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Abstract

The mechanisms of vorticity concentration, reorientation, and stretching are inves-
tigated in a simpli�ed swirling jet model, consisting of a line vortex along the jet axis
surrounded by a jet shear layer with both azimuthal and streamwise vorticity. Inviscid
three-dimensional vortex dynamics simulations demonstrate the nonlinear interaction and
competition between a centrifugal instability and Kelvin-Helmholtz instabilities feeding on
both components of the base 
ow vorticity. Under axisymmetric 
ow conditions, it is found
that the swirl leads to the emergence of counterrotating vortex rings, whose circulation, in
the absence of viscosity, can grow without bounds. Scaling laws are provided for the growth
of these rings, which trigger a pinch-o� mechanism resulting in a strong decrease of the local
jet diameter. In the presence of an azimuthal disturbance, the nonlinear evolution of the

ow depends strongly on the initial ratio of the azimuthal and axisymmetric perturbation
amplitudes. The long term dynamics of the jet can be dominated by counterrotating vortex
rings connected by braid vortices, by like-signed rings and streamwise braid vortices, or by
wavy streamwise vortices alone.
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1 Introduction

Swirling jets represent one of a handful of paradigm 
ows that, while of great practical
signi�cance, allow for the fundamental study of complex but generic dynamical processes
and their interactions. They feature prominently in a variety of applications in such �elds
as propulsion, combustion, and mixing. At the same time, atmospheric conditions can give
rise to swirling 
ows in nature, with both wake and jet-like axial velocity pro�les. Examples
concern tornados, dust devils and water spouts. All of the above situations are character-
ized by a complex interplay of a variety of competing dynamical mechanisms. The axial
velocity pro�les typically allow for shear induced instabilities similar to those encountered in
nonswirling 
ows. However, the additional presence of swirl can result in an unstable radial
strati�cation, thereby leading to centrifugal instabilities as well. Furthermore, the swirl can
give rise to standing or propagating nonlinear inertial waves, similar to the internal waves
observed in 
ows with density strati�cation. Finally, under certain conditions swirling
jets are known to produce vortex breakdown events, an important generic phenomenon
for which a universally accepted explanation is still elusive. An improved understanding of
these mechanisms and their mutual coupling is a prerequisite for the successful development
of active and passive control strategies employing sound, nozzle geometry and motion, or
micromachines, with the goal of tailoring the 
ow such as to generate the desired operating
conditions.

An introduction into the basic physics of swirling 
ows is given by Gupta et al.1, while
some more advanced aspects pertaining mostly to con�ned 
ows are reviewed by Escudier.2

Early analytical investigations were mostly directed at �nding similarity solutions to sim-
pli�ed equations and boundary conditions,3 and at determining the linear stability of vari-
ous combinations of axial velocity pro�les and swirl.4;5;6;7;8 Experimental investigations of
swirling jets for the most part have addressed the issue of mean 
ow pro�les and aver-
aged turbulent transport properties.9;10;11;12 Only recently have researchers begun to pay
attention to the dominant role played by the underlying vortical 
ow structures and their
dynamical evolution, e.g. Panda and McLaughlin.13 These authors point out the crucial
role played by axisymmetric and helical instability waves, emphasizing the importance of a
structure-based understanding of the 
ow dynamics.

To our knowledge, no axisymmetric or three-dimensional nonlinear computations aimed
at elucidating the fundamental dynamics of swirling jets are reported in the literature.
However, the recent axisymmetric computational results obtained by Lopez,14 Brown and
Lopez,15 and Lopez and Perry16 for an internal swirling 
ow, and by Krause and colleagues
for the vortex breakdown phenomenon (reviewed by Althaus et al.17) suggest that such
computations can provide some fundamental insight into the 
ow physics of swirling jets.

For the purpose of studying the nonlinear dynamical interaction of shear and cen-
trifugal instabilities in swirling jets, we recently introduced a simpli�ed model18 that is an
extension to earlier ones proposed by Batchelor and Gill,19 Rotunno,20 and Ca
isch, Li and
Shelley.21 It lends itself well to analytical linear stability calculations, as well as to nonlinear
Lagrangian vortex dynamics simulations. The model consists of an axial centerline vortex,
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which is surrounded by a nominally axisymmetric vortex sheet containing both streamwise
and circumferential vorticity. While this model has obvious limitations when it comes to
reproducing the detailed features of experimentally generated, and often geometry depen-
dent velocity pro�les, its simplicity o�ers several advantages. First of all, it allows for some
analytical progress18 in terms of a straightforward linear stability analysis, which illumi-
nates the competition of centrifugal and Kelvin-Helmholtz instability waves. In particular,
the results show that centrifugally stable 
ows can become destabilized by su�ciently short
Kelvin-Helmholtz waves. Secondly, the model enables us to study the nonlinear interaction
and competition of the various instability mechanisms involved, by means of fully nonlinear
numerical calculations.

Some preliminary nonlinear simulations for axisymmetric perturbations were reported
by Martin and Meiburg,22 who showed that, under certain circumstances, counterrotating
vortex rings emerge in the braid regions between the primary vortex rings generated by
the Kelvin-Helmholtz instability of the axisymmetric shear layer. These counterrotating
vortex rings can trigger a dramatic decrease in the local jet diameter. A further interesting
observation shows the circulation of the swirling vortex rings to be time-dependent, in
contrast to the vortex rings found in nonswirling jets. The dynamics of these swirling
vortex rings represents an interesting research area in its own right. While nonswirling
rings have been the subject of considerable theoretical, experimental, and computational
research (Shari� and Leonard,23 and references therein), much less is known about vortex
rings with swirl, in part because of the considerable di�culties one encounters when trying to
generate them experimentally. On the other hand, several recent theoretical investigations
addressing the form and stability of isolated swirling vortex rings24;25;26;27 can be expected
to stimulate further e�orts in this direction.

After a brief discussion of the 
ow model in section 2, we will investigate the nonlinear
axisymmetric evolution of the above swirling jet model in more detail in section 3. In
particular, the formation of recirculation regions will be analyzed in detail, and scaling laws
for the time-dependent growth of the vortex ring circulations will be derived. In section 4,
we will extend the numerical investigation to fully three-dimensionally evolving swirling jets,
by imposing azimuthal perturbations in addition to the axisymmetric ones. The azimuthal
perturbations can trigger additional instabilities of the rings or the braid regions. The
simulations to be discussed will then allow us to investigate the nonlinear interplay of the
competing instabilities for various values of the governing dimensionless parameters.

2 Flow Model and Numerical Technique

The present 
ow model of an axial line vortex surrounded by a nominally axisymmetric
cylindrical shear layer containing streamwise and circumferential vorticity represents an
extension of earlier ones investigated by several researchers, dating back to the analyses
by Batchelor and Gill19 as well as Rotunno20 of the stability of an axisymmetric layer of
circular or helical vortex lines. More recently, Ca
isch, Li and Shelley21 introduced the
e�ect of swirl by placing the additional line vortex at the center of the axisymmetric layer.
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However, their unperturbed vortex sheet had an axial vorticity component only, so that a
jet-like velocity component was absent. In the present investigation, we employ a slightly
more complicated model (Fig. 1), consisting of a line vortex of strength �c at radius r=0,
surrounded by a cylindrical vortex sheet at r = R. The unperturbed axisymmetric vortex
sheet contains both azimuthal vorticity (corresponding to a jump �Ux in the axial velocity)
and streamwise vorticity (representing a jump �U� in the circumferential velocity). The
strength of the vortex sheet is taken to be equal and opposite to that of the line vortex.
The vortex lines in the sheet hence are of helical shape, with their pitch angle  being

 = tan�1
�
�U�

�Ux

�
(1)

These particular features of our model were chosen on the basis of the following con-
siderations. While an axisymmetric cylindrical layer of circular vortex lines represents a
unidirectional 
ow with a top hat like pro�le shape, helical vortex lines result in an ad-
ditional azimuthal velocity component, which jumps at the location of the vortex layer.
If there is no streamwise circulation present at radii smaller than that of the cylindrical
layer, this azimuthal velocity component vanishes inside the cylinder and exhibits a 1=r-
dependence on the outside. Consequently, since the magnitude of the circulation increases
across the vortical layer, this 
ow is centrifugally stable on the basis of Rayleigh's circula-
tion theorem. However, if some streamwise circulation is contained inside the cylinder, and
if this circulation is of opposite sign to the streamwise circulation of the layer itself, then
the magnitude of the circulation can decrease across the vortical layer, so that we obtain
a centrifugally unstable 
ow. The line vortex at the center of the jet is introduced exactly
for this purpose. Its strength is taken to be equal and opposite to that of the streamwise
circulation contained in the vortical layer, in order that the azimuthal velocity component of
the base 
ow vanishes outside the jet. In this way, our simpli�ed model mimicks a swirling
jet entering 
uid at rest. The 
uid velocity pro�le associated with our model is sketched in
Fig. 1 as well.

By introducing both axial and azimuthal vorticity along with the central line vortex,
this model allows for the investigation of competing Kelvin-Helmholtz and centrifugal in-
stabilities, which can be expected to lead to interesting nonlinear dynamical behavior. For
the nonswirling top hat jet velocity pro�le it is known that axisymmetric and helical per-
turbations will result in the formation of vortex rings or helices, respectively, all of the
same sign.28;29 For purely swirling 
ow, on the other hand, Ca
isch et al.21 demonstrated
that axisymmetric perturbations lead to the emergence of counterrotating vortex rings. By
superimposing a top hat streamwise velocity pro�le upon the purely swirling 
ow, we hence
expect a breaking of the symmetry exhibited by the purely swirling 
ow alone. Conversely,
introducing swirl into the nonswirling jet 
ow should lead to a tendency to form azimuthal
vorticity of a sign opposite to that of the vortex rings which evolve as a result of the pure
Kelvin-Helmholtz instability. Additional azimuthal disturbances will render the 
ow �eld
fully three-dimensional. Both the swirling vortex rings as well as the braid regions connect-
ing themmay develop instabilities that can lead to the formation of concentrated streamwise
vorticity.
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In order to compute the nonlinear evolution of the 
ow in response to certain imposed
perturbations, we employ a vortex �lament technique that is essentially identical to the one
used in earlier investigations of plane shear layers, wakes, and jets.22;28;29;30;31;32 It is based
on the theorems of Kelvin and Helmholtz and follows the general concepts reviewed by
Leonard33 and Meiburg.34 A detailed account of the technique is provided in these earlier
references.

For the numerical simulations of the simple jet model, we limit ourselves to the tem-
porally growing problem, in spite of the spatial growth exhibited by a typical experimental

ow �eld. We face a trade-o� here, as the spatially growing simulation would require that
we extend the control domain over several streamwise wavelengths, so that the numerical
resolution per streamwise wavelength would necessarily su�er. In addition, the stream-
wise boundary conditions pose a much more severe problem in spatially growing 
ows. In
the present investigation we opt for the temporally growing approach. Previous experi-
ence concerning the simulation of nonswirling and swirling jets justi�es this approach, as it
demonstrates that centrifugal and shear instabilities represent the dominant mechanisms in
the evolution of the jet. These mechanisms are captured by the temporally growing 
ow, so
that we can expect to gain signi�cant insight into the dynamical evolution of these 
ows on
the basis of the temporal growth approach. Under this assumption, we can concentrate the
numerical resolution on one streamwise wavelength, which allows us to take the calculation
farther in time.

The wavelength in the axial direction, i.e., the length of the control volume, is based
on Michalke and Hermann's35 stability analysis for the spatially evolving nonswirling jet.
By using Gaster's36 transformation, we obtain the wavelength of maximum growth for the
temporally evolving 
ow as approximately 2�. One cannot necessarily expect the linearly
most unstable wavelength to dominate the nonlinear regime as well. However, as our interest
lies in simulating the evolution of a slightly perturbed 
ow from the linear regime all the
way into the nonlinear one, starting with the linearly most unstable wavelength represents
the obvious approach. Whether or not this wavelength continues to dominate the nonlinear
regime, or if it changes due to pairing or other nonlinear interaction mechanisms, can only be
determined by extending the simulation farther into the nonlinear regime, under explicitly
imposed perturbations or random roundo� errors. We do not investigate this issue in the
present study.

One streamwise wavelength is typically discretized into 105 �laments. Each �lament
initially contains 123 segments in the circumferential direction. These numbers emerged
from test calculations, in which we re�ned the discretization until a further increase in
resolution resulted in very small changes. The Biot-Savart integration is carried out with
second order accuracy both in space and in time by employing the predictor-corrector time-
stepping scheme, in conjunction with the trapezoidal rule for the spatial integration. As the

ow structure develops nonlinearly, the vortex �laments undergo considerable stretching.
To maintain an adequate resolution, the cubic spline representation of the �laments is
used to introduce additional nodes, based on a criterion involving distance and curvature.30

Furthermore, the time-step is repeatedly reduced as local acceleration e�ects increase. The
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�lament core radius � decreases as its arclength increases, to conserve its total volume.
In order to assess the accuracy and convergence of the vortex �lament simulations, we
presented in Martin and Meiburg28 a comparison of the numerical and analytical growth
rates for the axial Kelvin-Helmholtz instability of the nonswirling jet. This comparison
showed that the simulation overpredicts the growth rate, which is due to the fact that the
�laments do not deform from a circular cross section under strain. In Figure 2, a comparison
is shown for the growth rates of a purely swirling 
ow. It can be seen that the numerical
growth rate reproduces the exact one to a high degree of accuracy.

We take the streamwise velocity di�erence between the centerline and in�nity as the
characteristic velocity. The thickness of the axisymmetric shear layer serves as the char-
acteristic length scale, which results in the �lament core radius � = 0:5. The nominal jet
radius R is taken to be 5, and we obtain the ratio of jet radius R and momentum thickness
� of the jet shear layer as R=� = 22:6. Hence, the ratio R=� � 1, and we are well within
the range of validity of the �lament model.

3 Results

3.1 Axisymmetric Case

As a �rst step, we discuss the nonlinear evolution of a strictly axisymmetric con�guration,
for which some preliminary results were reported by Martin and Meiburg.22 The swirling jet
is centrifugally unstable under Rayleigh's circulation theorem, allowing us to investigate the
competition between the Kelvin-Helmholtz instability of the azimuthal vorticity component
and the centrifugal instability feeding on the streamwise vorticity.

The initial axisymmetric perturbation displaces the vortex �lament centerlines in the
radial direction, with an amplitude, �1, of �ve per cent of the nominal jet radius. A �lament's
perturbed radius r0 is then determined by the equation

r0 = r (1� �1 sin (2�x=�)) (2)

in which � is the streamwise wavelength, and r is the distance of the �lament centerline from
the jet axis. A typical development of the 
ow �eld is shown in Figure 3 for the relatively
large velocity ratio of �U�=�Ux = 8:2. This parameter value indicates that the jump in
the azimuthal velocity component across the jet shear layer is much larger than that of
the axial component, so that, for the unperturbed 
ow, the vortex lines are predominantly
oriented in the streamwise direction. Figure 3a (time=0.039) shows a side view, i.e., those
�lament sections located at y > 0, of an early con�guration of the vortex �laments, along
with contours of the azimuthal vorticity component (Fig. 3b). For clarity, two streamwise
wavelengths are shown. Both graphs indicate that the azimuthal vorticity component points
in the same direction everywhere in the vortex sheet, in a fashion similar to the axisymmetric
Kelvin-Helmholtz instability of nonswirling jets. The contour plot re
ects the early stages of
ring formation due to the Kelvin-Helmholtz instability of the azimuthal vorticity component.
By time 0.801 (Fig. 4a), on the other hand, a new phenomenon can be observed, namely
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the reorientation of certain vortex �lament segments in the opposite azimuthal direction.
Near x = � and x = 3�, the rings that were already emerging at t = 0:039 continue to
grow. Their vorticity is of the same sign as that in a corresponding nonswirling jet. At
x = 0 and x = 2�, however, the vortex �laments reverse their direction, which causes them
to form regions of azimuthal vorticity of opposite sign. This re
ects the in
uence of the
centrifugal Rayleigh instability and its tendency to generate pairs of counterrotating vortex
rings, as seen in the vorticity contours at t = 0:801 (Fig. 4b). The explanation lies in the
fact that the swirl generates a strong radial gradient of the azimuthal velocity component.
As a result, the azimuthal velocity component of a vortex line varies strongly along its
arclength. Thus, there are segments of a vortex line that travel around the jet's axis at a
higher angular velocity than neighboring segments of the same vortex line. Since the overall
dynamics is inviscid, the vortex line has to stay connected, so that it necessarily has to fold
back and forth, thereby generating azimuthal vorticity components of both signs. With
increasing time, the emerging counterrotating ring becomes stronger (Fig. 5, t = 1:225),
until two distinct counterrotating rings of opposite sign have emerged.

It should be pointed out that the circulation of each of the counterrotating rings, i.e., the
integral over the positive (negative) azimuthal vorticity within one streamwise wavelength
in the cross-cut, is a function of time, as the vortex �laments continue to wrap around
the jet axis due to the di�erential azimuthal velocities experienced by di�erent segments
of the same vortex line. However, the sum of the circulations of two neighboring vortex
rings of opposite sign remains constant with time. It is equal to the integral over one
streamwise wavelength of the unperturbed initial azimuthal vorticity. In other words, while
the circulations of the individual vortex rings grow inde�nitely as a function of time, the
sum of the circulation of a pair of counterrotating vortices does not depend on time. This
is in contrast to the nonswirling con�guration, where the circulation of individual vortex
rings is independent of time.

In order to identify the formation, location, and size of any recirculation regions, it
is of interest to analyze the bifurcation sequence of the streamline pattern, as seen in a
reference frame moving with the velocity of the evolving jet shear layer structures, i.e., half
the velocity of the unperturbed jet (Fig. 6). After the initial perturbation has been imposed,
the streamlines show the familiar shape of the well-known Kelvin cats eyes (t = 0:039, Fig.
6a). With the emergence of counterrotating azimuthal vorticity, this topology changes, and
an \island" forms midway between the Kelvin-Helmholtz vortices (t = 0:625, Fig. 6b). This
island grows with time (t = 1:016, Fig. 6c), until it extends all the way to the jet centerline.
Subsequently, a �nite region of upstream velocity on the jet axis forms (t = 1:436, Fig. 6d),
indicating the existence of a closed recirculation bubble. The di�erent streamline pattern
topologies are sketched in Figure 7.

The time-dependent evolution of the streamline pattern described above aids in the
understanding of the transport of 
uid towards and away from the jet axis. Between the
counterrotating vortex rings, alternating regions exist in which the 
uid velocity is directed
towards larger and smaller radii, respectively. In this way, a certain 'pinch-o�' e�ect is
created, i.e., locally the jet diameter decreases dramatically.

6



Figure 8 shows the instantaneous growth rate of the circulation of the counterrotating
vortex ring as a function of time, for di�erent values of the dimensionless ratio �U�=�Ux.
Increased values of this parameter result in more rapid circulation growth, due to the
increased role of the centrifugal instability. The �gure demonstrates that, as a result of the
inviscid nature of the present vortex dynamics calculations, the vortex ring circulation does
not saturate.

The ways in which the Kelvin-Helmholtz instability interacts with the centrifugal in-
stability, and how that interaction a�ects the strengthening of the counterrotating vortex
ring, is illuminated by the following scaling argument. The azimuthal velocity of a jet shear
layer vortex line segment can be approximated by the azimuthal velocity induced at its
location by the centerline vortex, and by the streamwise vorticity contained in the layer
itself. In this way, we obtain for the azimuthal velocity v�1 of the widest shear layer cross
section, located at radius R1 (Fig. 9)

v�1 �
�c

4�R1

(3)

where �c is the circulation of the centerline vortex. A corresponding expression follows for
the azimuthal velocity v�2 of the narrowest shear layer cross section, located at radius R2.
The above shows that di�erent segments of the jet shear layer will rotate around the jet axis
at di�erent rotation rates. However, if a segment of the jet shear layer rotates at a di�erent
rate from a neighboring segment, the shear layer vorticity becomes increasingly reoriented
into the azimuthal direction, thereby forming a vortex ring. The strength of this evolving
vortex ring depends on the accumulated di�erence in the rotation between the neighboring
segments. In particular, if one segment of a vortex line has rotated around the jet axis one
more time than a nearby segment, a vortex ring has formed that has the circulation of the
entire jet shear layer. Since this strength of the jet shear layer is equal and opposite to that
of the centerline vortex, we have

2�R0�U� = ��c (4)

It follows immediately that the strength of the primary vortex ring, �2, increases at the
same rate as that of the secondary, counterrotating vortex, �1, namely by the amount j �c j

during the time interval �T that it takes for the narrowest cross section to complete one
more rotation than the widest cross section. We obtain

d j �1 j

dt
=
d j �2 j

dt
�

�c

�T
(5)

With the above estimates for the azimuthal velocities of the cross sections, we then get the
following estimates for the rate at which the circulation of the vortices increases

d j �1 j

dt
=

�2c
8�2

�
R2

1
� R2

2

R2

1
R2

2

(6)

7



The temporal evolution of R1 and R2, in turn, depends on the growth of both the Kelvin-
Helmholtz and the centrifugal instabilities. This point clearly demonstrates the nonlinear
interaction between the two instability modes. The above scaling law relationship is shown
in Figure 8, along with the computational results. For short times, the counterrotating ring
has not yet formed, so that the above arguments do not yet apply. For long times, however,
the agreement is quite good, considering the rough estimates on which the scaling law is
based. It should be mentioned that, in the absence of viscous e�ects, the circulation of the
counterrotating rings will grow without bounds, as a result of the continued interaction of
the shear and centrifugal instabilities.

3.2 The E�ect of Azimuthal Perturbations

The axisymmetric nature of the above calculation permits the evolution of concentrated
vortical structures only in ring-like form. However, it is well known that three-dimensional
perturbations to nominally two-dimensional30;31;37;38 or axisymmetric28;29 shear 
ows give
rise to concentrated streamwise vortical structures that are predominantly located in the
braid region. In order to investigate possible mechanisms for the generation of such struc-
tures in swirling jets, we introduce an azimuthal perturbation in addition to the axisymmet-
ric one described above. Just like the axisymmetric perturbation, the azimuthal disturbance
displaces the vortex �lament centerline radially from its nominal location. Before the ax-
isymmetric perturbation is applied, the distance r of a �lament centerline is speci�ed as a
function of the circumferential coordinate � by

r = R (1 + �2 cos (5�)) (7)

in which �2 is the azimuthal disturbance amplitude. In an experiment, this type of perturba-
tion can be imposed, for example, by means of a corrugated nozzle.39 Due to the nonlinearity
of the overall problem, the initial perturbation amplitude ratio represents an important pa-
rameter of the problem, as it can favor the rapid growth of one instability over others in
their mutual competition. In particular, the early growth of one instability can a�ect the
base 
ow in such a way as to suppress or accelerate the development of others. It should
be pointed out that for this fully three-dimensional case, a Kelvin-Helmholtz instability of
the streamwise vorticity can develop, in addition to the Kelvin-Helmholtz instability of the
azimuthal vorticity and the centrifugal instability of the streamwise vorticity.

In the �rst one of the fully three-dimensional simulations, the ratio of the azimuthal and
axial velocity jumps across the jet shear layer has the same value �U�=�Ux = 8:2 as in the
previous axisymmetric calculation. The azimuthal disturbance amplitude is relatively small
at �2 = 0:04%, while the axisymmetric perturbation amplitude �1 is held constant at the
level of �ve per cent (the same as above). The wavenumber of the azimuthal perturbation is
taken to be �ve. As can be seen from Figure 10, the 
ow again develops two counterrotating
vortex rings, as it did for the purely axisymmetric case. However, already the side view
at t = 0:977 shows a slight nonuniformity in the azimuthal direction. By t = 1:187,
concentrated streamwise braid structures have begun to form, as a result of a Kelvin-
Helmholtz instability of the streamwise braid vorticity. It is interesting to note that these
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braid vortices form only in the braid section upstream of the primary rings, i.e., in the
narrow part of the braid. In contrast, the widening half of the braid region downstream of
the primary rings does not exhibit any signs of concentrated streamwise vortical structures.
The explanation for this behavior can be found in the e�ective wavelength change of the
azimuthal Kelvin-Helmholtz instability due to the radial velocity component. In those
regions where the braid circumference grows, the growth of the Kelvin-Helmholtz instability
in the circumferential direction is slowed down as its e�ective wavelength increases, whereas
in the narrowing braid sections the instability is accelerated due to the wavelength reduction.

It is important to point out that the streamwise vortex structures are all of the same
sign, i.e., they are corotating. The reason for this lies in the fact that the braid vorticity,
which forms the streamwise structures by a process of concentration as a result of a Kelvin-
Helmholtz instability, is of the same sign everywhere. In this aspect, the evolution of the
braid region resembles the situation encountered in a nonswirling jet disturbed by a helical
and an azimuthal wave.29 In contrast to the counterrotating vortex rings, the circulation
of the streamwise braid vortices cannot grow without bounds. Rather, it is limited by
the fact that, within a x = const: cross section of the jet, the circulation of the jet shear
layer vorticity has to be equal and opposite to that of the centerline vortex. Consequently,
the maximum strength of the streamwise braid vortices, achieved if all the jet shear layer
vorticity is contained in these concentrated structures, is equal to the circulation of the
centerline vortex divided by the azimuthal wavenumber.

The above observations are con�rmed by the isosurface plot of the vorticity magnitude
in Figure 11 for t = 1:343. It shows the counterrotating vortex rings, connected in one half
of the braid region by concentrated streamwise vortical structures. A tendency of the braid
vortices to wrap around the vortex rings is visible as well.

Figure 12 shows the evolution of a 
ow if the azimuthal perturbation amplitude is
increased to �2 = 1%, while the axisymmetric disturbance amplitude is left unchanged at
�1 = 5%. This increase in the perturbation amplitude ratio is expected to lead to an in-
creased growth of the azimuthal Kelvin-Helmholtz instability, and consequently to a more
rapid evolution of concentrated streamwise vortical structures. In addition, the ratio of the
azimuthal and axial velocity jumps across the jet shear layer is reduced to �U�=�Ux = 3:0.
In this way, the development of the centrifugal instability, and with it the formation of
the counterrotating ring, is slowed down. As a result, at time 2:402 we recognize concen-
trated primary vortex rings, connected by strong streamwise braid vortices that now extend
over the entire length of the braid region. This early formation of streamwise vortices has
preempted any coherent directional reversal of the vortex �lament portions, so that coun-
terrotating vortex rings have not formed in this 
ow. However, the centrifugal instability
still causes the braid vortices themselves to acquire a strong azimuthal component, thereby
generating a staggered pattern, as can be seen at t = 3:154. This is con�rmed by the
three-dimensional isosurface plot, which shows primary vortex rings connected by strong
wavy streamwise braid vortices.

This evolution of the 
ow for �2 = 0:01 is a typical result of the above mentioned
competition between the various instability mechanisms. Under these conditions, the growth
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of the Kelvin-Helmholtz instability of the streamwise vorticity is accelerated compared to
that of the centrifugal instability, so that nearly all of the braid vorticity between the
primary vortex rings becomes concentrated in streamwise vortices before counterrotating
rings can form.

Fig. 13 shows results for �U�=�Ux = 3:0 and �2 = 0:05, i.e., for an even higher
azimuthal perturbation amplitude. As a result, the growth of the Kelvin-Helmholtz insta-
bility in the azimuthal direction is further ampli�ed, so that now even the primary vortex
rings develop only very weakly. Already at t = 1:543, strong and slightly wavy streamwise
vortices have formed, and a weak tendency towards the formation of the primary rings is
visible. At t = 3:105 we recognize that the wavy sections of the streamwise structures
align themselves in such a way that, together, they nearly form a ring-like structure at the
locations where primary rings should develop, although they remain disconnected. Conse-
quently, the three-dimensional isosurface plot shows that for the present 
ow parameters
the swirling jet is dominated by wavy streamwise structures, while neither primary nor
secondary counterrotating vortex rings seem to play an important role.

In the literature on swirling 
ows, it is common to quantify the e�ect of swirl in terms
of a swirl number S (e.g., Panda and McLaughlin13), and to then characterize the behavior
of the 
ow as a function of this parameter. The usual de�nition of S is

S =
_G�

R _Gx

; _G� = 2�

Z
1

0

�UWr2dr ; _Gx = 2�

Z
1

0

�
�U2 + p

�
rdr (8)

which gives the ratio of the axial 
ux of tangential momentum _G� to the product of the
radius R and the axial 
ux of axial momentum _Gx. For a vanishing jet shear layer thick-
ness, the above integration over our unperturbed initial velocity pro�le can be carried out
analytically. However, the result depends on the selected reference frame. When compared
to the experimental situation of a swirling jet entering a large body of 
uid at rest, the
proper computational reference frame is the one in which the jet 
uid has unit velocity in
the streamwise direction, with the 
uid outside the jet being at rest. We then obtain

S =
�c

2�R
(9)

However, it is clear from the above that this de�nition of the swirl number is not very
meaningful in characterizing the e�ect of swirl in the present 
ow model, because it does
not take into account the presence of streamwise vorticity in the axisymmetric shear layer,
which is the cause for the centrifugal instability. Consequently, the usual de�nition of the
swirl number cannot be employed in a meaningful way to distinguish di�erent 
ow regimes
for the present 
ow model.

4 Summary and Conclusions

The dynamical evolution of swirling jets is characterized by the complex nonlinear interac-
tion of several di�erent competing instability mechanisms. The axial, jet-like velocity pro�le
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gives rise to a Kelvin-Helmholtz instability of the azimuthal vorticity component, thereby
favoring the formation of like-signed vortex rings, as is well known from investigations of
nonswirling jets. However, the additional azimuthal velocity component of the base 
ow
introduces streamwise vorticity as well, whose existence allows for further instabilities to
develop. Firstly, there is the possibility for a centrifugal instability to arise, which tends to
promote the evolution of counterrotating vortex rings; i.e., rings of both the same as well
as of opposite sign compared to those found in nonswirling jets. Secondly, if the streamwise
vorticity is mainly concentrated in a narrow shear layer surrounding the jet axis, it can also
be subject to a Kelvin-Helmholtz instability in the azimuthal direction, which can lead to
the evolution of concentrated streamwise vortices.

In order to gain some insight into the nonlinear mechanisms of interaction and compe-
tition between these various potential instabilities, we performed nonlinear, inviscid, three-
dimensional vortex dynamics simulations for a simpli�ed model of swirling jets. The nature
of the model is such that it allows for the easy identi�cation of the various mechanisms at
work. By tracking the nonlinear evolution of vortex lines, it enables us to investigate the
e�ects of the centrifugal instability, as well as of the Kelvin-Helmholtz instabilities feeding
on both the azimuthal and the streamwise vorticity, onto processes of concentration, reori-
entation, and stretching of vorticity. The drawback of the present model is that it does
not have easily adjustable parameters allowing for the representation of the wide variety of
experimentally generated, and often geometry dependent, base 
ow pro�les. In particular,
a study of the dynamics of very smooth, Gaussian-like streamwise and azimuthal velocity
pro�les will have to be based on the evolution of a more continuous initial vorticity distri-
bution, rather than the shear layer model employed here. With this in mind, the current
investigation has to be seen as a �rst step, intended to provide qualitative information on
a variety of dynamical mechanisms and their interactions, and to be followed by three-
dimensional Navier-Stokes or vortex particle simulations. Nevertheless, the present model
elucidates many of the key features expected to dominate the evolution of swirling jets. In
particular the formation of counterrotating vortex rings, whose strength increases with time
as a result of the continued interaction between shear and centrifugal instabilities, seems to
represent a general phenomenon that one would expect to observe in a viscous 
ow as well.
The quantitative growth, however, and in particular the exact form of the scaling law given
by eqn. (7) would certainly be a function of the prescribed initial streamwise and azimuthal
velocity pro�les. In the same way, the exact perturbation amplitudes resulting in more
or less dominant streamwise vortical structures will vary with these pro�les as well. Even
for more general velocity pro�les we do expect, however, to observe di�erent 
ow regimes
dominated by di�erent large scale vortical structures, along the lines described above.

A main goal lies in the investigation of the mechanisms by which the introduction of
swirl a�ects the dynamics observed earlier for nonswirling jets.28;29 Conversely, the question
arises as to how the purely swirling 
ow examined by Ca
isch, Li, and Shelley21 is modi�ed
by the addition of an axial velocity component. We �nd that the main e�ect of the added
streamwise velocity lies in the breaking of the symmetry of the pure swirling 
ow. As a
result, the counterrotating rings observed in the purely swirling 
ow are no longer of equal
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strength, as one of them is ampli�ed, and the other one weakened, by the Kelvin-Helmholtz
instability of the axial 
ow. On the other hand, the introduction of swirl drastically alters
the dynamics of nonswirling jets, as it results in the formation of counterrotating vortex
rings, whose circulations, in the absence of viscous e�ects, can grow in time without bounds.
These rings promote a pinch-o� mechanism leading to a dramatic decrease in the local jet
diameter.

While the above mechanisms can be observed in axisymmetric swirling jets, an addi-
tional azimuthal perturbation leads to the formation of concentrated streamwise vortices as
a result of a Kelvin-Helmholtz instability feeding on the streamwise jet shear layer vorticity.
In contrast to nonswirling jets, the streamwise vortices in swirling jets are all of the same
sign. The nature of the large scale vortical structures dominating the long term dynamics of
the jet depends strongly on the ratio of the initial perturbation amplitudes in the azimuthal
and streamwise directions. If this ratio is small, the centrifugal instability has enough time
to form counterrotating vortex rings, before concentrated streamwise vortices can emerge
in the braid regions between them. For a somewhat larger perturbation amplitude ratio,
streamwise vortices grow more rapidly in the braid region between the like-signed primary
vortex rings. In this way, they suppress the growth of the counterrotating rings. However,
the centrifugal e�ects lead to a partial reorientation of the braid vortices in the azimuthal
direction. Finally, for even larger initial azimuthal perturbation amplitudes, the streamwise
vortices grow fast enough to suppress the growth of even the primary corotating vortex rings.
In this case, the long term dynamics of the swirling jet is dominated by wavy like-signed
axial vortical structures.

The above description is predominantly qualitative, and a more detailed quantitative
investigation of these e�ects is clearly necessary. In particular, it will be of interest to
study the competition between the di�erent instability mechanisms as a function of the
detailed shape of the base 
ow pro�le. Furthermore, the e�ect of helical rather than ax-
isymmetric perturbations, and their interaction with azimuthal disturbances, needs to be
addressed. Eventually, investigations of simpli�ed swirling jet models such as the present one
are expected to provide some guidance for carrying out and interpreting three-dimensional
spatially growing, fully viscous simulations of swirling jets. It is hoped that an investiga-
tion along those lines might also help to shed some light onto the various forms of vortex
breakdown observed in swirling jets.
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Figure 1: Simpli�ed model of a swirling jet 
ow. The centerline vortex of strength �c

is surrounded by a nominally axisymmetric jet shear layer containing helical vortex lines
of pitch  . The azimuthal vorticity component is related to the top hat axial velocity
pro�le, whereas the streamwise vorticity component results in the centrifugally unstable
strati�cation. Also shown are the streamwise and azimuthal base 
ow velocity pro�les.
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Figure 2: Comparison of the numerical growth rates of the radial perturbation amplitude
obtained from the vortex �lament simulation (solid line) and the analytical growth rate
(dotted line) for the case of a purely swirling 
ow.
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Figure 3: The evolution of a swirling jet with �U�=�Ux = 8:2 subject to an axisymmetric
perturbation. Shown is a side view of the vortex �laments at time t = 0:039 (a), along
with isocontours of the azimuthal vorticity distribution in a cross section containing the
jet axis (b). For clarity, two streamwise wavelengths are shown. Initially, the vortex lines
are predominantly oriented in the streamwise direction. At this early time, both graphs
indicate that the azimuthal vorticity component points in the same direction everywhere in
the vortex sheet. This is a re
ection of the early stages of corotating ring formation due to
the Kelvin-Helmholtz instability of the azimuthal vorticity component.
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Figure 4: Time 0.801: Counterrotating rings form in the braid regions between the primary
vortices, as a result of a centrifugal instability related to the streamwise vorticity. The rings
form as a result of the reorientation of certain vortex �lament segments into the opposite
azimuthal direction near x = 0 and x = 2�, respectively.
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Figure 5: Time 1.225: The counterrotating rings increase in strength, leading to the for-
mation of alternating regions in which 
uid is convected towards or away from the jet axis,
respectively.
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Figure 6: The sequence of bifurcations of the streamline pattern as seen in the reference
frame moving with half the nominal jet velocity. Islands form in the initial cats eyes pattern.
Subsequently, these islands grow in size, until they extend to the jet axis, where they create
regions of upstream velocity. In all frames, the dotted contour line has the same value as
the jet centerline.
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Figure 7: Sketch of the sequence of di�erent streamline pattern topologies.
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Figure 8: Instantaneous growth rate of the circulation of the counterrotating vortex ring
as a function of time. The dimensionless ratio �U�=�Ux has the following values: x:8.2,
+:5.0, o:3.0, 2:1.8. Also plotted are the corresponding time-dependent values obtained
from the scaling law (dashed lines). For longer times, the agreement between the scaling
law expressions and the numerical values improves.
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Figure 9: De�nitions of quantities used in the scaling arguments.
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Figure 10: Evolution of a swirling jet with �U�=�Ux = 8:2 subject to an axisymmetric
perturbation of amplitude 5%, and an azimuthal disturbance of amplitude 0:04%. Shown
are side views at times 0.977, 1.187, and 1.343, along with an end view for t = 1:343. The
formation of the primary and counterrotating rings proceeds similarly to the axisymmetric
case displayed in Figures 3 to 5. However, the azimuthal disturbance leads to the formation
of additional concentrated streamwise vortical structures in the narrow half of the braid
region.
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Figure 11: Isosurface plot of the vorticity magnitude for the 
ow shown in Figure 10 at t =
1:343. The dominant large scale coherent vortical structures have the form of primary and
secondary vortex rings, with additional streamwise vortices located in the narrow section
of the braid region.
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Figure 12: Evolution of a swirling jet with �U�=�Ux = 3 subject to an axisymmetric
perturbation of amplitude 5%, and an azimuthal disturbance of amplitude 1%. Shown
are side views at times 2.402 and 3.154, along with a vorticity magnitude isosurface plot
for this later time. For these parameters, the streamwise vortical structures develop more
rapidly, and they prevent the formation of the secondary counterrotating vortex rings. The
isosurface plot shows the dominant large scale structures to have the form of distorted
vortex rings, connected by wavy streamwise vortical structures.
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Figure 13: Evolution of a swirling jet with �U�=�Ux = 3 subject to an axisymmetric per-
turbation of amplitude 5%, and an azimuthal disturbance of amplitude 5%. Shown are side
views at times 1.543 and 3.105, along with an end view and a vorticity magnitude isosurface
plot for this later time. Here, the streamwise vortical structures develop even more rapidly,
thereby suppressing even the formation of strong primary vortex rings. Consequently, the
isosurface plot shows wavy streamwise vortices to dominate the large scale features of the

ow.
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