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Abstract

Least squares methods based on �rst-order systems have been recently
proposed and analyzed for second-order elliptic equations and systems. They
produce symmetric and positive de�nite discrete systems by using standard
�nite element spaces, which are not required to satisfy the inf-sup condition.
In this paper, several domain decomposition algorithms for these �rst-order

least squares methods are studied. Some representative overlapping and
substructuring algorithms are considered in their additive and multiplicative
variants. The theoretical and numerical results obtained show that the clas-
sical convergence bounds (on the iteration operator) for standard Galerkin
discretizations are also valid for least squares methods.

�This work was supported by the National Science Foundation under grant ASC-

8958544 while the author was visiting the Department of Computer Science, University

of Maryland, College Park, MD 20742, USA and by the National Aeronautics and Space

Administration under NASA Contract No. NAS1-19480 while the author was in residence

at the Institute for Computer Applications in Science and Engineering (ICASE), NASA

Langley Research Center, Hampton, VA 23681-0001.

i



1 Introduction

Least squares methods have been proposed in recent years for second-order el-

liptic problems, Stokes and Navier-Stokes equations; see Chang [10], Bochev

and Gunzburger [2], Pehlivanov, Carey, and Lazarov [15], Cai, Lazarov, Man-

teu�el, and McCormick [5], Cai, Manteu�el, and McCormick [7], Bramble,

Lazarov, and Pasciak [3], Bramble and Pasciak [4], Carey, Pehlivanov, and

Vassilevski [8], Cai, Manteu�el, and McCormick [6], Bochev, Cai, Manteu�el,

and McCormick [1], and the references therein.

Among the possible approaches, we follow here the one introduced in the

very recent works of Pehlivanov, Carey, and Lazarov [15] and Cai, Manteuf-
fel, and McCormick [7]. The second-order elliptic problem is rewritten as a
�rst-order system and a least squares functional is introduced. The result-
ing discrete minimization problem is associated with a bilinear form which is
continuous and elliptic on an appropriate space. Therefore, the inf-sup condi-
tion is avoided and standard �nite element spaces can be used. The resulting

linear system is symmetric, positive de�nite and has condition number of the
same order as standard Galerkin �nite element sti�ness matrices, O(1=h2).
An interesting alternative approach by Bramble, Lazarov, and Pasciak [3] is
based on replacing one of the L2-terms in the least squares functional by a
discrete H�1-norm. We will not consider here such an alternative.

The goal of this paper is to extend to these least squares methods some of
the classical domain decomposition algorithms which have been successfully
employed for standard Galerkin �nite elements. We show that optimal and
quasi-optimal convergence bounds follow easily from the standard Galerkin
case. Therefore, domain decomposition provides highly parallel and scalable

solvers also for �rst-order system least square discretizations. An overview of
domain decomposition methods can be found in the review papers by Chan

and Mathew [9], Dryja, Smith, and Widlund [11], Dryja and Widlund [13],

and Le Tallec [14].
This paper is organized as follows. In the next section, we brie
y review

the �rst-order system least squares methodology and the main results from
[7]. In Section 3, we introduce and analyze our domain decomposition algo-

rithms: overlapping additive Schwarz methods (with coupled and uncoupled
subspaces; see 3.1), overlapping multiplicative Schwarz methods (3.2), and

an iterative substructuring method (3.3). In Section 4, we present numerical
results in the plane that con�rm the theoretical bounds obtained.
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2 First-Order System Least Squares

We consider the following second-order elliptic problem on a bounded domain


 � R2 or R3

8><
>:
�r � (Arp) +Xp = f in 
;

p = 0 on �D;

n �Arp = 0 on �N :

(1)

Here A is a symmetric and uniformly positive de�nite matrix with entries in

L1(
), X is a �rst-order linear di�erential operator, �D [ �N = @
, and n

is the outward normal unit vector to �N .
De�ning the new 
ux variable u = �Arp, the system (1) can be rewritten

as a �rst-order system:

8>>><
>>>:

u+Arp = 0 in 
;
r � u+Xp = f in 
;

p = 0 on �D;

n � u = 0 on �N ;

(2)

This system can be extended to the equivalent system8>>>>>>>><
>>>>>>>>:

u+Arp = 0 in 
;
r � u+Xp = f in 
;

r�A�1u = 0 in 
;
p = 0 on �D;

n � u = 0 on �N ;

� (A

�1u) = 0 on �D;

(3)

wherer� is the curl operator (in two dimensionsr�u = 0 means @u2
@x
�@u1

@y
=

0) and 
�u = u� n (in two dimensions 
�u = u � � ).
The following least squares functionals, G0 for the system (2) and G for

the augmented system (3), were studied in [5] ([15] for the case X = 0) and
[7], respectively:

G0(v; q; f) = kv+Arqk2L2(
) + kr � v +Xq � fk2L2(
) (4)

8(v; q) 2W0(div; 
)� V; and

G(v; q; f) = kv+Arqk2L2(
)+kr�v+Xq�fk2L2(
)+kr�(A�1v)k2L2(
) (5)
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8(v; q) 2W � V:

Here the functional spaces are de�ned as

W0(div; 
) = fv 2 H(div; 
) : n � v = 0 on �Ng;

W0(curlA; 
) = fv 2 H(curlA; 
) : 
� (A
�1v) = 0 on �Dg;

W =W0(div; 
) \W0(curlA; 
);

V = fq 2 H1(
) : q = 0 on �Dg:

The least squares minimization problems for (2) and (3) are, respectively:
Find (u; p) 2W0(div; 
)� V such that

G0(u; p; f) = inf
(v;q)2W0(div;
)�V

G0(v; q; f); (6)

Find (u; p) 2W � V such that

G(u; p; f) = inf
(v;q)2W�V

G(v; q; f): (7)

Simple calculations show that the associated variational problems are,
respectively:

Find (u; p) 2W0(div; 
)� V such that

a0(u; p;v; q) = F (v; q) 8(v; q) 2W0(div; 
)� V ; (8)

Find (u; p) 2W � V such that

a(u; p;v; q) = F (v; q) 8(v; q) 2W � V: (9)

Here the bilinear forms are

a0(u; p;v; q) = (u+Arp;v+Arq)L2 + (r � u+Xp;r � v+Xq)L2;

a(u; p;v; q) = a0(u; p;v; q) + (r� (A�1u);r� (A�1v))L2

and the right-hand side is

F (v; q) = (f;r � v+Xq)L2:

In [5], it was proved that a0(v; q;v; q) is equivalent to (continuous and

elliptic with respect to) theH(div; 
)�H1(
) norm onW0(div; 
)�V , under
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the assumption that a Poincar�e-Friedrichs inequality holds for p (denoted by

assumption A0). For the case X = 0, this was already proved in [15].

In [7], it was proved that a(v; q;v; q) is equivalent to the [H(div; 
) \
H(curlA; 
)] � H1(
) norm on W � V , under the same assumption A0.

Moreover, under three additional technical assumptions denoted by A1, A2,

A3, it is proven in [7] that a(v; q;v; q) is equivalent to the H1(
)d+1 norm

on W� V (d = 2 or 3):

Theorem 1 Let b(u; p;v; q) = (u;v)H1(
)d + (p; q)H1(
) be the bilinear form

associated with the H1(
)d+1 norm.

If the assumptions A0-A3 of [7] are veri�ed, then there exist positive

constants � and � such that

�b(v; q;v; q)� a(v; q;v; q) 8(v; q) 2W� V;

and

a(u; p;v; q) � �b(u; p;u; p)1=2b(v; q;v; q)1=2

8(u; p); (v; q) 2W � V .

Because of the equivalence of a(�; �) and b(�; �), from now on we will concen-

trate on the variational problem (9) associated with the augmented system
(3).

We introduce a triangulation �h of 
 and associated �nite element sub-
spaces Wh � V h � W � V . We then obtain a �nite element discretization
of (9):

Find (uh; ph) 2W
h � V h such that

a(uh; ph;vh; qh) = F (vh; qh) 8(vh; qh) 2W
h � V h: (10)

For simplicity, we consider continuous piecewise linear �nite elements:

Wh = fv 2 C0(
)d : vkjT 2 P1(T ); 8T 2 �h;v 2Wg =W h
1 �W h

2 �W h
3 ;

V h = fq 2 C0(
) : qjK 2 P1(K); 8K 2 �h; q 2 V g:

and the subscript h for discrete functions will be dropped in the rest of the
paper.

Error estimates and results on the conditioning of the resulting sti�ness
matrix can be found in [5] (in [15] for the case X = 0).

Upon choosing a basis inWh and Vh, the discrete problem (10) is turned

into a linear system of equations Ax = b. We are going to solve such system
iteratively using domain decomposition techniques.
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3 Domain Decomposition Algorithms

We will introduce and analyze our domain decomposition algorithms in the

Schwarz framework, which has been very successful for standard Galerkin

�nite elements, see [9], [11], [12], [13]. We illustrate the main ideas on algo-

rithms that are representative of the main classes of domain decomposition

(additive, multiplicative, overlapping, iterative substructuring). The same

analysis can be applied to the many other algorithms which have been pro-

posed and analyzed for the standard scalar case.

We suppose that the domain 
 is �rst triangulated by a coarse �nite

element triangulation �H consisting of N subdomains 
i of diameterH. The
�ne triangulation �h is a re�nement of �H . For simplicity, we suppose that
each subdomain is the image under a smooth map of a reference cube.

3.1 Overlapping Additive Schwarz Methods

Each subdomain 
i is extended to a larger subdomain 
0i, consisting of all
elements of �h within a distance � from 
i (0 < � < H).

Each scalar component of our �nite element spaceWh�V h is decomposed
as in the standard scalar case:

W h
1 =

NX
i=1

W h
1;i W h

2 =
NX
i=1

W h
2;i W h

3 =
NX
i=1

W h
3;i V h =

NX
i=1

V h
i ;

where

W h
k;i = fu 2 W h

k : support(u) � 
0ig; k = 1; 2; 3;

V h
i = fu 2 V h : support(u) � 
0ig:

For each scalar component, a global coarse �nite element space is associated

with the coarse triangulation �H :

W h
k;0 = WH

k = fu 2 W h
k : u is trilinear on each subdomain 
ig; k = 1; 2; 3;

V h
0 = V H = fp 2 V h : p is trilinear on each subdomain 
ig:

A �rst additive method is de�ned by the following decomposition of the
discrete space, which maintains the local and coarse coupling between the
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di�erent scalar components:

Wh � V h =
NX
i=0

Wh
i � V h

i :

The local spaces are

Wh
i � V h

i =W h
1;i �W h

2;i �W h
3;i � V h

i i = 1; 2; � � � ; N

and the coarse space is

Wh
0 � V h

0 =WH � V H = WH
1 �WH

2 �WH
3 � V H :

We de�ne the local projection operators Pi :W
h � V h !Wh

i � V h
i by

a(Pi(u; p);v; q) = a(u; p;v; q) 8(v; q) 2Wh
i � V h

i ;

and the coarse projection operator P0 :W
h � V h !Wh

0 � V h
0 by

a(P0(u; p);v; q) = a(u; p;v; q) 8(v; q) 2Wh
0 � V h

0 :

It is easy to see that the matrix form of the local projections is Pi =

RT
i A

�1
i RiA, where the Ri(ek) =

(
1 if ek 2 
0i
0 otherwise

)
: are the restriction ma-

trices selecting only the unknowns in 
0i for each component and the Ai =
RiAR

T
i are the sti�ness matrices of local Dirichlet problems. Analogously,

P0 = RT
HA

�1
H RHA, where R

T
H is the standard piecewise linear interpolation

matrix from the coarse grid �H to the �ne grid �h, for each component, and
AH = RHAR

T
H is the coarse grid discretization of our problem (9). Let

Padd1 =
NX
i=0

Pi:

The original discrete problem is then equivalent to the preconditioned prob-

lem

Padd1(u; p) = gadd1

where g =
PN

i=0 Pi(u; p) ; see Chan and Mathew [9]. In matrix form, this

problem can be written as M�1Ax = M�1b, where the preconditioner is
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M�1 =
PN

i=1R
T
i A

�1
i Ri+RT

HA
�1
H RH. An optimal convergence bound for this

algorithm is given in Theorem 2.

A second additive method is obtained by dropping the coupling between

the di�erent scalar components of u and p. Uncoupled local spaces are now

de�ned by

Wh
1;i = W h

1;i � f0g � f0g � f0g;

Wh
2;i = f0g �W h

2;i � f0g � f0g;

Wh
3;i = f0g � f0g �W h

3;i � f0g;

Vh
i = f0g � f0g � f0g � V h

i ;

and the coarse spaces by

WH
1 =Wh

1;0 = W h
1;0 � f0g � f0g � f0g;

WH
2 =Wh

2;0 = f0g �W h
2;0 � f0g � f0g;

WH
3 =Wh

3;0 = f0g � f0g �W h
3;0 � f0g;

VH = Vh
0 = f0g � f0g � f0g � V h

0 :

We then have the following decomposition

Wh�V h =
NX
i=1

Wh
1;i+

NX
i=1

Wh
2;i+

NX
i=1

Wh
3;i+

NX
i=1

Vh
i +W

H
1 +WH

2 +WH
3 +VH

=
3X

k=1

NX
i=0

Wh
k;i +

NX
i=0

Vh
i :

As before, we de�ne projections Pk;i : W
h � V h ! Wh

k;i; k = 1; 2; 3; i =

0; 1; � � � ; N and P4;i : W
h � V h ! Vh

i ; i = 0; 1; � � � ; N; and the additive
operator

Padd2 =
3X

k=1

NX
i=0

Pk;i +
NX
i=0

P4;i:

We note that this algorithm can equivalently be de�ned by the same choice
of subspaces as for Padd1 but using the bilinear form b(�; �) (introduced in

Theorem 1) instead of a(�; �) in the de�nition of the projections. In fact this

uncoupled preconditioner corresponds to applying four identical copies of a
scalar preconditioner to each scalar component. An optimal bound also holds

for this algorithm.
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Theorem 2 There exists a positive constant C independent of h; ;H and �

such that

cond(P ) � C(1 +
H

�
);

where P = Padd1 or P = Padd2 .

Proof. An upper bound on the spectrum of P is standard, since each point of


 belongs to a �xed number of extended subdomains independent of N (for

example, for � < H=2 each point belongs to at most four (in 2D) or eight (in

3D) extended subdomains). A lower bound is obtained by classical Schwarz

analysis.
For P = Padd1, since we use exact projections, the theorem is equivalent

to the following partition property (see Dryja and Widlund [13] or Chan and
Mathew [9]):
There exists a constant C0 such that 8(u; p) 2 Wh � V h; there exists a

decomposition (u; p) =
PN

i=0(ui; pi), with (ui; pi) 2Wh
i � V h

i such that

NX
i=0

a(ui; pi;ui; pi) � C2
0a(u; p;u; p):

By the equivalence of Theorem 1, this inequality is equivalent to

NX
i=0

j(ui; pi)j
2
(H1)d+1 � C2

0 j(u; p)j
2
(H1)d+1;

which is a direct consequence of the scalar result proven by Dryja and Wid-
lund [13]:

NX
i=0

juki j
2
H1 � C2

0 ju
kj2H1;

NX
i=0

jpij
2
H1 � C2

0 jpj
2
H1;

with C2
0 = C(1 + H

�
).

For P = Padd2, since the subspaces are the same but we use inexact

projections de�ned by b(�; �) instead of a(�; �), we need only to show that

there exists a constant ! such that a(u; p;u; p) � !b(u; p;u; p) 8(u; p) 2
Wh

i � V h
i ; i = 0; 1; � � � ; N (see Dryja and Widlund [12]). This follows

immediately from the equivalence of a and b.
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3.2 Overlapping Multiplicative Schwarz Methods

By using the same coupled local and coarse spaces as in the additive algorithm

Padd1, we can de�ne a multiplicative operator:

Pmult = I � (I � PN ) � � � (I � P1)(I � P0):

The multiplicative algorithm consists in solving the nonsymmetric system

Pmult(u; p) = gmult

by an iterative method such as GMRES.
We can also de�ne a symmetrized multiplicative operator

Pmults = I � (I � P0) � � � (I � PN�1)(I � PN )(I � PN�1) � � � (I � P0)

and a symmetrized algorithm, consisting in solving the symmetric system

Pmults(u; p) = gmults

by an iterative method like CG.

Theorem 3 There exists a positive constant C independent of h;H and �

such that

cond(Pmults) � C(1 +
H

�
):

The proof is again based on the extension of the scalar result (see, for exam-
ple, Chan and Mathew [9]) by using the equivalence of Theorem 1. Analo-
gously, multiplicative versions of Padd2 could be built using uncoupled local

and coarse spaces.

3.3 An Iterative Substructuring Method

For a complete and detailed analysis of this class of methods, we refer to
Dryja, Smith and Widlund [11]. Here we consider only a simple represen-

tative of this class, namely the analog of Algorithm 6.2 in [11], which is

vertex-based and has a standard coarse space. For simplicity, we only con-
sider the uncoupled additive version.
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The standard �rst step of nonoverlapping methods is the elimination of

the variables interior to each subdomain (at least implicitly). We then work

with the Schur complement S = KBB �KT
IBK

�1
II KIB of the sti�ness matrix

K =

 
KII KIB

KT
IB KBB

!
:

The reduced linear system with S involves only variables on the interface

� = [@
i n �D. When solving with a preconditioned iterative method, we

need only the action of S on a given vector and there is no need to assemble

S explicitly.
In the Schwarz framework, working with S corresponds to working with

the discrete harmonic subspace ~Wh � ~V h of the original space Wh � V h.
Local spaces are associated with the geometric objects (faces Fi, edges Ei

and vertices vi) forming the interface �. Each scalar space is decomposed as

~W h
k =

X
Fi

~W h
k;Fi

+
X
Ei

~W h
k;Ei

+
X
vi

~W h
k;vi

; k = 1; 2; 3;

and
~V h =

X
Fi

~V h
Fi
+
X
Ei

~V h
Ei
+
X
vi

~V h
vi
:

Here, for example, ~W h
k;Fi

= fu 2 ~W h : u = 0 on �h�Fi;hg, where �h and Fi;h
are the set of nodes on � and Fi respectively. The other spaces are de�ned
analogously. As for the overlapping case, we then embed these scalar spaces
in our product space ~Wh� ~V h: for example, ~Wh

1;Fi
= ~W h

1;Fi
�f0g�f0g�f0g:

As a coarse space, we consider the discrete harmonic subspace of the same

coarse space used for Padd2, i.e., ~WH
1 + ~WH

2 + ~WH
3 + ~VH. We obtain the

following decomposition

~Wh � ~V h =
3X

k=1

(
X
Fi

~Wh
k;Fi

+
X
Ei

~Wh
k;Ei

+
X
vi

~Wh
k;vi

+ ~WH
k )

+
X
Fi

~Vh
Fi
+
X
Ei

~Vh
Ei
+
X
vi

~Vh
vi
+ ~VH :

By de�ning as before projection operators into the subspaces, we form the
additive operator

Pis =
4X

k=1

(
X
Fi

Pk;Fi
+
X
Ei

Pk;Ei
+
X
vi

Pk;vi + Pk;0);
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where again for k = 4 the projections are into the ~Vh
i spaces.

Theorem 4 There exists a positive constant C independent of h and H such

that

cond(Pis) � C(1 + log(H=h))2:

As before, the proof is based on the extension of the scalar result (see Dryja,

Smith and Widlund [11], Theorem 6.2) by using the equivalence of Theorem

1.

4 Numerical Results

In this section, we report the results of numerical experiments which con�rm
the optimal convergence bounds obtained in the previous sections. All the
results have been obtained with Matlab 4.2 running on Sun Sparcstations.
The model problem considered is the standard Poisson equation (A = I;X =
0) on the unit square, with p = 0 on �D = @
 and 
�u = 0 on @
 (i.e. u1 = 0
on fy = 0g and fy = 1g; u2 = 0 on fx = 0g and fx = 1g). The right-hand
side f is chosen such that we have p(x; y) = sin(�x)sin(�y) as exact solution.

 is decomposed into a regular grid of N square subdomains, with N varying
from 2 � 2 to 8� 8. The �ne grid mesh size h varies from 1=32 to 1=128.

The Krylov method used for all the symmetric problems is PCG, while
we use GMRES for the nonsymmetric problem with Pmult. The initial guess

is always zero and the stopping criterion is krkk2=kr0k2 < 10�6, where rk is
the residual at step k.

The local and coarse problems involved in the application of the precon-

ditioners are always solved directly. For each method, we report the number
of iterations and Lanczos-based estimates of the condition number and the

extreme eigenvalues (except for the multiplicative algorithm, where we report
the average convergence factor instead).

Overlapping additive methods. We have �rst studied the coupled method
Padd1 with �xed minimal overlap size � = h. The mesh size h is decreased

while the number of subdomains N is increased proportionally, so that the

subdomain size H=h = 16 is kept constant (H = 1=
p
N). The results are re-

ported in Table 1 and clearly show a constant condition number cond(Padd1) =
�max=�min, for problem sizes from 3007(N = 4) to 48895(N = 64).
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Table 1: Padd1: Overlapping Additive Schwarz with �xed overlap size � = h.

N h�1 iter: cond(Padd1) �max �min

4 32 16 11.2172 4.0048 0.3570

9 48 19 12.1787 4.0068 0.3290

16 64 20 11.9775 4.0050 0.3343

25 80 20 11.1689 4.0052 0.3586
36 96 21 12.5450 4.0044 0.3192
49 112 20 11.9944 4.0050 0.3339
64 128 21 12.5500 4.0047 0.3191

Table 2: Padd1: Overlapping Additive Schwarz with �xed number of subdo-
mains N = 64.

� h�1 iter: cond(Padd1) �max �min

h 128 21 12.5500 4.0047 0.3191

2h 128 17 7.1316 4.0307 0.5651

3h 128 16 5.5769 4.0765 0.7309

4h 128 15 4.9540 4.1396 0.8356

5h 128 15 4.6460 4.2170 0.9076
6h 128 15 4.5125 4.3054 0.9541

7h 128 16 4.5859 4.4018 0.9598
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Table 3: Padd2 : Overlapping Additive Schwarz with �xed overlap size � = h.

N h�1 iter: cond(Padd2) �max �min

4 32 17 10.3521 4.0050 0.3868

9 48 20 12.6290 4.0051 0.3171

16 64 20 11.9811 4.0051 0.3342

25 80 21 11.3821 4.0052 0.3518
36 96 21 12.5458 4.0043 0.3191
49 112 20 11.9997 4.0052 0.3337
64 128 21 12.5261 4.0047 0.3197

Table 4: Padd2 : Overlapping Additive Schwarz with �xed number of subdo-
mains N = 64.

� h�1 iter: cond(Padd2) �max �min

h 128 21 12.5261 4.0047 0.3197

2h 128 17 7.1206 4.0315 0.5661

3h 128 16 5.5513 4.0777 0.7345

4h 128 16 5.3850 4.1442 0.7695

5h 128 16 5.4545 4.2233 0.7742
6h 128 16 5.5306 4.3158 0.7803

7h 128 16 5.6176 4.4297 0.7885
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Table 5: Pmult and Pmults: Overlapping Multiplicative Schwarz with �xed

overlap size � = h.

multiplicative (GMRES) symmetrized multiplicative (CG)

N h�1 iter: � = (ri=r0)
1=i iter: cond(Pmults) �max �min

4 32 8 0.1847 7 1.8576 0.9994 0.5379

9 48 7 0.1433 6 1.7398 0.9999 0.5749
16 64 6 0.1233 6 1.7600 0.9999 0.5681

25 80 6 0.1102 6 1.6810 0.9999 0.5948
36 96 6 0.1021 6 1.6940 0.9999 0.5902
49 112 6 0.0952 6 1.6661 0.9999 0.6001
64 128 5 0.0849 6 1.7308 0.9999 0.6079

In Table 2, we �x the mesh size (h = 1=128) and the decomposition

(N = 64) and we vary the overlap size � from h to 7h. As in the scalar case,
the condition number cond(Padd1) improves as � increases, because of �min

being closer to unity. For large overlap, the improvement becomes negligible
or negative, because of the growth of �max.

The same sets of results for the uncoupled method Padd2 are reported
in Table 3 and Table 4, respectively. For this simple model problem, the

uncoupled method is only slightly worse than the coupled one, in terms of
iteration count (some condition numbers are almost the same or even better
for Padd2). We point out that although A = I, eliminating di�usive coupling
between the 
ux components, there is still coupling between the 
ux variables

and p, so the strong performance of Padd2 is encouraging.

Overlapping multiplicative methods. In Table 5, we compare the multi-
plicative method Pmult accelerated with GMRES and the symmetrized mul-

tiplicative method Pmults accelerated with CG. We consider the two methods
with minimal overlap and constant subdomain size. Since Pmult is nonsym-

metric, we report the average convergence factor � = (ri=r0)
1=i instead of the

condition number. Even if the symmetrized version is approximately twice
as expensive as the standard one, the number of iterations is almost the same

for the two methods. Therefore, the symmetrized version is less e�cient on
this simple problem.
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Table 6: Pis: Iterative Substructuring .
N h�1 iter: cond(Pis) �max �min

4 32 9 3.4035 1.5691 0.4610

9 48 17 7.8812 1.8497 0.2347

16 64 18 7.8543 1.7962 0.2287
25 80 18 8.5822 1.8864 0.2198

36 96 19 9.4115 1.8511 0.1966

49 112 18 8.6646 1.8939 0.2185
64 128 19 9.6532 1.8617 0.1928

Iterative substructuring. Table 6 shows the results for the iterative sub-
structuring methods Pis with �xed subdomain size. They clearly show a
constant bound for the condition number and the number of iterations.

5 Conclusions

In this paper, some domain decomposition algorithms have been introduced
for the discrete systems arising from �rst-order system least squares methods
applied to second-order elliptic problems. These recently proposed methods
allow the use of standard �nite element spaces, which are not required to

satisfy the inf-sup condition.
The analysis of the domain decomposition algorithms follows from analo-

gous results for the standard Galerkin case and the equivalence between the

bilinear form associated with the least squares functional and the H1(
)d+1

norm.

Optimal convergence bounds have been proven for overlapping algorithms
(additive, multiplicative, coupled, uncoupled versions), while quasi-optimal

bounds have been proven for iterative substructuring algorithms. Numerical
experiments on a simple model problem con�rm these bounds.

Future work will investigate the performance of these algorithms for prob-

lems with convection and for elliptic systems.
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