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1 Introduction

Domain decomposition methods have recently become an efficient strategy
for solving large scale problems on parallel computers ([1], [2], [3], [4], [3],
[6]). Nevertheless, they can also be used in order to couple different models
[11], [18], [19] and [21]. In this paper we will examine a domain decomposi-
tion strategy which can be applied to such situations.

This approach was introduced in order to solve several difficulties that
occur in fluid mechanics. In particular, our aim is to introduce several sub-
domains in order to do one of the following :

e Solve different problems on each subdomain.
o Use different kinds of approximation methods on each subdomain [7].

e Use “local refinement techniques” or “mesh adaptive techniques”, lo-
cally, per subdomain ([10]).

The subdomains fully overlap and the coupling is achieved through “fric-
tion” forces acting on the internal boundary of the domain, these friction
forces being updated by an explicit time marching algorithm.

Several versions of this methodology have been studied in [15]. In [15]
the emphasis was on the implicit time discretization version of this algo-
rithm, we focus in this paper on the explicit version of this methodology.
The theoretical study of our method will be done on an advection-diffusion
problem, which will serve as our model problem. The analysis will be made
at the continuous level, independently of any (space) discretization strategy,
which means that the derived results will be mesh independent.

In the next section we develop a maximum principle for general second-
order elliptic problem based on the De-Giorgi-Nash theory. In sections 2 and
3, we develop estimates for the solution of the advection-diffusion problems,
respectively, with Dirichlet-Neumann and Dirichlet boundary conditions.
These results are based on the maximum principle of section 2. We then
apply these tools to the analysis of an explicit time marching algorithm. We
also study a fixed point method for the implicit time marching algorithm of
[15]. Practical applications of the time marching algorithm to real life CF'D
problems can be found in [14], [19], [20], and [21].



2 Local estimates

In this section we shall establish a maximum principle for an arbitrary elliptic
operator of second order. These tools are central to the development of
our theory in order to derive the convergence analysis of the explicit time
marching algorithm described in section 5.1.

Let L be an operator of the form

Lu = a%(2)Diju + b(z)Diu + ¢(x)u,

for any w in W#"(Q), with Q a bounded domain of IR". The coefficients
a’,b and ¢,i,j = 1,...,n are defined on Q. As usual, the repeated indices
indicate a summation from 1 to n.

We suppose that the operator L is strictly elliptic in £ in the sense that
the matrix A of coefficients [a™] is strictly positive everywhere in €. Let A
and A denote respectively the smallest and the largest eigenvalue of A. Let
D denote the determinant of the matrix A and D* = D/". We have

0< A<D <A
We suppose in addition that the coefficients '/, b* and ¢ are bounded in ©,
and that there exist two positive real numbers v and § such that :
AXA <y, (L is uniformly elliptic) (1)

(16/A)*

Now, we are in a position to state the principal result of this section,
proved in annex.

IN

5. (2)

Theorem 2.1 Let u € W™(Q) and suppose that Lu > f with f € L™(Q)
and ¢ < 0. Then for all spheres B = Byp(y) of center y and radius 2R
included in Q and for all p > 0, we have :

1 R
upy 1 < Callrgy [V + 1), (3)

where the constant Cr depends on (n,v,6R%,p), but is independent of c.
Above ut = maz(u,0).



Figure 1: Description of the computational domain.

Remark 2.1 The statement of the same theorem can be found in [12], un-
der the assumption

el/x < 6. (4)

However, there the constant C'r depends indirectly on ¢ through 6. That
s exactly what we want to avoid, since we would like this constant to be
independent of ¢ (see section 5.1).

3 First fundamental estimate

Let €. be a connected domain of IR™ with Q. C @ (Figure 1). The
boundaries of the two subdomains are defined as follows:

I'y = 992N I, ( internal boundary),

I'; = 0, N Q ( interface),
' = 0Q\I'y (farfield boundary).

We denote by n the external unit normal vector to 9€Q or 09Q,..
Let V be a given velocity field of an inviscid incompressible flow such that:

divV =0 in Q,
(5)

Vin=0on I.



We shall derive an estimate for the solution of the following Dirichlet-
Neumann problem:

Lv = —vAv+V - -Vo+ lv in Q, (6)
T

v = 0 on Iy, (7)

oo _ r 8

an - g on b? ( )

where the function ¢ is given in H~'/%(T};) and the coefficient T is strictly
positive, and v is the diffusion coefficient. Let W be the sub-space of H()
defined by

W={we H'(Q)|w=0o0nT,} (9)
We then define the following bilinear forms on W

a(v,w):/Ql/Vva—l—/Qdiv(Vv)w, (10)

(v,w):/ﬁvw. (11)

The first basic problem associated to (6)-(8), can be written as follows: Find
v € W satisfying:

a(v,w)—l—(l/r)(v,w):/r guwdl', Yw € W. (12)

Moreover, we assume that the coefficients v and 7 satisfy the following
relation:
vt < 1. (13)

This hypothesis is not necessary but simplifies the proofs to come. More-
over, it is not restrictive, since we would like the convergence for small 7
(see section 5.1).

Let d denote the overlapping distance as described in Figure 2. Let 3 be
a real number such that

0< B <3vv/d,
and set
k=8/(vVr).

The first basic result states the global H'! estimate of the solution of the
first basic problem (12) in terms of the boundary data g.



Lemma 3.1 There exists a constant ¢, such that:

1ol < (eo/v)llgll-1/2r,. (14)

Proof of lemma 3.1

By using the relation (5) we have the following equality:

/deiv(Vv) = 1/2/QdiV(Vv2)

1/2/ V.no?
r

= 0,VveWw

Choosing w = v in (12), we then obtain

JwIvel +1/mety = [ g (15)

b

From this equality we deduce the following estimate:

vllol e < llgll-jar,lolliyzr,:
The application of the trace theorem yields the estimate (14), which implies
in particular

1ollo.0 < (eo/¥)llgll-1/2r,. (16)

|

Let ©; be the subdomain of width % with external boundary I'; as described

in Figure 2. Let Ky = Ba(y) be the sphere of center y and radius %. There
3

exist y1,...,y; belonging to ; such that
Q2 = Uyeq, Ba(y) C Vb Ky,
We define then K by setting
K=U_K,.

The next lemma states the local estimate of the solution v of the first basic
problem (12).



Lemma 3.2 There exists a constant ¢y such that:

[olloo,x < alolo,0- (17)

where ¢y is a constant depending only on v,v,6d* and (3/2d)"/?.

Proof of lemma 3.2

The operator
L=-°CL

satisfies the assumptions of the theorem 2.1, with ¢ = —1/7 and f = 0.
Applying then this theorem with p = 2, y € {); we obtain

HUHOO,Ky < HUH(LBzd/s)(Z/) :

Therefore

[0lloc. 0y < erllollog, (18)
where ¢; is a constant depending only on v,v, d* and (3/2d)”/2.
Applying the relation (18) to each K, we obtain:

[0]]o, 50 <UD c1l|vflo,0-

7=1,...,
Setting ¢y = sup ¢y, we finally have
7=1,...,
[olloo i < eal]v]]o,0- (19)

And the lemma is proved.
|
We shall now establish other local estimates for the solution » of the first
basic problem. For any M; in £;, we introduce (see Figure 2):

e B; = the ball centered on M; of radius d/6,
o v = caoplk(r® = 2/36)||tl|o o5,
We then have:
Lemma 3.3 The solution v of the first basic problem satisfies:

|o(M;)| < exp(—kd?/36)||v]|00.0B;, YM; € Q. (20)



Proof of lemma 3.3

The operator £ applied to v;, can be written in polar coordinates (with

r=MM):
k 1
o A 2,02 v N\
Lv; = 4(=k*vr® — kv + 2V.eﬂ‘ + 47_)?12.
Therefore A )
Lv; > A(—k*vr? — §|V.e7,|7‘ + (E — kv))v;.
We set then
e(r.k) = a(k)r? + b(k)r + e(k),
with

alk) = —k*v
k
b(k) = _§|V€T|
1
ky = — -k
c(k) P v

We seek to satisfy the following relation :

L

0 <infe(r,k) for 0 <r < g

As ¢(r, k) decreases on IR™, this will be satisfied iff
e(d/6) > 0,

le. iff

Kud?  kd|V| 1
— — _I__

— kv > 0.
36 12 4T

We replace k by its value. Therefore, we have to satisfy

L BE AV, 1
(36vr) 120/ 47 w1 T

(21)

(22)



Multiplying by /7, it follows that
1 32d?
NG )

The constraint 3 < 3v/v/d, finally yields after division

d||V]]

) > B(1+ 50

1 d 242
14

4,7 120 ™ (23)

i

From the relation (21) and the previous calculation, we deduce that for
B < 3y/v/d and 7 satisfying the above inequality, we have

Lv; > 0= Lv.
In addition, by construction
v; > v on 0B;.

Consequently, by using the maximum principle we obtain the following re-
lation :

v < in B;.

In particular
v(M;) < exp(—kd®/36)|v]|co,08,.

We do the same for —v, and finally we have

|o(M;)| < exp(—kd?/36)||v]|00.0B;, YM; € Q. (24)

|
Let Q. be defined by Q. = Q\ Q... The next result establishes an H?!
estimate of the solution v of the first basic problem on the domain .

Lemma 3.4 There exists a constant cqg such that:

e 1/2
lolhan < Boleanfeata (1+ D0 a7 ) = o)



Proof of lemma 3.4
Let £ € H*(Q) be such that :

E=1iIn Qu,
suppf C ;U Q.

We have using (12):

/Q(—I/Av +div(Vo) + v/7)E%0 = 0. (26)

By using the Green’s formula we deduce :

/Q—ymg%:/QVW(@)P—/QVWQ%Z. (27)

On the other hand, we have :
/ div(Vo)eto = / div(VE?/2) — / V.vEe. (28)
Q Q Q

Using the relations (27) and (28), (26) becomes

0 = /(V|V(5v)|2+ div(VER? /2) + €202 /1) —/(1/112|V£|2 L2V V)
Q Q

LoVl +leo) + [ (1/m =it = [ @nt|ve + vtevve)

ISR )+ [ Ve el + [ (17 - vigte?

— /Q‘(mﬂwa2 +0*EV.VE).

Hence, we obtain :
iela. + [ AT+ o)+ [ (1/r =)t =

/ (02| VE + 02V - V).
Q;

9



The relation (13) then yields

ol e, < [ WITER+oerve (29)
< ol [ (VER +€V:9E) (30)
Q;
< ol (vl a, + IEloa VIR 2)

IN

10112 0,161 o, (v + l€llos IVI/ 1€l ) (31)

If we take £ such that

1€llo.0; <1,

|£|%,Q, = 62/d7

where ¢, is a constant, (31) then becomes
o < Iillea/errd (14 L)
v
which concludes the proof.

Now we are in a position to state the main result of this section.

Theorem 3.1 Let v be the solution of the first basic problem (12). If T is
sufficiently small, we have

1 1/2
|oll1/2,0, < Ch 02/d<1+;HVHoo‘/d/Cz)

(1/v)exp(=kd®[36)llgll 121,

where C1 and Cy are constants, with C7 depending only on d,v,~ and ¢, but
not on T.

10



Proof of theorem 3.1

The proof of this theorem is based on the above lemmas. Since 0B; C K,

We have

[2ll00,08; < [¥lloo 1 (33)

The lemma 3.2 then implies

[2ll0,08; < eal[olo,0- (34)

Using the lemma 3.3 and the above estimate we obtain:

lo(M;)] < exp(—kd?/36)ect||v||o.q, YM; € Q.

Consequently we have

[0]lc,0, < exp(—kd?/36)e1[v]]o,0- (35)
Applying the lemma 3.1 we obtain:
1€,
[olloo.i < 11/ exp(—kd?[36)(|g/| -1 /51, - (36)

The application of the lemma 3.4 then yields:

e 1/2
ol 00 < coc1n/ca/d (1 + wy/d/q) (37)

(1/v)exp(=kd*/36)|lg]l-1 /2,

To conclude we use the trace theorem which yields

[oll1/2r; < eallvlli -

Consequently, we have the final estimate:

;
Iolljar, < corenfeafa(t + 0 faeyyre

(1/v)exp(=kd*/36)llgll-1 /2,

which corresponds to our theorem with C = ¢,c1¢3 and Cy = ¢s.

11



Figure 2: Description of the Domain Q.. and of the splitting used in the
majoration of the local solution.
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4 Second fundamental estimate

In this section we shall derive an estimate of the solution of the following
Dirichlet problem:

1
Lv = —vAv+V - -Vo+ —v in Q., (38)
T
v = h, on T}, (39)
v = 0, on Iy, (40)

where the function h is given in Hl/Q(Fi), the coefficient 7 is strictly positive,
and v is the diffusion coefficient. The velocity field V' is given by the relation
(5). Let W be the subspace of H(£,.) defined by

W ={wée H' Q) w=0onT;}.
We then define the following bilinear forms in W:

a(v,w) = 1// Vo.Vw + div(Vo)w, (41)
Qioe Qioe

(v,w) = /Q vw, (42)

loc

with v and w in W. The second basic problem associated to (38)-(40)
corresponds to the following problem:
Find v € W such that

a(v,w)+ (1/7)(v,w) = /F l/g—Zw, Yw e W, (43)
vlp; = h, (44)

where h is given in H'/(T;). We first have the following lemma:

Lemma 4.1 For 7 sufficiently small, we have

alw,w) + (1/r)(w,w) > (v/2)wlg, . YweW.

13



Proof of lemma 4.1:

Under the hypothesis 1/7 > v/2 + (1/20)||V]|%,, and using the Cauchy-
Schwarz inequality, we obtain :

a(v,v)+ (1/7)(v,v) = /Q vVo.Vo + V.Vvv—l—(l/T)/Q v?

loc Qloc loc

v

vVoll5, + (L/m)0lG 2 = 1V sl Vollozlvllo.2

v

IVolle + (1/Dloll6 2 = (/2] VoI5
—(1/2)IVIIZII0l5 2

(/2)(IVoll5 5 + [19115,2)-

v

|
We will also make the simplifying assumption (13). We first establish a
global estimate for the solution of the second basic problem.

Lemma 4.2 The solution v of the second basic problem (43)-(44) satisfies:

1/2
_ 1L+ [VIZ
Iolh o < 214 772 (1 . M) IHlhjar, — (45)
Proof of lemma 4.2:
Choosing w = v in (43) we obtain :
2 . 2 dv
y/ Vo2 + / (div(Voyo + (1)r)o?) = [ v 2%, (46)
Qloc Qloc Fz an
The lemma 4.1 then yields
10li g, < 2000/0nl|-1p2,0, 1211 j2r,. (47)

We shall now establish an estimate of ||0v/dn||_q /o ,. Combining (43) and
(5) we obtain:

N %w = /QZOC(V?JVw + (1/v)V.Vow + %vw)

14



Therefore, for any w in W, we have

" Ll < 190log IVl + (/I eIl o
+ L oo g lw o,
VT
< (IVolRa, + (/AIVIEIVolR ., + 1A elRa,)"
IVl g, +llolia,, +(1/7)0)ig, )2
< 1+ I g, o 14 22,

The trace theorem then yields

1/2
_ L+ ||V]I%
[0 /0nl]_s o, < (14772 (1 + M) ol

(48)
Combining now the relations (47) and (48) we have
1/2
_ L+ ||V
Iolh o0, < 21+ 7)1 (1 . ﬁ) Iilhyor,  (49)
and hence in particular
1/2
_ L+||V[I%
Iollo. < 201+ 7721 (1 . M) [flhor (50)
|

Let K, = Bgy/4(y) be the sphere centered on y and of radius d/4, with y
belonging to I'y (see Figure 3). By construction, I'v is the center surface of
Qe and €2; is the subdomain of width % centered on I'y .

We have the following lemma:

Lemma 4.3 There exists a constant ¢y such that:

[0]eo, i < erllvflo,gu- (51)

15



Figure 3: Description of the local domain £,. and of the splitting used in
the majoration of the global solution.

Proof of lemma 4.3:

Following the same argument as in the proof of the lemma 3.2 we obtain:

[9]o0,1, < erllvllo.goes (52)

where ¢; is a constant depending only on d,v,y and 4. On the other hand
there exist 4q,...,y; in €; such that

[
Q= {J Baly)c U Ky, = K.
yeLY; J=1

By applying the relation (52) to each K, we obtain

Iolloo < superglvllog, = ellelog,. (53
J=1

[ |
Next we shall establish another local estimate for the solution of the second
basic problem (43)-(44). For any M; € §;, we introduce (see Figure 3):

e a ball B; centered on M; and of radius d/6,

16



e the function v; = exp[k(r? — d*/36)]||v]|c0.55,-
We then have:
Lemma 4.4 The solution v of the second basic problem (43)-(44) satisfies:
|[o(M:)] < eap[—kd?® [36]|v]] o005, (54)
Proof of lemma (4.4):

By construction of k (see the previous section), ¢(r, k) is positive for all
r € [0,d/6]. Then by following the same argument as in the proof of the
lemma 3.3 we obtain the inequality (54).

|
Let Qp be the subdomain of .. described in the Figure 3. The H! global
estimate of the solution of the second basic problem, is obtained in the next
lemma.

Lemma 4.5 The solution v of the second basic problem (43)-(44) satisfies:

1Vl '
lollanon, < lolloany/ea/d (1+ 5B faje) ©. 9)

Proof of lemma (4.5):

Consider £ € Hl(Qloc), such that:

£ = 1 in €,
{ supp€ C Qp U L), (56)

Choosing w = £%v in (43) we obtain :
/ (—vAv + div(Vo) + (v/7))0 = 0. (57)
Qloc
Similarly to the proof of the lemma 3.4 we obtain:

vllévlls guue < /Q (o |VEP + 0% EV.VE).

Choosing £ such that
H£H07Qi <1

17



and
|£|%,Ql = Cz/d,

we finally obtain as in the proof of the lemma 3.4 the inequality (55).
|
Finally, the main result of this section is presented in the following the-
orem:

Theorem 4.1 For 1 sufficiently small, the solution v of the problem (43)-
(44) satisfies:

V2

lov/on||l_1 20, < Ci Cz/d(l—l-

(14 e )™

(1+1/7%)exp(=kd* [36)||h]l1/2.r, (58)

1+ HVHZO)

where Cy and Cy are constants with Cy depending only on d,v,v and 6.
Proof of theorem 4.1:
Since dB; C K by construction, the lemmas 4.3 and 4.4 imply:

[0]loc.02; < exp(—kd?/36)c[[v]o.g. (59)

Furthermore by using the lemma 4.2 it follows:

1/2
L+ IVIE
2 (60)
cr(1+1/7%) 2exp(—kd?/36) (A1 ja r,-

By using the lemma 4.5 we then obtain:

14 uvuzo)”?
2

190,00 < 2 (1 +

lolls gpue, < 2 (1 ¥

CIMO . %\/(%)1/2 (61)

(14 1/7%) 2exp(—kd? /36)||h]l1 2.1, -

18



Before concluding we shall establish an estimate of the term
[0v/dnl|_1/2,r,-
Choosing w such that:

w e Hl(Qloc), with w =0 on 08 N I,

and using (43) we obtain:

/ (—vAv 4+ div(Vo) +v/7)w = 0.
Qp
Applying the Green’s formula and using (5), we obtain:

1
b %w = /Qb(Vva + (1/v)V.Vow + va)

Similarly to the proof of the lemma 4.2 we obtain the following inequality:

1/2
L+ ||V]I%
uav/anu_wbs<1+1/72>1/2(1+%) Iolha.  (62)

The completion of the proof of the theorem results from the combination of
the relation (61) with (62).
|

5 Convergence analysis of the explicit time march-
ing algorithm

Consider the following elliptic problem:

§+v.v¢—m¢ = 0 inQ,

¢ = o on 'y, (63)

¢ = 0 on I,

that we would like to solve by the fundamental algorithm of [15]. This
algorithm can be written in this case as

o set @7 = ¢, and ¢° = ¢,.

19



o then, for n > 0,¢;,. and ¢" being known,

solve
<bn—l—l
Hoe L VeIt —vAertt = 0 in Q,,
Gt = ¢ on Ty, (64)
= 0 on Ty,
¢n—|—1
+ V.V —pAe™ = 0 in Q,
¢n+1 = (boo on IWoov (65)
8(bn+1 (b}%-l-l
— ocC F .
on on o e

We shall show in this section that this algorithm converges, and the
converged solution corresponds to the solution of the initial problem (63).
More precisely we have the following theorem.

Theorem 5.1 For 7 sufficiently small, ¢ being the solution of the stationary
problem (63), we have :

n+1
i) —lec converges to 99 in H=1/%(Ty)
an 7 an b

i) "t converges to ¢ in H'V/*(Ty),
iii) ¢"* converges to ¢ in H(Q),

iv) o't converges to ¢ in H' Q).

loc

Proof of theorem 5.1:

By the transformation ¢" Tt — ¢t — ¢ with ¢ the solution of the stationary
problem, this problem can be reduced to the case ¢, = 0. Multiplying the
equation in (64) by w € W, integrating by parts, we obtain:

<bn—l—l
[ Sy [ Ve ty [ Vv
loc loc oc
<bn—l—l
:1// aloc w, Yw e W. (66)
I; n

20



We now apply the theorem 4.1 and we obtain

dopt! 1
e, < Gy (14 51+ IVIE) (67)

[
1 ; 1/2
(1 S IVlefa/eh)

(14 1/7%)exp(—kd*[36)[¢" (|1 /2, -

On the other hand, multiplying the equation in (65) by w € W and inte-
grating by parts we obtain the equality

¢n+1 a(bn-l-l
/ w—l—/ V.Vt 4 y/ V' tivw = y/ loc_y, (68)
Q Q Q r

T , on

with w € H'(Q) and w = 0 on I',. Applying the theorem 3.1 to this
problem yields:

1 1/2
eryfeafd (14 VIl /d/es)

exp(—kd®* /360675 /0nll_1/2,r,- (69)
Combinig (67) and (69), we then have:

H¢n+1H1/2,D

IN

" 1
1067E faml|_apor, < eiy/ebfdL+ — (1+[V]2)
1 1/2
(14 WV ler/farch)
1 1/2
61\/02/d (1 + ;HVHoo\/d/CQ)

d2
(1+1/7%)exp (_kﬁ) 1067,./0nl|~1/2,r,
with k = L Therefore for 7 sufficiently small, the coefficient of reduction
T

will be dominated by the exponential term and will then be strictly less
than 1, implying the linear convergence to zero of

21



1065, /Onll—1 /27,

This corresponds exactly to the statement (i). This statement combined
with (69) leads to the convergence of ¢"*! to 0'in H'Y3(I;). Applying (14)
with ¢ = 06! /9n, we have in addition

loc

C
167 ha < 1065 /onll -1 2,

and therefore [|¢" ||y o converges to zero at the speed of || d¢]t" /On||_1 o1, -

Applying now (45) with h = ¢™, we also have

" 1 1/2 .
65 . < 2004 172 (14 (0 IVIE)) (6% yar,

And then ||¢" || o also converges to zero at the speed of ||¢"(|; /o,
|

5.1 Convergence of a fixed point method for the implicit

time marching algorithm

The implicit time marching algorithm of [15] couples the global and the local
problem. To uncouple them, it is advisable to use the fixed point algorithm
below :

o set (blooc,O = Yo and ¢? = 9y,

e then for k£ > 0, (/52";1 being known,

solve

ot — oL

loc,k+1 oc . n+1 n+1 - .

— A + div(vy ) —vAG L = 0 in Qg
n41 _ n+1 .
¢zoc,k+1 = o on Iy,

+1 _

¢?oc,k+1 = 0 on Iy,

22



Siir — 90" 1 1
Bt ZC o div(esptt) - vy
Shin
n—I—l
k-|—1 /on

= 0 in 9,

(boo on I'y,

vl

loc7k+1/8n on 1.

(71)

We will study now the algorithm (70)-(71). By setting

Vioekg = ¢%—|c—,1k+1 - ¢%—|c—,1q+1v (72)
Grg = (0T = o3 th), (73)
we have that vy, 1,4 and ¥y 4 verify the following equations :
¢loc,k,q/At + div(vlbloc,k,q) - VA¢ZOC,k,q = 0 in QIOC7
¢loc,k,q ¢k—1,q—1 on Fiv (74)
¢loc,k,q = 0 on Fb,
Yr o/ AL+ div(vig ) — VAL, = 0 in Q,
¢k7q = 0 on Foo, (75)
a¢k q 8leoc k,q
9 — vy F .
on g on o v

If At is sufficiently small, we can apply the analysis of the previous
section to this algorithm and we conclude that vy, and ..k, converge

linearly to zero. Hence the sequences (/52"’1 and ¢loc,k

which converge linearly to the unique solutions ¢"*! and ¢ﬁ)"c'

nt1 are Cauchy sequences,

L of the implicit

scheme. This guarantees the convergence of the above fixed point algorithm.
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Appendix

In this appendix we shall give the proof of the theorem 2.1 of section 2.
This proof relies on the notion of a contact set. If  is a continuous arbitrary

function on §, the upper contact set, denoted I'* or T}, is the subset of €,
defined by

't = {y € Q,3p(y) € R"such that u(z) < u(y)+p-(z —y) Yz € Q }.
(76)

We see that u is a concave function on Q iff I't = Q. When u € C1(Q)
we must have p = Du(y) in the relation (76). In addition, when u € C*(Q2),
the Hessian matrix D?u = [D;;u] is negative on I'". In general, I't is closed
in Q.

If u is a continuous arbitrary function on €, we define the “normal
mapping” Xx(y) = xu(y) at point y € Q by

x(y) ={p e R, u(z) < u(y) + p.(z — y) Vo € Q}. (77)

We can see that x(y) is non empty iff y € TT. In addition when u € C1(Q),
we have x(y) = Du(y) on I't; in other words y is the gradient field of u on
rt.

As a particular case of the Bakelman-Alexandrov ([8] and [9]) maximum
principle, we have under the above notation.

Lemma .1 For u € C?(Q)NC°(Q), we have :

supu < supu +

a’ D;:u/D* +
o € supu+ Dy D

with d the diameter of Q and w, the volume of a unit sphere in R".

For further details see [12].

We now proceed to the proof of Theorem 6.1, by following the steps of
[12]. We take B = B;(0) and the general case will be deduced by considering
the coordinate transform, z — & = (2 — y)/2R.

We will begin, in first step, by showing this result for v € C%*(Q) N
W2m(Q) and then in a second step we will deduce the result for u € W27((Q).

Step 1:
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We suppose that u € C2() N W27(Q). For § > 1, we consider the cut
off function n defined by

n(E) = (1 - [,
By differentiation, we obtain
Din = —2p3&;(1 — |3*)°1,
Dijn = —Qﬁéij(l — |z 2)5_1 + 4ﬁ(ﬁ — 1)@2'@]‘(1 — |z 2)5_2.
By setting
v = nu,
we then obtain
dijﬁijv = ndijﬁiju + Qdijﬁmﬁju + udijﬁijn

> n(f — ¥ Du— cu) + Qdijﬁmﬁju + udijﬁijn.
Let 't = It be the upper contact set v, in the sphere B ; we have :
w>0onIT,
If 2 € 9B such that p.(z — y) < 0 we indeed have v(z) = 0. Consequently
v(y)+ p(z—y)>v(z)=0.

Moreover, using the concavity of v on I't, we can estimate the following

quantity :
| Du| = (1/n)|Dv = uDn).
Indeed,
Du| < (/)| Do] +u| Da|)
< ()5 +ul D))

< 2014 B)~ P

In that way, we have on I'" the following inequality :
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—a" Dijv < {(166% + 2mB)An~2/"+
266y~ "7 + o+ | ]
Since ¢ < 0, we deduce the inequality

—aY Do < {1667 + 208)Ay~2P + (78)

2616l Yo 4 5l f|
S 015‘77_2/5?] —I_ |f|7

with ¢; = ¢(n, 3,7, 3) independent of ¢.
Consequently, by applying Lemma 6.1 on B, we obtain, for 3 > 2 :

d 1. < ;
sup v < () (0 llendn 0+ 111,
B Wy

By using the relation (2), it comes

d _ d 1. .
supv < (— 7 )alln Q/BUHH,BJF(W)(X)!JCHH,B
B ann ) Anwn

< ad(ln o), 5+ (/DN l,.5)
< ed(|ln™ 00, 5+ (/DIL,8)

< erd((supo ™)' PN 5+ (DI p):
where ¢ is a constant depending only on n, 3.~ and 6. Here, d is the
diameter of B(d = 2).
By using the Young inequality under the form
ab < ea? + e/

for ¢ = (1 —2/8)"1 and r = 3/2, we have

(supe ™22 (w0 < esuput + Pt e s 0,

1
By taking ¢ = - and plugging in our inequality on », we obtain :
‘1
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swpo < (1/2)supet + (172! ad AT (1)

+Herd/ M1, 5

We want to prove the theorem for all p > 0. We will treat separately
the cases p < n and p > n.
If p < n, weset §=2n/p. In this case we have

et 2E = (),

Plugging this in our inequality on v, we obtain :

(1/2) Supv s (1/2) (e d) | (), 5+ (ad/ NI, 5.

Consequently, we obtain the following inequality ;

supv < eo( [ @)+ (7201l ).

B
On the sphere By /5(0), the cut off function satisfies

1/n < (1/2)°.

It follows, then

sup u < sup (v/n)
B1/2(0) B1/2(0)

< 20 sup v.
B

Finally we end up at the desired estimate

sup_w < eof( [ (@)1 + (/20 1, 5

B1/3(0) B

for w in W2m(Q)NC?(Q). The constant c3 above depend only on n, 3,7 and
0, but is independent of ¢.
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On the other hand if p > n, we have :

2n/3 < p, VB > 2.
Then, it follows (by assuming 3 > 2)

| BITYCYON )y 5. < BTV, 5

But
38/2
[t lanys = a0,

and therefore, by processing as before, we obtain the desired estimate

sup w < ea( [ (W) + (d20)] 1], 6)

B1/3(0)

for w in W*™(Q) N C*(Q). The constant ¢4 above depends only on n, 3,7
and 6, but is independent of ¢.
Transformation & — z.

By construction, ﬁij = R_QDZ']', thus A = R72X and § = 6R?. In
addition, we have [B| = w,(2R)" and |g] 5 = R_”/p|g|p7B.
Written in term of x, the last inequality becomes

2™ w,, Qw}/”R
sup 0 < ef (™ [ (@ Pda) 7 4 (ZU ) ).
Br(y) 1Bl Jb

with ¢4 a function of n,’y,3 = 6R? and p. This is the desired estimate for
u € W2(Q)n C°(Q).
Step 2:

Now, let u € Wz’”(Q). By density argument, let w,, be a sequence
of functions of C?*(B), converging towards u in W*"(B). The injection
of W2™(B) in C°(B) is continuous, consequently wu,, converges uniformly
towards u in B. We have

Luy, = L(uym—u)+ Lu

v

f+ Ly —u).
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By setting, f, = L(u, — u), we observe by construction that f,, con-
verges towards 0 in L"(Q). As u,, € W»"(Q)N C*(Q) and fo, = f+ fm is

in L™(Q), the estimate (3) is valid also for u,,, so that we have

SUP Uy < const{ / l/p EHJZHn,B} (80)
Br(y) 1Bl A

Using previous results and taking the limit, we have :

R
< ct YYP 4 20 fllnB )
oup < ctel(yr [ (4 Flflhs)

Br(y

|
Observe also that by replacing v by —u, the theorem can be extended
easily to the case of supersolutions and solutions of the equation :

Lu=f.
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