
Interactive Exploration of
Large 3-D Unstructured-Grid Data

Kwan-Liu May

Institute for Computer Applications in Science and Engineering

Scott Leuteneggery

Mathematics and Computer Science Department
University of Denver

Dimitri Mavriplisy

Institute for Computer Applications in Science and Engineering

Abstract

Visualizing unstructured-grid data from aerodynamics calculations is challenging because
of the associated meshes are typically large in size and irregular in both shape and resolu-
tion. This research investigates appropriate data structures and rendering methods to allow
interactive exploration of the data.

In conjunction with fast splatting rendering, a multiresolution data representation based
on agglomeration is used to make possible interactive visualization on a workstation. That
is, data are rendered at a particular resolution according to visualization paramenters as well
as the speed and memory capacity of the workstation. Interactive visualization allows the
user to quickly determine regions of interest and important visualization parameters such as
viewing direction and transfer functions.

We then apply a more accurate, expensive rendering method to the orignal data on the
regions of interest. The original data are stored on disk. We show with both analysis and
experimental results that R-tree is a better data structure for fast retrieval of such disk-
resident data.

yThis research was supported by the National Aeronautics and Space Administration under NASA con-

tract NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.

i

1 Introduction

In aerodynamics calculations, unstructured grids are used to model objects with complex

geometry. Because the grids are typically large in size and irregular in shape and resolu-

tion, often special data processing and rendering algorithms are needed to make possible

visualization of the simulation results. This research studies the needed software support

for conducting the desirable iterative, near-interactive visualization process to analyze very

large unstructured-grid data on an average workstation.

The proposed visualization process includes mainly two steps as shown in Figure 1. The

�rst step attempts to derive desirable viewing and rendering parameters and to locate re-

gions of interest, a sub-volume. This may be performed on a workstation using a fast but

less accurate rendering algorithm on a coarse representation, thus a much smaller version,

of the original data stored in the main memory of the workstation. Consequently, we need

a multi-resolution representation of the original data (mrrd). The mrrd allows interactive

exploration of the data. Once a hot spot is identi�ed at a particular resolution, the user

may switch to viewing at a higher-resolution for further exploration. This exploration pro-

cess continues until the region of interest and viewing as well as rendering parameters are

completely determined. We use a fast, approximated splatting algorithm for rendering data

at resolutions according to visualization requirements, as well as the speed and memory

capacity of the workstation.

The second step takes the parameters derived, extracts the selected sub-volume out of the

original data, and invokes a more accurate rendering program to produce high quality visu-

alization results. This step may be performed on either a workstation or a high-performance

computer. The sub-volume represents a spatial region of interest usually much smaller than

the overall grid domain and thus may be rendered more e�ciently on a workstation. Note

that because of its size, the original data set must be stored on disk. It is then essential to

have adequate database support such that a sub-volume can be quickly retrieved from disk.

Therefore, we represent the data as an R-tree [13], an e�cient hierarchical data structure

that has been widely adopted by many database applications.

Data exploration is inherently iterative. The visualization process and system architec-

ture developed in this research allow computational scientists to study their data at the

highest possible resolution in a more e�cient manner, rather than reducing the data or op-

erating at a very ine�cient batch-mode. In this paper, we describe the construction of the

mrrd, demonstrate the e�ectiveness of the fast splatting rendering method, and show that R-

trees work better than octrees which have been widely used by the visualization community.

Test results were obtained by using a four-million tetrahedra-cell data set on workstations.

1

Fast Splatting
 Rendering

memory

mrrd

High−quality
 rendering

Disk

rtree

images

Fast data exploration at multiple resolutions
to determine regions of interest, rendering
and viewing parameters.

High Quality Visualization
of a sub−volume at highest
resolution.

Figure 1: The proposed visualization process and system architecture.

2 Multi-resolution Rendering

Multiresolution data visualization has been an active area of research but most previous

work has been concentrated with data on rectilinear grids [19, 2]. In particular, wavelet-

based methods have drawn a lot of attention recently [17, 10]. Some multiresolution repre-

sentations have been designed for triangular surface meshes [14, 3]. For general unstructured

grids, only some preliminarily theoretical work exists [1]. In the following sections, we pro-

pose a simpli�ed data representation and rendering method to facilitate interactive data

exploration.

2.1 Data Representations

The generation of a multiresolution sequence representation of a given arbitrary data-set is

a non-trivial one. For data on rectilinear grids, coarser resolution levels may be constructed

simply by removing every n-th point in each coordinate direction. For general unstructured

grids, the construction of a sequence of nested coarser grid levels is usually not possible.

One approach is to interpolate the data onto a regular cartesian grid which can then be

coarsened in the standard fashion. Alternatively, a nested sequence of unstructured grids

may be constructed by repeatedly subdividing the cells of an initial coarse unstructured grid,

and the data may then be interpolated onto the �nest level of this sequence. This approach

2

has the drawback of introducing interpolation errors into the original data, although this

may not be crucial for our application of fast-rendering. On the other hand, when the

original data-set contains large variations in spatial resolution, as is most often the case in

our applications, the approximating regular or nested grid may be much larger than the

original grid itself.

An alternative is to attempt to coarsen the original unstructured mesh through techniques

such as decimation [16, 15]. Decimation involves removing a subset of the original grid

points and retriangulating the remaining points. One of the di�culties with decimation is

the retriangulation phase. For complex geometries, the requirement of reconstructing a valid

grid connectivity which conforms to the domain boundaries becomes increasingly di�cult for

coarser levels. Because we rely on a splatting technique for fast rendering of our coarse level

data-sets, a valid boundary conforming grid on the coarse levels is not required. Rather,

a set of points de�ned by their coordinates and a length scale to determine the size of the

splat for each point are all that is required. We therefore use an agglomeration technique to

construct coarse levels [9].

Given an initial graph (set of points and edges), the agglomeration procedure produces

a coarser graph based on a subset of the original set of points. If the original graph ap-

proximates a nearest neighbor graph, the agglomerated graphs are also approximations to

nearest neighbor graphs of the coarser point sets. Agglomeration consists of picking a �ne

grid vertices known as a seed points, and deleting their neighboring vertices as depicted in

Figure 2. The seed points form the coarse grid points for the next level. In practice, we use

a heuristic algorithm to produce coarse grid point sets that are maximal independent sets of

the original �ne grid points. The deleted points can be thought of as fused or agglomerated

into their respective seed point. The inferred graph for the coarse level is then obtained by

deleting all edges within an agglomerated group of points, and replacing all edges between

neighboring agglomerated groups with a single edge, using a hash table. The size of the

coarse level splats can then be determined by considering the average length of all edges

incident to each coarse level point in the agglomerated graph.

2.2 Rendering

Splatting was �rst introduced by Westover [18] and has been used as a fast approximation

technique for rendering data on uniformly-spaced rectilinear grids. An image is formed by

determining the screen space contribution of each grid point{a footprint{and compositing

the footprints on top of each other in the visibility order. For parallel projection, a single

footprint table can be pre-calculated and shared by all the voxels.

Applying splatting to unstructured-grid data allows us to ignore the type of computa-

tional cells we are dealing with. However, because of the unstructured nature of the grid,

a separate footprint must be constructed for each grid point. Using parallel projection, fur-

3

Agglomerated

Seed Point

 Points

Figure 2: Agglomeration.

ther approximation has been taken by always representing a footprint with a circle. So each

footprint is now de�ned by the scalar value (e.g. density or pressure) and coordinates of the

corresponding grid point, and a radius value which is the average distance from the point to

all other immediately neighboring points. In this way, we can approximate each footprint,

for example, as an octagon, with a set of hardware Gouraud-shaded triangles as described

in [6]. Compositing is done with the hardware blending support. In this way, we can achieve

good rendering rates. However, in this research, software splatting is used such that high

performance general-purpose workstations may be used.

The multiple levels of approximation taken certainly degrade the quality and accuracy

of visualization results. The goal is to have a quick view of the data. Although our approxi-

mated splatting approach provides a crude picture of the actual physical phenomena, it gives

the viewer a pretty good impression about the size, shape, location of the phenomena.

2.3 Visualization Results

To demonstrate the e�ect of applying the splatting rendering to the multi-resolution repre-

sentations, we use a data set containing six di�erent resolutions as listed in Table 1. Table 2

shows the performance of a software implementation of the approximated splatting algorithm

on an SGI Indigo2 with an R4400 250MHZ processor. Times are in seconds. Image of two

di�erent sizes are rendered: 400�400 and 200�200 pixels. Figure 6,7,8,9,10 and 11 display

the rendered images. Figure 3 plots the surface mesh of the overall domain explored; the

4

Table 1: Multi-resolution M6 wing data

resolution # vertices # bytes

r0 357900 12.8M
r1 52656 1.89M
r2 8357 300K
r3 1669 60K
r4 448 16K
r5 161 5.8K

Table 2: Timing results of multiresolution splatting

res. read sort render (2002) render (4002)

r0 2.1 3.4 5.23 12.9
r1 0.3 0.3 2.03 6.4
r2 0.1 0.05 1.11 4.0
r3 0.02 0.01 1.3 5.2
r4 0.02 0.01 2.18 8.6
r5 0.02 0.01 2.33 9.4

dark, dense area corresponds to the region of interest which is near the tip of the wing.

From the timing results and corresponding rendered images, we learn that there is always

a particular resolution of the mrrd with which we can see su�cient details to identify areas of

interest at relatively low cost. In this case, both resolution r1 and r2 would work well when

generating 200�200-pixel images. By taking advantage of the graphics hardware support,

sub-second rendering rates can be achieved, making this setup even more attractive. How-

ever, note that the rendering time increases dramatically when using much lower resolution

data like r4 and r5. This is because each vertex now covers a much large area (the footprint)

which becomes expensive to calculate in software. This indicates that very low resolutions

like r4 and r5 should not be included in the mrrd since images from them are too fuzzy and

expensive to be useful.

3 Fast Retrieval of Disk Resident Data

To �nd a subset in a memory resident data set one would normally employ ADT, k-d or

quad/oct trees to reduce the search space. These memory based indexing techniques are not

appropriate for our disk based data sets since they have poor paging behavior. When dealing

5

Figure 3: Overall domain as a surface mesh.

with disk based data, the primary objective is to minimize the number of pages read from

disk since a disk access is two to three orders of magnitude slower than memory accesses.

Of the main memory data structures, the most likely candidates for disk based data would

be quad/octrees, but they su�er from the following de�ciencies:

� Octrees will be imbalanced for unstructured data. Schemes to preprocess the data to

determine where to put partitioning lines could be constructed to provide balance to

some degree.

� Packing the octree nodes into disk pages to get good paging behavior is di�cult.

� Octrees have a low fan-out of 8. R-trees have a fan-out of 146 for 4096 byte pages. If

the number of items indexed is N, the number of nodes needing to be accessed for a

small search is O(log8N) for octree versus O(log146N). Note, how the number of nodes

accessed turns into the number of disk pages accessed is dependent on the mapping

from nodes to pages for octrees, and is 1-1 for R-trees.

� Octrees are designed for point data, not region data like tetrahedra.

There are many structures for indexing disk resident data, for indexing both multi-

dimensional point data and region data one of the best structures is the R-tree [4]. With

static data, R-trees can be loaded to 100% disk utilization and provide e�cient access.

6

3.1 R-trees

An R-tree is a hierarchical data structure derived from the B-tree and designed for e�cient

execution of intersection queries. R-trees can be used for any number of dimensions. For

clarity and brevity we limit our discussion to the two-dimensional case but our results are for

the three dimension case. R-trees store a collection of rectangles which can change over time

through insertions and deletions. Arbitrary geometric objects are handled by representing

each object by the smallest upright rectangle which encloses the object.

Each node of the R-tree stores a maximum of n entries. Each entry consists of a rect-

angle R and a pointer P . For nodes at the leaf level, R is the bounding box of an actual

object pointed to by P . At internal nodes, R is the minimum bounding rectangle of all

rectangles stored in the subtree pointed to by P . Note that every path down through the

tree corresponds to a sequence of nested rectangles, the last of which contains an actual data

object. Note also that rectangles at any level may overlap and that an R-tree created from

a particular set of objects is by no means unique.

To perform a query Q, all rectangles that intersect the query region must be retrieved

and examined (regardless of whether they are stored in an internal node or a leaf node).

This retrieval is accomplished by using a simple recursive procedure that starts at the root

node and which may follow several paths down through the tree. A node is processed by �rst

retrieving all rectangles stored at that node which intersectQ. If the node is an internal node,

the subtrees corresponding to the retrieved rectangles are searched recursively. Otherwise,

the node is a leaf node and the retrieved rectangles (or the data objects themselves) are

simply returned. See [4] for a more detailed description of R-tree structures and searching.

3.2 Packing Algorithms

R-trees and variants allow for dynamic insertion and deletion at the expense of e�cient

search times. When the data is all present at load time and non-changing, as in our CFD

data sets, preprocessing can be done to create more e�cient R-trees. Such preprocessing is

known as R-tree packing [12], and result in well structured trees for e�cient queries and

100% disk utilization. Several algorithms exist [5, 7, 12]. We choose to focus on the Sort and

Tile Recursive (STR) algorithm [7] since it is the easiest to implement and has been shown

to provide more e�cient point query support and at least as e�cient region query support

as the others [7].

In the following text we assume a data �le of r rectangles and that each r-tree node can

hold n rectangles. The general process is similar to building a B-tree from a collection of

keys by creating the leaf level �rst and then creating each successively higher level until the

root node is created [11].

7

General Algorithm:

1. Preprocess the data �le so that the r rectangles are ordered in dr=ne consecutive groups
of n rectangles, where each group of n is intended to be placed in the same leaf level

node. Note that the last group may contain less than n rectangles.

2. Load the dr=ne groups of rectangles into pages and output the pair (MBR, page-

number) for each leaf level page into a temporary �le. The page-numbers are used as

the child pointers in the nodes of the next higher level.

3. Recursively pack these MBRs into nodes at the next level and continue proceeding

upward until the root node is created.

The above packing algorithms di�er only in how the rectangles at each level are ordered.

The STR algorithm orders rectangles as follows:

\Tile" the data using
q
r=n rectangular buckets of various sizes so that each bucket

contains roughly
q
r=n input rectangles. Once again we assume coordinates are for

the center points of the rectangles. First sort the rectangles based on x-coordinate.

Determine the number of leaf level pages P = dr=ne and let S = d
p
P e. Now divide

the rectangles into S vertical slices so that each vertical slice contains S �n rectangles.

Sort the rectangles from each slice based on y-coordinate and pack them into nodes

(the �rst n rectangles into the �rst node, the next n into the second node, and so on).

Note the sorting mentioned above is disk based sorting using merge sort if the �les are too

large to be sorted in main memory. We call an r-tree created by STR packing an STR-tree.

3.3 Analysis

In this section we present analysis comparing the number of pages accessed by brute force,

octrees, and R-trees. To make the comparison of R-trees with octrees more convincing we

give every bene�t of the doubt to octrees. Speci�cally, we make the following optimistic

assumptions for octrees:

� The tree is perfectly balanced.

� The paging behavior is perfect, if N octree nodes can �t in a disk page and we access

M nodes, then we only access dM=Ne disk pages.

� We assume all data is at the leaf level and there is no tree structure to navigate.

8

Table 3: Notational De�nitions

T Number of tetrahedra
N Number of nodes
NA Number of nodes accessed by a query
PA Number of disk pages accessed by a query
BT Number of bytes per tetrahedra
qx The x-distance of a query
qy The y-distance of a query
qz The z-distance of a query
S The number of nodes per side of the data cube
� The average utilization of an octree node

� We assume the tree can be of size cube-root of the number of nodes, we do not restrict

it to be a power of 8.

A real octree on unstructured data will have some skew and/or su�er from underutilized

nodes. In addition, the mapping of octree nodes into pages will be suboptimal. In order

to get good balance for unstructured data a tree structure will be necessary. Ignoring the

non-leaf level accesses for both the octree and R-tree is favorable to the oct tree since the

number of nodes accessed in a point search (�nd one speci�c point) by the octree is O(log8T)

versus O(log146T) for the R-tree, where T is the number of tetrahedra being indexed. Given

these optimistic assumptions, we now derived the worst case number of nodes accessed for a

region query of size qx � qy � qz. Table 3 lists the notations used.
The number of disk pages accessed for a query of region qx � qy � qz for the octree is

derived as follows:

Noct = T=(8 � �) (1)

Soct = d 3

q
Nocte (2)

NAoct = (qx � Soct + 1) � (qy � Soct + 1) � (qz � Soct + 1) (3)

PAoct =
NAoct

4096=(8 �BT)
(4)

The number of disk pages accessed for a query of region qx � qy � qz for the STR-tree is

derived as follows:

9

Nstr = T=b(4096=BT)c (5)

Sstr = d 3

q
Nstre (6)

NAstr = (qx � Sstr + 1) � (qy � Sstr + 1) � (qz � Sstr + 1) (7)

PAstr = NAstr (8)

PAstr = NAstr since one R-tree node is one disk page.

The number of disk pages accessed for the brute force method is simply:

PAbrute = dT �BT
4096

e (9)

In Figure 4 we present the number of disk accesses versus the percent of the data size

assuming 10,000,000 tetrahedra where each tetrahedra occupies 28 bytes (x y z v1 v2 v3

v4). Page size is 4096 bytes. If you assume all the optimistic assumptions and 100% node

occupancy for the octree, the octree is slightly better than the STR-tree. Once the occupancy

is reduced to more realistic values, the octree requires up to a factor of two more page

accesses. We hypothesize that once the skew and poor paging characteristics of an octree

are considered, the performance will be signi�cantly worse. In the future we intend to

implement octree methods to compare experimentally with the STR-tree.

3.4 Tests Using a Local Disk

To compare subset retrieval time using our STR-tree based method versus brute force, we

have performed tests on an SGI Indigo2 with an R4400 250MHZ processor, 128 MB main

memory, and a dedicated disk.

3.4.1 Methodology

The data set used as a test case is an unstructured 3-d CFD grid consisting of 804,056 nodes

and 4,607,888 tetrahedra. The data is stored in two binary �les. The node �le stores vortex

coordinates, 5 CFD solution values and a node id. The tetrahedra �le stores the values that

delimit the lower and upper points of the smallest upright 3D region enclosing the tetrahedra

and the indices of the nodes that make up the vertices of the tetrahedra. A more compact

format omitting the region bounding information may be use, but this would disallow the

use of R-trees or octrees and necessitate use of the brute force method and its resultant

abysmal performance.

10

0

20000

40000

60000

80000

100000

120000

0 10 20 30 40 50 60 70 80 90 100

D
is

k
A

cc
es

se
s

Percent Data Returned

octree 60%
octree 70%
octree 80%
octree 90%

octree 100%
STR-tree

brute force

Figure 4: Analysis using 10 million tetrahedra.

The brute force method is as follows: a) read through the node �le and return all nodes

that are contained in the speci�ed subset region; b) read thought the tetrahedra �le and

return all tetrahedra that are contained in the speci�ed subset. The code has been optimized

to read in 16K chunks at a time. Note, we ran some experiments with di�erent blocking

factors and found bu�er of 16K to minimize input time.

The STR-tree based method creates two STR-trees, one for the node �le and one for the

tetrahedra �le. The trees are then used for the searches, hence only the relevant data plus

a small portion of overhead nodes are read in from memory. Note, the STR-trees are stored

using the normal UNIX �le system, no attempt to tune performance by clustering the nodes

on raw disk was made.

The absolute and relative performance of the two policies is highly dependent on many

factors, the most important being main memory size, whether the disk is local or across a

network (such as when using NFS), and disk speed versus processor speed. Main memory size

is especially relevant since the �le system will cache pages of �les in main memory between

runs. Thus if main memory is su�cient ally large, subsequent runs will incur no actual disk

I/O, only soft page faults.

Our primary comparison metric was the wall clock time (obtained from the rusage system

call) to run a subset retrieval. Note, CPU time is not su�cient since most of the time is

spent in disk retrieval. We also present the number of disk reads for the experiments. There

was some variance in measured response times. All data points presented are the average of

11

40 runs for the same subset region. No attempt at generating con�dence intervals was made.

3.4.2 Local Disk Results

In the �rst set of experiments we alternate running the brute force method with the R-

tree method. This has the e�ect of the brute force method
ushing some of the remaining

pages from the bu�er pool from the previous STR-tree retrieval. Thus, performance of

the STR-tree method is worse than it would be in a setting of repeated queries. Figure 5

presents results for retrievals of subsets where the regions are cubes centered on the origin

and increasing in size.

For a region boundary containing 164,251 tetrahedra (about 3.6% of the overall data) or

less, response time is less than 5 seconds for the STR-tree method but 44 seconds or greater

for the brute force method. Note that the STR-tree method results in access times that are

9.7 to 16.4 times faster than the brute force method.

As the query region increases, the response time for the brute force method is constant

whereas that of the STR-tree method increases. The brute force method reads in the entire

data set each time, regardless of the region size. The STR-method only brings in data for the

desired region plus some extra data from around the surface of the subset region. According

to our test results, the number of actual page reads for the STR-tre method is signi�cantly

smaller than the brute force method until retrieving more than 40% of the data.

So far we assume the entire memory contents from the previous STR-tree query are

ushed before re-running. In a real interactive setting the user would likely select sub-

regions repetitively. Since the �le cache or virtual memory system will bu�er some of the

data between runs, we would expect better performance due to memory hits. How much

better depends on how much of the data is re-used in subsequent queries. We would certainly

expect the top levels of the STR-tree to be in memory [8].

Devising a string of query regions as a benchmark is not easy to do in an unbiased way.

Instead, we rerun the same query 41 times and remove the response time of the �rst run.

This provides a lower bound on the expected response time since we would expect only some

of the data to be reused, not all of it. Figure 5 also includes the results for these repetitive

optimistic bounds. Note, the brute force method does not bene�t since it must still read in

the same number of disk pages, but the STR-tree based method experiences a substantial

reduction in response time. The actual response times would fall somewhere between these

two extremes and be dependent on the query string. Finally, if splatting rendering is used,

we only need to bring back the node data. In this case, the retrieval time is very small and

could support interactive visualization.

12

0

10

20

30

40

50

60

0 10 20 30 40 50 60

W
al

l C
lo

ck
 T

im
e

in
 S

ec
on

ds

Percent Data Returned

brute force(tetra)
STRtree alt(tetra)

STRtree seq(tetra)
STRtree seq(node)

Figure 5: Experimental Results, Local Disk

3.4.3 Anticipated E�ect of Larger Data Sets

The data set used in these experiments is much smaller than anticipated future data sets.

When a data set is 10-100 times larger, searches using the brute force method will require

10-100 times more time, whereas we expect the STR-tree method to only require a modest

amount (0-1%) more time. The reason is that with a branching factor of 146, one can

increase the data size by a factor of 146 and only add one level to the STR-tree, and hence

one more page access, Thus, we expect for near future data sets the STR-tree method will

be yet another 10-100 times faster relative to brute force.

4 Conclusions

We have demonstrated that coupling mrrd with the fast splatting rendering method allows

near-interactive visualization on an average workstation. A more compactmrrd would allows

higher resolution representations resident in main memory. The current splatting method

produces semi-transparent cloud like rendering. We are developing techniques for marking

features, such as the geometric outline of an airplane, onto the volume rendered image to

provide additional visual cues, which help select viewing position and identify correlations.

We have also shown that the R-tree is a more e�cient data structure for retrieving disk-

resident data. We intend to conduct more extensive comparison tests of the data retrieval

13

methods involved. First we plan to implement well balanced octrees for comparison. Next

we intend to test the techniques on much larger data sets, 20-500 million tetrahedra. For

these larger data sets we expect the brute force method will be 3 orders of magnitude slower

than STR-trees. We should also conduct tests using a remote disk and use multiple disks to

distribute an extremely large data set.

References

[1] Abgrall, R., and Harten, A. Multiresolution Representation in Unstructured

Meshes. I. Preliminary Report. Tech. Rep. UCLA CAM Report 94-20, July 1994.

[2] Cignoni, P., De Floriani, L., Montani, C., Puppo, E., and Scopigno, R.

Multiresolution Modeling and Visualization of Volume Data Based on Simplicaial Com-

plexes. In Proceedings of the 1994 Symposium on Volume Visualization (1994), pp. 19{

26.

[3] Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuet-

zle, W. Multiresolution Analysis of Arbitrary Meshes. In SIGGRAPH '95 Conference

Proceedings (1995), pp. 173{182.

[4] Guttman, A. R-trees: a Dynamic Index Structure for Spatial Searching. In Proceed-

ings of the ACM SIGMOD (1984), pp. 47{57.

[5] Kamel, I., and Faloutsos, C. On Packing R-trees. In Proceedings of the 2nd Inter-

national Conference on Information and Knowledge Management (CKIM-93) (Novem-

ber 1993), pp. 490{499.

[6] Laur, D., and Hanrahan, P. Hierarchical Splatting: A Progressive Re�nement

Algorithm for Volume Rendering. In Proceedings of SIGGRAPH '91 (1991), pp. 285{

288.

[7] Leutenegger, S., Edgington, J., and Lopez, M. STR: A Simple and E�cient

Algorithm for R-Tree Packing. Tech. Rep. Technical Report # 96-1, University of

Denver Computer Science, 1996.

[8] Leutenegger, S., and Lopez, M. The E�ect of Bu�ering on the Performance of

R-Trees. Tech. Rep. Technical Report # 96-2, University of Denver Computer Science,

1996.

[9] Mavriplis, D., and Venkatakrishnan, V. Agglomeration Multigrid for Viscous

Turbulent Flows. Tech. Rep. ICASE Report No. 94-62, Institute for Computer Appli-

cations in Scinece and Engineering, 1994.

14

[10] Muraki, S. Multiscale 3D Edge Representation of Volume Data by a DOG Wavelet.

In Proceedings of the 1994 Symposium on Volume Visualization (1994), pp. 35{42.

[11] Rosenberg, A., and Snyder, L. Time and Space Optimality in B-Trees. ACM

Transactions on Database Systems 6, 1 (March 1981).

[12] Roussopoulos, N., and Leifker, D. Direct Spatial Search on Pictorial Databases

Using Packed R-trees. In Proceedings of the ACM SIGMOD (May 1985).

[13] Samet, H. The Design and Analysis of Spatial Data Structures. Addison Wesley, 1989.

[14] Schroder, P., and Sweldens, W. Spherical Wavelets: E�ciently Representing

Functions on the Sphere. In SIGGRAPH '95 Conference Proceedings (1995), pp. 161{

172.

[15] Schroeder, W., Zarge, J. A., and Lorensen, W. E. Decimation of Triangle

Meshes. In SIGGRAPH '92 Conference Proceedings (1992), pp. 65{170.

[16] Turk, G. Re-Tiling Polygonal Surfaces. In SIGGRAPH '92 Conference Proceedings

(1992), pp. 55{64.

[17] Westermann, R. AMultiresolution Framework for Volume Rendering. In Proceedings

of the 1994 Symposium on Volume Visualization (1994), pp. 51{58.

[18] Westover, L. Footprint Evaluation for Volume Rendering. In Proceedings of SIG-

GRAPH '90 (1990), pp. 267{276.

[19] Wilhelms, J., and Van Gelder, A. Multi-Dimensional Trees for Controlled Vol-

ume Rendering and Compression. In Proceedings of the 1994 Symposium on Volume

Visualization (1994), pp. 27{34.

15

Figure 6: Highest resolution: r0.

Figure 7: Resolution: r1.

Figure 8: Resolution: r2.

Figure 9: Resolution: r3.

Figure 10: Resolution: r4.

Figure 11: Lowest resolution: r5.

16

