start:

x 2 [2; 6]. Initial conditions IC-c.
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Figure 9: Velocity vector plots in the x � r plane, superimposed on contours of Mach number

(projected in the x � r plane). Contours are at intervals of 0.5. The vectors are plotted every 10

points in x and every 4 points in y.

Figure 10: Position of P1 and P2 as a function of time. The initial data and grid is given in the

text.
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Figure 8 shows density contour plots at t = 3; 7; 11 for the IC-c, with a spatial ramp

function de�ned by Equation (2.11) (� = 2, � = 6). Although we do not present the results

here, we have also simulated the abrupt start case de�ned by IC-b, and �nd that the results

are qualitatively similar to Figure 8, but with a time shift. Figure 8a (t = 3) shows the

density prior to the formation of the triple point. The triple point forms around t = 4.

By t = 7, the triple-point shock con�guration is well formed (Figure 8b), and as evidenced

by Figure 8c at t = 11, this formation seems to evolve self-similarly. The structure of the


ow in the recirculatig region is presented in Figure 9 in which vector plots of the 
ow in

the x � r plane are superimposed on contours of Mach number. The contours range from

0 to 2.5 in increments of 0.5. The results are shown at t = 11. As the 
ow begins to wrap

around the subsonic region (E), it decelerates, and becomes subsonic. At this point, the


ow reaccelerates, eventually becomes supersonic, and is eventually slowed down by passage

through a normal M = 2 shock (D).

To test whether the 
ow maintains its self-similar motion for longer time periods, we �rst

coarsened the grid to 100� 50 on the same physical domain and compare the primary shock

structure to the �ner grid results of Figure 8. We �nd, as expected, that the coarseness of

the grid does not modify the characteristics of the downstream 
ow. Therefore, we increased

the size of the physical domain to x 2 [�9; 15], r 2 [0; 12], and ran the simulation to t = 28.

At this late stage, the structure of the primary and secondary shocks are still the same as

for t = 11, but spatially enlarged. We track the position of P1 (the point of intersection

of the shock and the axis) and P2 (the shock triple-point) and �nd that P2 is moving at

a constant velocity towards the freestream (Figure 10). On the other hand, the speed of

P1 seems to slow down as it moves upstream. These results suggest the possibility of a

theoretical framework within which a self-similar 
ow emerges for particular combinations

of the parameters M and �.

In contrast to results with the initial conditions IC-c, Figures 11a-c show the time evo-

lution of the density for case IC-a, where a vortex is superimposed initially on a shocked
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Figure 11: Time history t = 3; 7; 11 of density. Computed with ENO, M = 2, � = 7. (Initial

conditions IC-a).
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uniform 
ow. Clearly, the evolution appears to be self-similar, somewhat like that in Fig. 8,

but evolving on a slower time scale. Rough velocity measurements of points P1 and P2 be-

tween t = 7 and t = 11 indicate that for IC-a, P1 moves approximately 3.5 times slower, and

P2 moves about 2.5 times slower, than the corresponding points of case IC-c. This indicates

that the shock is more oblique when the vortex interacts with the shock abruptly. A physical

explanation is o�ered by considering the initial pressure jump across the shock, which for

our choice of parameters, is about twice as strong in case IC-b. This indicates that case IC-b

generates a shock with stronger acceleration into the upstream domain near the symmetry

axis.

Once the triple point is formed and starts to move towards the freestream, what is its

ultimate destiny? Does it continue to move at a constant velocity, or does it slow down,

and eventually stop, setting the stage for a possible steady state solution? We try to answer

this question by appealing to dimensional analysis. The physical parameters that govern

this problem are the mean upstream velocity U1, the upstream mean sound speed c1, the

normalized vortex strength � = �
p

=(r0c

�), the vortex core radius r0, the spatial coordinates

x� and c�, and time t�. (An asterisk denotes dimensional quantities.) The downstream

velocity �eld therefore takes the general form

u0i(x
�; y�; t�) = c�f(M; �;

x�

r0
;
y�

r0
;
c1t

�

r0
): (5.1)

In the limit of vanishing core radius, or equivalently, as t�

c1r0
! 1, the velocity �eld must

take the self-similar form

u0i(
x�

t�
;
y�

t�
) = c�f(M; �;

x�

c1t�
;
y�

c1t�
): (5.2)

Expressions for the velocity of the triple point P2 and that of the intersection of the

primary shock and the axis (P1) are easily obtained from (5.1) by suppressing the dependence

on the spatial coordinates:

vpi = c1 f(M; �;
c1t

�

r0
) (5.3)
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Figure 12: Streamwise velocity contours at t = 7 for (a) M = 2, � = 7, (b) M = 2, � = 9,

(c) M = 4, � = 7, and (d) M = 4, � = 9.
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which implies a constant velocity as the third argument becomes very large. Of course, this

velocity might be zero.

Numerical results seem to indicate that there is a region of (�;M) parameter space for

which the function f is independent of time. However that need not be the case. A theoretical

study of this matter would prove most interesting. For example, what is the structure of f

as t! 1, � !1, or M !1? Intuitively, one could argue that once out of range of the

upstream vortex �lament, that having reached a constant velocity, the triple point would

continue on forever. Given the assumption that the point P1 moves at constant velocity, a

slowdown of the triple point would increase the obliqueness of the shock, eventually leading

to its breakdown. Simulations at higher values of � have led to shock breakdown.

To understand better the e�ect of M and � on the triple point motion, we perform and

display results atM = 2 and 4, for � = 7 and 9. These are presented in Figure 12. Comparing

Figures 12a (M = 2; � = 7) and 12b (M = 2; � = 9), one sees that the velocity of the triple

point P2 (Figure 7) does not depend on the vortex strength. However, P1 moves at a much

faster rate as � is increased. This is consistent with a lower vortex core pressure, and thus a

greater shock velocity near the axis. These results also hold for M = 4 at the same values

of � (Figures 12c-d). On the other hand, the velocity of both P1 and P2 increases with Mach

number.

These results allow us to draw some conclusions relating to the form of Equation (5.3).

The lack of dependence of vP2 on � implies that

vP2 = c1 f(M;
c1t

�

r0
) (5.4)

which is only a function of Mach number when the velocity is independent of time (i.e.,

r0 ! 0). On the other hand, vP1 retains the general form (5.3).

Now consider the limit as M ! 1 for which either c1 ! 0 or u1 ! 1. We consider

both cases. But �rst, consider the radial temperature pro�le. If one assumes that the entire
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Figure 13: Plots of (a) p, (b) ur, (c) u� and (d) !x at t = 11. Computed with ENO, M = 2, � = 7.

Initial conditions IC-c. Smooth start: x 2 [2; 6].
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vortex is isentropic, Equation (2.6) implies that

T (r) = T1 � �2(r)�2 (5.5)

where �(r) is a positive function and �(1) = 0. Therefore, the Mach number in the vortex

core is higher than in the freestream. Its radial pro�le is

M2(r) =
U2
1

c21 � �2(r)
�2
(5.6)

which gives a ratio of core to freestream Mach number

M0

M1

=
1

(1 � �2(0)
�2=c21)
1=2
: (5.7)

If U1 !1, M0

M1

= f(�; c1) with � <
c1

�(0)
p


to insure a positive core temperature. Therefore,

the Mach number and vortex strength are independent parameters. If, on the other hand,

c1 ! 0, the ratio M0=M1 is still given by (5.7), except that the maximum vortex strength

decreases proportionally to c1. In this case, one cannot take the limit M1 ! 1 while

keeping � �xed. In other words, the aforementionned expressions for the triple points , and

their \self-similar" properties, are found for increasingly weaker vortices as the Mach number

is increased.

Combining the above statements, asM1 !1, (c1 ! 0), the velocity of P1 and P2 satisfy

either vPi
= U1 f(�; U1t

�=r0) or vPi
= c1 f(�; U1t

�=r0). In the latter case, the velocity drops

to zero in the limitM1 !1. We assume that � is kept �xed as c1 ! 0, e.g., by decreasing

the vortex circulation. Since � < O(c1), one must have � < O(c21).

When M1 !1 (U1 !1), vPi
= c1 f(�; c1t

�=r0), which implies that the triple point has

a velocity vP2 = c1 f(�; c1t
�=r0). In the above discussion, we have assumed that the generic

function f(� � �) remained �nite as its various limits were taken. However, this need not be

true. If this assumption fails, more general forms must be considered.

Figures 13a-13d show the solution of the IC-c case at t = 11 for p, ux, u�, and axial

vorticity wx (M = 2; � = 7). An \airfoil"-like structure is apparent in Figure 13b. This

region acts as a solid body around which the 
ow rapidly accelerates (Figure 13c). If the
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acceleration is su�ciently strong, the 
ow becomes supersonic as it redirects itself in the

upstream direction. To adjust back to the subsonic �eld adjacent to the primary shock, a

secondary shock is formed at the axis (D in Fig. 7). The secondary shock forms an almost

perfect normal Mach disk. The axial location of this shock is approximately steady and

has a Mach number of 1.34. Note that this recirculating zone does not appear in pressure,

but is present in density plots, which indicates a region of localized entropy variation. As

expected, the axial vorticity is continuous across the shock, but has strong variations inside

the \airfoil". This is consistent with strong variations of v� in this region.

6 Concluding Remarks

In this paper, we have studied the interaction of a shock with a longitudinal isentropic

vortex over a wide range of Mach numbers and vortex strengths. Three regimes are brought

to light. In the �rst, the vortex strength � satis�es �M < 1, in which case, linear results are

valid. As � increases, the nonlinear e�ects increase. First, a 
ow reversal occurs downstream

of the shock, accompanied by a vortex breakdown. This e�ect is primarily due to the

deceleration of the mean 
ow across the shock, which decreases the helicity of the vortex,

thus eventually leading to breakdown. We determined numerically � as a function of Mach

number for which incipient vorticity breakdown occurs. When the ordinate is expressed as

�M , this curve becomes approximately linear, particularly at the higher Mach numbers. As �

is increased even further, the resulting obliqueness of the shock leads to a supersonic pocket

in the downstream region which readjusts to subsonic conditions through a secondary shock

emanating from the primary shock at the so-called triple point. A parameter study in this

range of vortex strengths using ENO, uncovered a regime in which the motion of the triple

point and of the point of intersection of the primary shock with the axis of symmetry looks

self-similar. Further study uncovered a regime in which the triple point velocity, normalized

by c1, was only a function of the shock Mach number. Under extreme conditions, the shock

can even break, when a supersonic upstream 
ow can no longer be maintained. This is due
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to the strong Mach number gradient between the vortex core and its edge. This condition is

easiest to reach for relatively weak shocks. Currently, there are no nonlinear theories which

support these results. Theoretical developments, particularly those based on self-similar

notions, might go a long way towards understanding in more detail some of the mechanisms

described herein.
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