
A High-Order Direct Solver

for Helmholtz Equations

with Neumann Boundary Conditions

Xian-He Sun� Yu Zhuang

Department of Computer Science

Louisiana State University

Baton Rouge, LA 70803-4020

Abstract

In this study, a compact �nite-di�erence discretization is �rst developed for

Helmholtz equations on rectangular domains. Special treatments, then, are introduced

for Neumann and Neumann-Dirichlet boundary conditions to achieve accuracy and sep-

arability. Finally, a Fast Fourier Transform (FFT) based technique is used to yield a

fast direct solver. Analytical and experimental results show this newly proposed solver

is comparable to the conventional second-order elliptic solver when accuracy is not a

primary concern and is signi�cantly faster than that of the conventional solver if a highly

accurate solution is required. In addition, this newly proposed fourth order Helmholtz

solver is parallel in nature. It is readily available for parallel and distributed comput-

ers. The compact scheme introduced in this study is likely extendible for sixth-order

accurate algorithms and for more general elliptic equations.

�This research was supported in part by the National Aeronauticsand Space Administration under NASA contract

No. NAS1-19480 whilethe second author was in residence at the Institute forComputer Applications in Science and

Engineering (ICASE), NASALangley Research Center, Hampton, VA 23681-0001, and by NASAcontract No. NAS1-

1672 and Louisiana Education Quality Support Fund.

i

1 Introduction

Obtaining a more accurate numerical solution, in general, means adding more discretization points

and using smaller mesh sizes, which cost both computing time and storage space. The demand for

more accurate solutions is a driving force for more powerful computers [15]. On the other hand,

however, high performance computers require high-order accurate discretization methods to match

their computation power and to explore the potential of high-performance computing. With the

availability of high performance computers, the current barrier in utilizing existing hardware in

many situations is the lack of high-order accurate numerical methods. In this study we introduce a

high-order direct solver for Helmholtz equations with Neumann boundary conditions. This newly

proposed solver achieves fourth-order accuracy with a computation count compatible with the best

existing second-order algorithm. Of equal importance is its parallel nature and its readiness for

parallel and distributed computers.

Solving Helmholtz equations is a key issue of scienti�c computing. Intensive research has been

done in recent years in the �eld to develop e�cient numerical methods [16]. In the late sixties,

Hockney [4] and Bunemann [1] developed fast direct methods for elliptic equations on rectangular

uniform meshs. These methods take advantage of the special block structure of the resulting sys-

tem of �nite-di�erence discretizations and reduce the number of computations considerably. While

these methods have been highly recognized for their practical importance, they are based on sec-

ond order approximations. By adopting a novel �nite-di�erence discretization, in 1979 Houstis and

Papatheodorou [6] proposed a direct Helmholtz-Dirichlet solver with fourth-order accuracy. This

fourth-order solver combines the techniques of Fourier transform and cyclic reduction and is as

fast as the second-order solvers developed by Hockney and Bunemann. The main drawback of

Houstis and Papatheodorou's method is that it is designed for Dirichlet boundary conditions only.

Although, analytically, solving a Neumann problem is equivalent to solving two Dirichlet problems

for Helmhotz equations [7], due to the high transformation cost1 Houstis and Papatheodorou's

method is unacceptably slow for Helmholtz equations with Neumann or Neumann-Dirichlet condi-

tions.

Finite-element schemes provide another alternative for high-order discretizations. By using

Rayleigh-Ritz-Galerkin approach with tensor product B-splines, Kaufman and Warner [8, 9] devel-

oped a direct solver more recently for separable elliptic equations on rectangular domains. Their

method permits high-order discretizations and works for both Dirichlet and Neumann boundary

problems. While Kaufman and Warner's method is a more general elliptic solver, it has a compu-

tational complexity of O(N3) on a square domain of size N �N .

In this paper, we propose a fourth-order direct solver for Helmholtz equations

Pxx + Pyy � �P = R(x; y) in
; (1)

1As shown in Appendix B, the complexity of computing the transformation in
uence matrix is at least

O(N3 log
2
log2N) on a square domain of size N �N .

1

where
 is a rectangular computational domain with Neumann boundary conditions imposed on at

least one dimension, � � 0, R is a given function, P is the scalar-valued function to be solved for.

When � = 0, (1) becomes a Poisson equation. Mathematical analyses are conducted to prove our

newly proposed solver is fourth order accurate and requiresN2(5 log
2
N+17)+119N operations on a

N�N domain. These analytical results are con�rmed by experimental measurements. Performance

comparison has been made against the best second-order algorithm available. Analytical and

experimental results show this newly proposed high-order solver is signi�cantly faster than existing

algorithms for Helmholtz equations with Neumann conditions, especially for large applications.

The main mathematical tool used in this study is a newly-derived �nite-di�erence discretization

scheme, which is a generalization of the compact �nite-di�erence scheme originally proposed by

Kreiss and Oliger [10]. This paper is organized as follows. Compact schemes are presented in

Section 2. A high order discretization is derived for Laplace operator. Our new discretization

scheme for Helmhotz equations is introduced in Section 3. Based on the newly developed �nite-

di�erence scheme, a high-order fast solver is proposed in Section 4 for Helmholtz equations with

Neumann conditions. The accuracy and e�ciency of this algorithm are also analyzed. Extension

of the fast solver to Neumann-Dirichlet conditions is discussed in Section 5. Finally, testing results

are presented in Section 6. Section 7 gives the conclusion. To provide an appropriate comparison,

accuracy analysis of the conventional second order solver and the in
uence matrix method are

presented in Appendix A and B, respectively. A detailed error estimation of the newly proposed

algorithm is conducted in Appendix C.

2 Compact Di�erence Schemes

Compact �nite-di�erence schemes are derivative approximation methods that express a linear com-

bination of derivatives in terms of a linear combination of function values [13]. As originally

suggested by Kreiss and Oliger [10], and later discussed for
uid dynamics problems by Hirsh and

Lele [3, 11], the �rst and second derivatives for compact di�erences can be approximated by

f 0n =

D0

1 + 1

6
h2D+D�

!
fn with error �

h4

180
f (5) (2)

and

f 00n =

D+D�

1 + 1

12
h2D+D�

!
fn with error �

h4

240
f (6); (3)

where

D0fn =
1

2h
(fn+1 � fn�1); D+fn =

1

h
(fn+1 � fn); D�fn =

1

h
(fn � fn�1); (4)

and h is the mesh size. Multiply (2) and (3) by their respective denominators yields

1

6
f 0n�1 +

2

3
f 0n +

1

6
f 0n�1 =

fn+1 � fn�1

2h
;

2

and
1

12
f 00n�1 +

5

6
f 00n +

1

12
f 00n�1 =

fn+1 � 2fn + fn�1

h2
: (5)

As Hirsh has shown, the above two compact schemes yield a smaller di�erence stencil and higher

accuracy for approximating f 0 and f 00 than the traditional fourth order central-di�erence.

Compact scheme has traditionally been used only for approximating derivatives with known

function values. For instance, compact schemes have often been used to compute one dimensional

time derivatives in the iterative solving of di�erential equations where the function values of the

last iteration are known. To approximate high-dimensional spatial di�erential operators, however,

using 1-D compact schemes to approximate corresponding 1-D components of Partial Di�erential

Equations (PDE) does not necessarily lead to a solution. For example, to discretize the Poisson

equation

Pxx + Pyy = R(x; y) (6)

if we use (5) to approximate Pxx and Pyy we will end up with

1

12
P i�1;j
xx + 5

6
P i;j
xx + 1

12
P i+1;j
xx + 1

12
P i;j�1
yy + 5

6
P i;j
yy + 1

12
P i;j+1
yy

= 1

h2

�
P i�1;j + P i+1;j + P i;j+1 + P i;j�1 � 4P i;j

�
:

(7)

The left-hand side of (7) is not a linear combination of the Laplace operator4P = @2P
@x2

+ @2P
@y2

, hence

relation (6) cannot be used to reduce (7) into a solvable linear equation. Using compact schemes

for the solution of spatial di�erential operators is still state-of-the-art and very challenging. Before

deriving a high-order solution for Helmholtz equations, we �rst need to investigate the applicability

of compact schemes for two dimensional Laplace operators.

An example of compact �nite-di�erence scheme for the 2-D Laplacian is given below when both

x and y dimensions take the same uniform mesh size h:

4P i;j =

1

6
(Dx

+
D

y
+
+Dx

+
D

y
� +Dx

�D
y
+
+Dx

�D
y
�) +Dx

+
Dx
� +D

y
+
D

y
�

1 + 1

12
h2(Dx

+
Dx
� +D

y
+
D

y
�)

!
P i;j (8)

where
Dx

+
P i;j = 1

h
(P i+1;j � P i;j); Dx

�P
i;j = 1

h
(P i;j � P i�1;j);

D
y
+
P i;j = 1

h
(P i;j+1 � P i;j); D

y
�P

i;j = 1

h
(P i;j � P i;j�1):

(9)

The truncation error of (8) is

Error(4P i;j) = h4

"
1

216
(

@6

@x4@y2
+

@6

@x2@y4
)�

1

360
(
@6

@x6
+

@6

@y6
)

#
P i;j:

The di�erence stencils of (8) can be seen easily in the form of

�

0
B@

1

8

1

8
1 1

8

1

8

1
CA4P i;j = h�2

0
B@
�1

4
�1 �1

4

�1 5 �1

�1

4
�1 �1

4

1
CAP i;j: (10)

3

A more general form of the compact di�erence scheme for the Laplace operator is

4P i;j + �
�
4P i�1;j +4P i+1;j +4P i;j�1 +4P i;j+1

�
+ �

�
4P i�1;j�1 +4P i+1;j�1 +4P i�1;j+1 +4P i+1;j+1

�
= a P i+1;j

+P i�1;j
+P i;j�1

+P i;j+1�4P i;j

h2

+ b P i�1;j�1
+P i+1;j�1

+P i�1;j+1
+P i+1;j+1�4P i;j

2h2
:

(11)

The values of the parameters a, b, and �, � can be derived by matching coe�cients of the corre-

sponding Taylor series of the Laplace operator for various orders of accuracy. The �rst unmatched

coe�cient determines the truncation error of the approximation (11). After some mathematical

manipulation, direct matching leads to the following results:

1 + 4�+ 4� = a+ b (second order accuracy),

�+ 2� = a+b
12

2�+ 4� = b
2

)
(fourth order accuracy).

The highest order (11) can reach is O(h4), and (10) is the optimal one with three non-zero coe�-

cients, which is attained with � set to 0.

Compared with conventional fourth order �nite-di�erence

4P i;j = 4

3
� P

i�1;j
+P i+1;j

+P i;j�1
+P i;j+1�4P i;j

h2

� 1

3
� P

i�2;j
+P i+2;j

+P i;j�2
+P i;j+2�4P i;j

4h2
+O(h4);

though compact scheme (10) does not reduce the number of stencils, it has the advantage in

handling grid points in the neighborhood of the boundaries (see [2] pp. 568). More importantly,

its block tridiagonal structure makes fast direct solving possible.

Discretization (10) is for Laplace operators. To apply compact schemes to Helmholtz equation

(1), we need modify discretization (2) and (8) accordingly. Two basic �nite-di�erence formulas are

needed for the modi�cation. They are:

D2fn = D+D�fn +O(h2); (12)

and

4P i;j = (Dx
+
Dx
� +D

y
+
D

y
�)P

i;j +O(h2); (13)

where Dx
+
; Dx

�; D
y
+
; and D

y
�; are de�ned in (9), D+ and D� in (4), and D2 denotes the second

derivative.

Both (2) and (8) are of order four. Replacing D+D� in the denominator of (2) by the second

di�erential operator D2, and (Dx
+
Dx
� +D

y
+
D

y
�) in the denominator of (8) by the Laplace operator

4, yields

f 0n =

D0

1 + 1

6
h2 D2

!
fn

4

and

4P i;j =

1

6
(Dx

+
D

y
+
+Dx

+
D

y
� +Dx

�D
y
+
+Dx

�D
y
�) +Dx

+
Dx
� +D

y
+
D

y
�

1 + 1

12
h2 4

!
P i;j:

The order of truncation error of the two modi�ed compact schemes remain the same. Multiplying

each equation with its corresponding denominator, the explicit forms of the above two equations

are given by
1

2h
(fn+1 � fn�1) = f 0n +

1

6
h2f 000n +O(h4) (14)

and

h�2

0
B@
�1

4
�1 �1

4

�1 5 �1

�1

4
�1 �1

4

1
CAP i;j = �

3

2
4P i;j �

h2

8
42P i;j +O(h4); (15)

respectively.

3 High Order Discretization for Helmholtz Equations

We assume equation (1) to be solved in a rectangular region [0; x]� [0; y]. This rectangular domain

is partitioned into uniform mesh size h in both dimensions, yielding grid points

(0; 0); (h; 0); :::; (Mh; 0) ; ::: ; (0; Nh); (h;Nh); :::; (Mh;Nh): (16)

We apply the modi�ed compact scheme (15) to discretize equation (1) with grid (16). Substitute

4P i;j by �P i;j + Ri;j, and 42P i;j by �2P i;j + �Ri;j +4Ri;j, based on the equivalences derived

from equation (1), equation (15) becomes

h�2

0
B@
�1

4
�1 �1

4

�1 5 �1

�1

4
�1 �1

4

1
CAP i;j = �

3

2

�
�P i;j +Ri;j

�
�
h2

8

�
�2P i;j + �Ri;j +4Ri;j

�
+O(h4): (17)

Move all the P i;j terms on the right-hand side of (17) to the left, yielding

h�2

0
B@
�1

4
�1 �1

4

�1 5 + �h2+12
8

�h2 �1

�1

4
�1 �1

4

1
CAP i;j = �

3

2
Ri;j �

h2

8

�
�Ri;j +4Ri;j

�
+O(h4): (18)

The approximation of 4R in the above equation only needs to be second order accurate for the

�nal solution P to remain fourth order accurate.

To provide (18) with an adequately accurate boundary treatment necessitates a fourth-order

�rst derivative approximation for the boundary conditions. As stated in Section 1, equation (1)

has a Neumann-Neumann or Neumann-Dirichlet boundary conditions. Since Neumann-Neumann

boundary problems and Neumann-Dirichlet problems share many common characteristics, we dis-

cuss the solution of the Neumann-Neumann boundary problem in detail in this section and, then,

extend the solution to Neumann-Dirichlet boundary problems in Section 5.

5

General Neumann-Neumann boundary conditions can be expressed mathematically as

dP

dn
= b(x; y) on @
; (19)

where @
 is the boundary of the rectangular domain
, n is the normal vector of the boundary of

the computational domain, and dP
dn

indicates the derivative normal to the boundary.

Applying equation (14) at grid point (0; j), we have

h2

6
P 0;j
xxx + P 0;j

x =
P 1;j � P�1;j

2h
+O(h4):

Incorporating this result into boundary condition (19) yields

h2

6
b0;jxx + b0;j =

P 1;j � P�1;j

2h
+O(h4): (20)

Di�culty exists in using Equation (20), however. The boundary function b(x; y) is usually only

available at the boundaries, but not in a small neighborhood of the boundaries. Thus, the derivative

of function b(x; y) can be found only along the y-direction but not the x-direction for grid points

(0; j). To overcome this di�culty, we reformulate derivative b0;jxx by incorporating information from

the equation (1),

b0;jxx = P 0;j
xxx =

@
@x

�
4P 0;j � P 0;j

yy

�
= @

@x
4P 0;j � @

@x
P 0;j
yy

= @
@x
(R0;j + �P 0;j)� @2

@y2
P 0;j
x = R0;j

x + �b0;j � b0;jyy :

Therefore, we have transformed (20) into

P 1;j � P�1;j

2h
=

h2

6
(Rx � b0;jyy) + (1 +

�h2

6
)b0;j +O(h4): (21)

The approximation of b0;jyy in the above equation only needs to be second order for (21) to remain

fourth order, and it is feasible to carry the y-direction derivative approximation at the boundary

of x-direction.

The value P�1;j in (21) which lies outside the computational domain is eliminated when both

equations (21) and (18) are applied to grid points (0; j). Through the above discretization and

derivation, the Helmholtz equation (1) and the boundary conditions (19) now can be incorporated

into the following linear system:

A P = �
3

2
h2R�

h4

8
(�R+4R) + 2hU +O(h5) : (22)

The vector U results from the boundary conditions and vanishes at interior points. It has di�erent

6

forms along the four boundaries and at the four corners and is given by

U0;j = �3P
0;j
x

2
� �h2

(P
0;j�1
x +4P

0;j
x +P

0;j+1
x)

24
� h2

(R
0;j�1
x +4R

0;j
x +R

0;j+1
x)

24
;

Um;j = 3P
m;j
x

2
+ �h2

(P
m;j�1
x +4P

m;j
x +P

m;j+1
x)

24
+ h2

(R
m;j�1
x +4R

m;j
x +R

m;j+1
x)

24
;

U i;0 = �
3P

i;0
y

2
� �h2

(P
i�1;0
y +4P

i;0
y +P

i+1;0
y)

24
� h2

(R
i�1;0
x +4R

i;0
x +R

i+1;0
x)

24
; (23)

U i;n =
3P

i;n
y

2
+ �h2

(P
i�1;n
y +4P

i;n
y +P

i+1;n
y)

24
+ h2

(R
i�1;n
x +4R

i;n
x +R

i+1;n
x)

24
; (24)

for 1 � i � m� 1; 1 � j � n� 1, and

U0;0 = �(1
4
+ �h2

24
)
�
5(P 0;0

x + P 0;0
y) + P 0;1

x + P 1;0
y

�
� h2

5(R
0;0
x +R

0;0
y)+R

0;1
x +R

1;0
y

24

+
5(P

0;0
x +P

0;0
y)�12(P

0;1
x +P

1;0
y)+9(P

0;2
x +P

2;0
y)�2(P

0;3
x +P

3;0
y)

24
;

Um;0 = (1
4
+ �h2

24
)
�
5(Pm;0

x � Pm;0
y) + Pm;1

x � Pm�1;0
y

�
+ h2

5(R
m;0
x �Rm;0

y)+R
m;1
x �Rm�1;0y

24

�
5(P

m;0
x �Pm;0

y)�12(Pm;1
x �Pm�1;0

y)+9(P
m;2
x �Pm�2;0

y)�2(Pm;3
x �Pm�3;0

y)

24
;

U0;n = �(1
4
+ �h2

24
)
�
5(P 0;n

x � P 0;n
y) + P 0;n�1

x � P 1;n
y

�
� h2

5(R
0;n
x �R0;n

y)+R
0;n�1
x �R1;n

y

24

+
5(P

0;n
x �P 0;n

y)�12(P 0;n�1
x �P 1;n

y)+9(P
0;n�2
x �P 2;n

y)�2(P 0;n�3
x �P 3;n

y)

24
;

Um;n = (1
4
+ �h2

24
)
�
5(Pm;n

x + Pm;n
y) + Pm;n�1

x + Pm�1;n
y

�
+ h2

5(R
m;n
x +R

m;n
y)+R

m;n�1
x +R

m�1;n
y

24

�
5(P

m;n
x +P

m;n
y)�12(Pm;n�1

x +P
m�1;n
y)+9(P

m;n�2
x +P

m�2;n
y)�2(Pm;n�3

x +P
m�3;n
y)

24
:

The matrix A is an (M + 1)(N + 1) by (M + 1)(N + 1) matrix given by

A =

0
BBBBBB@

A1 �2A2 0 � 0 0 0

�A2 A1 �A2 � 0 0 0

� � � � � � �

0 0 0 � �A2 A1 �A2

0 0 0 � 0 �2A2 A1

1
CCCCCCA
; (25)

with matrix A1 of order (N + 1) by (N + 1) being

A1 =

0
BBBBBB@

d �2 0 � � � 0 0 0

�1 d �1 � � � 0 0 0

� � � � � � � � �

0 0 0 � � � �1 d �1

0 0 0 � � � 0 �2 d

1
CCCCCCA
;

7

where d = 5 + �h2+12
8

�h2, and with matrix A2 of order (N + 1) by (N + 1) being

A2 =

0
BBBBBB@

1 1

2
0 � � � 0 0 0

1

4
1 1

4
� � � 0 0 0

� � � � � � � � �

0 0 0 � � � 1

4
1 1

4

0 0 0 � � � 0 1

2
1

1
CCCCCCA
:

The regular structure of matrix A allows it to be tridiagonalized by Fast Cosine Transform (FCT)

A = F�F
�1; (26)

where � is the resulting matrix, and F is an (M + 1)(N + 1) by (M + 1)(N + 1) block diagonal

matrix with (N + 1) by (N + 1) diagonal submatrix F1 given by

F1 =

0
BBBBBB@

1 1 1 1 � 1

1 cos(�
N
) cos(2�

N
) cos(3�

N
) � cos(N�

N
)

1 cos(2�
N
) cos(4�

N
) cos(6�

N
) � cos(2N�

N
)

� � � � � �

1 cos(N�
N
) cos(2N�

N
) cos(3N�

N
) � cos(N

2�
N

)

1
CCCCCCA :

After tridiagonalization, equation (22) becomes

h�2F�F�1P = B ; (27)

where B = �3

2
R� h2

8
(�R+4R) + 2h�1U . Finally, the solution is

P = h2 F��1
F
�1
B: (28)

4 The Fourth-Order Fast Solver

Based on the mathematical study given in the last section, a fourth-order algorithm can be carried

out in the following steps:

1) Compute the cosine values to be used in the FCT.

2) Compute the value of each entry in matrix �.

3) Compute the vector U in equation (22).

4) Compute the right-hand side of (27).

This is done by adding the results from step 1) to �3

2
R � h2

8
(�R+4R) which is to be

computed in this step.

8

5) Apply inverse FCT to the right-hand side of equation (27).

This is done by multiplying matrix F�1
1

to each block Bi in the matrix B, for i = 0; 1; :::;M;

where Bi = (bi0; bi1; : : : ; biN)
T is the i-th N-component-long block of vector B.

6) Solve the tridiagonal system �Y = F
�1B for Y , where Y = F

�1P .

Because of the particular structure of matrix �, we get N independent tridiagonal systems,

each of size M . Reassemble the right-hand side F�1B according to the structure of �, and

then solve the N tridiagonal systems.

7) Apply FCT to vector Y computed in step 6) to recover P .

This is done by multiplying matrix F1 to each of vector Y 's N-component-long block Yi for

i = 0; 1; :::;M .

The operation count of each step of the fourth-order algorithm on a square domain of N�N , from

steps 1 to 7, is:

1. N multiplications and 0:5N additions;

2. 6N multiplications and 2N additions;

3. 36N multiplications and 48N additions;

4. N2 + 10N multiplications and 4N2 + 12N additions;

5. N2 log2N +N(log
2
N � 4) multiplications and N2(1:5 log2N + 1:5) �N log

2
N additions;

6. 5N2 + 6N multiplications and 3N2 + 4N additions;

7. N2 log2N +N(log
2
N � 3) multiplications and N2(1:5 log2N + 2:5) �N log

2
N additions.

The total operation count of the algorithm is the sum of the work of the seven steps, which is

N2(6 + 2 log
2
N) +N(2 log

2
N + 52) multiplications and

N2(3 log
2
N + 11) +N(�2 log

2
N + 67) additions

= N2(5 log
2
N + 17) + 119N:

(29)

It is N2 + 45N multiplications and 4N2 + 53N additions more than the operation count of the

conventional second-order fast Poisson solver (see (40) in Appendix A [4]).

Execution time in general is approximately proportional to the number of operations. To better

understand the time-accuracy e�ciency, the newly-proposed high-order direct solver, the conven-

tional second order fast Poisson method [4], and the in
uence matrix method [7] are compared

analytically in terms of operation counts, assuming all the three solvers are solving the same prob-

lem and to meet the same accuracy requirement.

The in
uence matrix method (see Appendix B) can be combined with the direct fourth-order

Dirichlet solver [6] to solve Equation (1) with Neumann conditions. The analysis given in Appendix

B shows that the in
uence matrix method has the same order of truncation error as our proposed

9

high-order solution. The �nal solution error depends on both the truncation error and the matrix

of the discretized linear system, but the matrices of the two methods have eigenvalues with the

same properties where solution errors are concerned. Therefore it is appropriate to conclude that

the in
uence matrix method and the newly proposed high-order solver have the same accuracy.

The operation count of the in
uence matrix method given by (44) is at least N times the operation

count of our direct Neumann solver for problems of partition size no larger than 220 � 220. So we

can conclude that our method is approximately N times faster than the in
uence matrix method.

The comparison of the conventional fast Fourier method for Poisson equations needs more delib-

eration. For the sake of brevity, we restrict our discussion on the unit square domain [0; 1]� [0; 1].

With slight modi�cations, the same analysis can be conducted for general rectangular domains.

We introduce the following notations: E(Mthd) denotes the di�erence between the exact solution

and the numerical solution computed by method Mthd, " > 0 is the required accuracy, i.e. the

di�erence between the computed numerical solution and the exact solution must be less than or

equal to ". With these notations, now the error of our fourth-order method can be denoted by

E(order4), and the error of the second-order Poisson solver will be E(order2). By analysis given

in Appendix C for the high order direct method, the solution error in general satis�es

E(order4) = a � h4 for some problem dependent coe�cient a:

The error estimation for the conventional second order solution given in appendix A indicates

that in general

E(order2) = b � h2 for some problem dependent coe�cient b:

To meet the accuracy requirement for both the order 2 fast Poisson solver and our order 4

method, the two solvers need to take di�erent mesh sizes and partition sizes, say partition size N

and mesh size h for our direct Neumann solution, and partition size N2 and mesh size h2 for the

order 2 method. Then E � ", implies that

a � h4 = " for the 4th order direct Neumann solver

and

b � h2
2
= " for the second order method.

Therefore

a � h4 = b � h2
2

(30)

Since

h = 1=N and h
2
= 1=N2;

(30) is equivalent to
a

N4
=

b

N2

2

:

10

A relation between N and N2 is

N2 =

s
b

a
N2 = C N2; (31)

where

C =

s
b

a
: (32)

Thus, if our fourth order solver can satisfy the error tolerance by taking a partition of size N , then

it requires the second order solver to take a partition size of CN2 to achieve the same accuracy.

The parameter C in general could vary largely from problem to problem. For a Poisson equation

with polynomial solution of degree four, the new fourth-order method gives the exact solution while

the second order fast solver does not (see Table 5). In these cases, C is close to in�nity, which means

the second order solver will never get the same accuracy as our method no matter what partition

size it takes. For Poisson equations which have only twice di�erentiable solutions, the number C

will be close to 1

N
, which means the two methods have almost the same accuracy when taking the

same partition size. Fortunately, for equations having at least �fth derivatives, the variation range

of the coe�cient C is not very large.

Obviously C depends on the matrices of the two discretized systems for the two methods and

also on the truncation errors. Since the eigenvalues of the two methods are almost the same,

we can mainly use their truncation errors to compare the solution errors of the two methods.

From the analysis given in appendix A and appendix C, we can see that the truncation errors are

in
uenced by many factors such as the coe�cients, the derivatives of the solution of the �rst �ve

orders, the number of terms, and the number � in the equation (1). So the parameter C is heavily

problem dependent. But the highest order terms of truncation error for both the fourth and second

order solution clearly occur at the four corners of the computational domain. For problems whose

derivatives of di�erent orders di�er within a factor of 100, and the coe�cient � is not greater than

400, substituting the ratio of a and b in (32) by the ratio of the truncation errors of the fourth and

second solutions at the four corners, we estimate that C will fall into the interval of [1
16
; 8]. For

\well behaved" equations, e.g. the derivatives of di�erent orders di�er within a factor of 5 and �

is moderately small (see the examples given in Tables 1 to 5 and in Tables 7 to 10), the parameter

C assumes a range of [1
4
; 1].

Let T4 and T2 denote the time needed by the order 4 and order 2 methods respectively to solve

a problem within a given error tolerance. According to equations (40), (29), and (31),

T2 : T4 =
C2N4(5 log

2
CN2 + 12) + 21C2N

N2(5 log
2
N + 17) + 119N

: (33)

For equations where C ranges from 1

4
to 1, the time ratio T2 : T1 will fall between

1

10
N2 and 2N2

by formula (33). In other words, the traditional order 2 solver will take roughly 1

10
N2 to 2N2 times

more computation than that of the newly-proposed fourth order solver to reach the same accuracy.

11

The di�erence is huge. The speed of the newly proposed algorithm is unmatched by that of other

existing direct solvers when a fourth order accurate solution is wanted.

5 The Modi�ed Fast Solver for Neumann-Dirichlet Conditions

In this section we discuss the fourth order solution of problems with Neumann boundary conditions

imposed on y-dimension, and Dirichlet conditions on x-dimension. By symmetry, this solution can

be extended to problems with Neumann boundary conditions imposed on x-dimension, and Dirichlet

conditions on y-dimension as well. These boundary conditions can be expressed mathematically

as: (
dP (x;y)

dy
= b(x; y) along y-dimension boundaries

P (x; y) = f(x; y) along x-dimension boundaries
(34)

For these Neumann-Dirichlet problems, we apply the compact scheme (15) at interior grid-points of

the problem domain, yielding (18). Similarly, we apply the 1-D compact scheme (14) to discretize

the boundary conditions of y-dimensional boundaries.

The discretized equation system now has the form

A P = �
3

2
h2R�

h4

8
(�R+4R) + Ux + 2hUy +O(h5); (35)

where Uy, which depends on the Neumann conditions at the y-dimensional boundaries, is de�ned

the same way as that of (23) and (24). Ux depends on the Dirichlet conditions at the x-dimensional

boundaries and is given by

U1;j
x = 1

4
P 0;j�1 + P 0;j + 1

4
P 0;j+1;

Um�1;j
x = 1

4
Pm;j�1 + Pm;j + 1

4
Pm;j+1;

for j = 1; 2; :::; n � 1, and

U1;0
x = P 0;0 + 1

2
P 0;1; Um�1;0

x = Pm;0 + 1

2
Pm;1;

U1;n
x = P 0;n + 1

2
P 0;n�1; Um�1;n

x = Pm;n + 1

2
Pm;n�1:

Equation (35) can be reduced to a sequence of independent tridiagonal systems either by Fast

Cosine Transform (FCT) or by Fast Sine Transform (FST). Which transformation to use is a choice

of e�ciency. When N � M , FCT will lead to a better e�ciency. Otherwise M < N , FST will be

a good choice. If FCT is the choice, the vector P then is stored in the form of

P = (p
1;0
; p

1;1
; � � � ; p

1;N
; � � � ; p

M�1;0
; p

M�1;1
; � � � ; p

M�1;N
)T:

12

Matrix A in equation (35), then, is an (M � 1)(N + 1) by (M � 1)(N + 1) matrix given by

A =

0
BBBBBB@

A1 �A2 0 � 0 0 0

�A2 A1 �A2 � 0 0 0

� � � � � � �

0 0 0 � �A2 A1 �A2

0 0 0 � 0 �A2 A1

1
CCCCCCA

with A1, A2 being the same as that in (25). The FCT used here is the same as (26) except that

now F is of order of (M � 1)(N + 1) by (M � 1)(N + 1).

The FST is given by

A = S�S
�1;

where S is an (N + 1)(M � 1) by (N + 1)(M � 1) block diagonal matrix with diagonal submatrix

S1 of order (M � 1) by (M � 1) being

S1 =

0
BBBBBB@

sin(�
M
) sin(2�

M
) � � � sin(

(M�1)�
M

)

sin(2�
M
) sin(4�

M
) � � � sin(

2(M�1)�
M

)

sin(3�
M
) sin(6�

M
) � � � sin(

3(M�1)�
M

)

� � � � � �

sin(
(M�1)�

M
) sin(

2(M�1)�
M

) � � � sin(
(M�1)2�

M
)

1
CCCCCCA
:

To apply FST, we need to rearrange equation (35) in such a way that the vector P is stored in the

form of

P = (p
1;0
; p

2;0
; � � � ; p

M�1;0
; � � � ; p

1;N
; p

2;N
; � � � ; p

M�1;N
)T:

After the rearrangement, the matrix A in equation (35) takes the same form as equation (25) but

with di�erent submatrices, where matrix A1 is an (N +1) by (N +1) Teoplitz tridiagonal matrix,

A1 =

0
BBBBBB@

d �1 0 � � � 0 0 0

�1 d �1 � � � 0 0 0

� � � � � � � � �

0 0 0 � � � �1 d �1

0 0 0 � � � 0 �1 d

1
CCCCCCA

;

d = 5 + �h2+12
8

�h2, and matrix A2 is also an (N + 1) by (N + 1) Teoplitz tridiagonal matrix,

A2 =

0
BBBBBB@

1 1

4
0 � � � 0 0 0

1

4
1 1

4
� � � 0 0 0

� � � � � � � � �

0 0 0 � � � 1

4
1 1

4

0 0 0 � � � 0 1

4
1

1
CCCCCCA

:

By equation (35), the solution algorithm for Neumann-Dirichlet problems consists of the fol-

13

lowing steps:

0) Determine whether FCT or FST should be used and store the data accordingly.

1) Compute the cosine or sine values to be used in the FCT or FST.

2) Compute the values of each entry in matrix �.

3) Compute the vector Ux and Uy in equation (35).

4) Compute the right-hand side of equation (35).

5) Apply the inverse of FCT or FST to the right-hand side of equation (35).

6) Solve the sequence of tridiagonal systems that resulted from the fast transform.

7) Apply FCT or FST to the solution of each tridiagonal system computed in step 6) to recover P .

Step 0) takes no computation. For equations on a square domain with partition size N � N , the

operation count of this algorithm is almost the same as that of the Neumann-Neumann boundary

problem. Its operation count is approximately

N2(2 log
2
N + 6) multiplications and N2(3 log

2
N + 11) additions

= N2(5 log
2
N + 17) operations:

6 Experiment Results

Theoretical analyses given in Appendix C show that the newly proposed Helmholtz solver is ap-

proximately fourth order accurate and is highly e�cient. By de�nition, a numerical method is

fourth order accurate if and only if when the number of grid points doubles the discretization error

will decrease at a rate of
�
1

2

�
4

. Five Helmholtz equations with known exact solutions have been

chosen as test problems to verify the analytical results and to illustrate the performance gain of the

high order method. Among the �ve test problems, two have polynomial solutions, with one having

a fractional degree. The other three are with solution of sine-exponential function, polynomial-

cosine function, and two dimensional cosine function, respectively. They represent a large class of

practical Helmholtz equations. Experimental tests have been conducted on a DEC Station 5000

to measure the numerical results and execution time. As listed in Tables 1 to 10, experimental

results match analytical results closely. Measured performance con�rms that the newly proposed

algorithm is highly accurate and e�cient.

Two performance metrics are used in the measurement. The metric Order, de�ned by

Order(n, n+1) = log
2

MaxE(n)

MaxE(n+ 1)
;

measures the order of accuracy of numerical solutions. The term Relative error is de�ned as

Relative error =
kP � bPk1
kPk1

;

14

Table 1. Solving Pxx + Pyy � 11P = R on Unit Square with P = exsin(y)

Fourth Order

N = 8 16 32 64 128 256 512

Maximal error 1.10E-04 7.30E-06 4.67E-07 2.95E-08 1.85E-09 1.16E-10 9.40E-12

Relative error 4.22E-05 2.57E-06 1.58E-07 9.81E-09 6.11E-10 3.80E-11 3.22E-12

Order 3.9 4.0 4.0 4.0 4.0 3.6

Time(seconds) 0.004 0.016 0.066 0.27 1.20 5.3 24

Second Order

N = 8 16 32 64 128 256 512

Maximal error 1.94E-03 4.94E-04 1.24E-04 3.10E-05 7.76E-06 1.94E-06 4.85E-07

Relative error 7.22E-04 1.69E-04 4.06E-05 9.93E-06 2.46E-06 6.11E-07 1.52E-07

Order 2.0 2.0 2.0 2.0 2.0 2.0

Time(seconds) 0.004 0.012 0.066 0.26 1.13 5.2 24

Table 2. Solving Pxx + Pyy = R on Unit Square with P = cos(xy)

Fourth Order

N = 8 16 32 64 128 256 512

Maximal error 5.26E-05 2.90E-06 1.66E-07 9.88E-09 5.99E-10 3.70E-11 1.49E-12

Relative error 9.32E-06 5.00E-07 2.95E-08 1.79E-09 1.11E-10 6.91E-12 1.71E-13

Order 4.2 4.1 4.1 4.0 4.0 4.7

Time(seconds) 0.004 0.012 0.062 0.28 1.20 5.18 23

Second Order

N = 8 16 32 64 128 256 512

Maximal error 8.15E-04 2.01E-04 5.00E-05 1.25E-05 3.12E-06 7.80E-07 1.95E-07

Relative error 1.11E-04 2.53E-05 6.05E-06 1.48E-06 3.67E-07 9.12E-08 2.27E-08

Order 2.0 2.0 2.0 2.0 2.0 2.0

Time(seconds) 0.004 0.016 0.062 0.28 1.13 5.04 23

where P and bP denote the exact solution and computed solution respectively, and k � k1 is the l1

norm. All the testing is conducted on the unit square domain [0; 1] � [0; 1] with the same uniform

mesh size h on each dimension. N = 1=h is the number of grid points on each x- and y-dimension.

Tables 1 to 4 present the time-accurate comparison between the new fourth-order fast solver and

the traditional second-order fast solver (see Appendix A), for the �rst four testing problems with

Neumann-Neumann boundary conditions. Measured experimental results show our new method

is indeed fourth order accurate and achieves the high order accurate solution without increasing

execution time, as compared with the conventional second-order fast solver.

Table 5 lists measured experimental results for a special Poisson equation whose solution is a

polynomial of degree four. The truncation error given in Appendix C has only derivatives of �fth

order or higher when � = 0, which implies that our high order solver for the Poisson equation

15

Table 3. Solving Pxx + Pyy � P = R on Unit Square with P = (x3 � x2)cosy

Fourth Order

N = 8 16 32 64 128 256 512

Maximal error 7.73E-05 4.90E-06 3.07E-07 1.92E-08 1.20E-09 7.50E-11 4.64E-12

Relative error 5.72E-04 3.12E-05 1.83E-06 1.10E-07 6.79E-09 4.21E-10 2.63E-11

Order 4.0 4.0 4.0 4.0 4.0 4.0

Time(seconds) 0.008 0.016 0.086 0.269 1.24 5.30 24

Second Order

N = 8 16 32 64 128 256 512

Maximal error 6.86E-03 1.72E-03 4.31E-04 1.08E-04 2.69E-05 6.73E-06 1.68E-06

Relative error 5.46E-02 1.21E-02 2.83E-03 6.85E-04 1.68E-04 4.18E-05 1.04E-05

Order 2.0 2.0 2.0 2.0 2.0 2.0

Time(seconds) 0.004 0.012 0.059 0.262 1.14 5.02 24

will give an exact solution for polynomials of degree four or lower. This implication is veri�ed by

the testing results. The table shows that the fourth-order direct Neumann solver gives the exact

solution while the second order method cannot reach high accuracy even with enlarged problem

size and with extended execution time.

Table 6 compares the measured execution time of the conventional second-order faster Poisson

solver and the newly-proposed fourth-order solver. The �rst four testing problems are solved by

the fourth-order algorithm. Then, the same problems are solved with the conventional second

order method to match the achieved accuracy with increased number of grid points and execution

time. The execution times of the fourth order algorithm and the second order algorithm are listed

side-by-side in Table 6 for each of the testing problems. Table 6 shows that the new method is 300

to 1500 times faster, as indicated by the column of time ratio for the two solvers. Notice that the

performance gain increases largely when the problem size increase with the problem domain. This

time ratio increase is no surprise. It is around N2=4 and is well predicted by the range [1
10
N2; 2N2]

given in Section 4. The new algorithm is well suitable for scalable computing where problem size

increases with the computational power.

Tables 7 to 10 list the experimental results of the �rst four testing problems with correspond-

ing Neumann-Dirichlet boundary conditions. As con�rmed by the measured results, solutions of

Neumann-Dirichlet problems are also of fourth order accurate. In addition, they even have a smaller

error than that of the Neumann-Neumann boundary problem, since there is no discretization error

arising along x-dimensional Dirichlet boundary conditions. This feature is also well matched by

our experiment results.

16

Table 4. Solving Pxx + Pyy � 24:75P = R on Unit Square with P = x5:5 + y5:5

Fourth Order

N = 16 32 64 128 256 512 1024

Maximal error 4.75E-04 3.46E-05 2.32E-06 1.50E-07 9.55E-09 6.01E-10 3.84E-11

Relative error 3.45E-04 2.50E-05 1.67E-06 1.07E-07 6.81E-09 4.28E-10 2.67E-11

Order 3.8 3.9 4.0 4.0 4.0 4.0

Time(seconds) 0.016 0.059 0.285 1.24 5.30 23 102

Second Order

N = 16 32 64 128 256 512 1024

Maximal error 1.82E-02 4.61E-03 1.15E-03 2.89E-04 7.22E-05 1.81E-05 4.51E-06

Relative error 8.34E-03 2.09E-03 5.20E-04 1.30E-04 3.24E-05 8.09E-06 2.02E-06

Order 2.0 2.0 2.0 2.0 2.0 2.0

Time(seconds) 0.016 0.055 0.281 1.13 5.05 25 97

Table 5. Solving Pxx + Pyy = R on Unit Square with P = x4 + y4

Method Fourth Order Second Order Second Order

N = 8 256 1024

Maximal error 6.66E-16 3.05E-05 1.91E-06

Relative error 1.09E-15 2.53E-05 1.59E-06

Time(seconds) 0.004 5.04 100

7 Conclusion

Solving Helmholtz equations is a fundamental problem of scienti�c computing. Since Hockney

�rst proposed the so-called \fast Poisson solver" in 1965, intensive research has been done in the

�eld to develop fast direct solvers. However, while signi�cant progress has been made during the

years, fourth-order fast solvers are only currently available for Helmholtz equations with Dirichlet

boundary conditions. Based on a novel compact �nite-di�erence scheme, a fourth-order fast di-

rect solver is proposed for Helmholtz equations with Neumann-Neumann and Neumann-Dirichlet

boundary conditions on a rectangular domain in this study. Accuracy and e�ciency of the fourth

order algorithm are carefully examined. Theoretical and experimental results show that the newly

proposed algorithm is highly e�cient. It can obtain fourth order solution as fast as the conventional

method achieving second order solutions, and could be thousands of times faster than that of the

conventional method if accurate solutions are required.

The search for a better parallel solver is the original motivation behind this research. The

proposed algorithm is parallel in nature. Although parallel implementation is not presented in this

study, since the algorithm has a similar data structure as that of the conventional direct method, its

parallelization is straight forward and high speedup is expected [13, 14]. The same uniform mesh

17

Table 6. Computation time of the two methods for the same accuracy

Problem Method N Maximal error Time(seconds) Time ratio

1 Order 4 32 4.67E-07 0.066

Order 2 512 4.85E-07 24 364

1 Order 4 64 2.95E-08 0.27

Order 2 2048 3.03E-08 423 1570

2 Order 4 32 1.66E-07 0.062

Order 2 512 1.95E-07 24 389

2 Order 4 64 9.88E-09 0.28

Order 2 2048 1.22E-08 423 1510

3 Order 4 16 4.90E-06 0.016

Order 2 256 6.73E-06 5.02 314

3 Order 4 32 3.07E-07 0.062

Order 2 1024 4.21E-07 97 1560

4 Order 4 32 3.46E-05 0.059

Order 2 512 1.81E-05 25 424

4 Order 4 64 2.32E-06 0.285

Order 2 2048 1.13E-06 422 1480

Table 7. Neumann-Dirichlet problem: Pxx + Pyy � 11P = R on unit square with P = exsin(y)

By FCT

N = 8 16 32 64 128 256 512

Maximal error 6.16E-05 4.02E-06 2.54E-07 1.59E-08 9.97E-10 6.25E-11 5.17E-12

Relative error 2.28E-05 1.21E-06 6.83E-08 4.04E-09 2.46E-10 1.51E-11 1.65E-12

Order 3.9 4.0 4.0 4.0 4.0 3.6

Time(seconds) 0.004 0.016 0.066 0.27 1.20 5.3 24

size is used in both x- and y-dimension in our discussion. The restriction of the same uniform mesh

size is for the sack of brevity. Di�erent uniform mesh sizes can be applied to x- and y-dimension

respectively. Similar to the conventional second order solver, Fourier transform is used in the newly

introduced method to hasten computation. As observed by Hockney, the Fourier transform based

approach is a special case of the FACR(l) method with l = 0 [5]. By combining l steps of cyclic

reduction with the newly proposed algorithm, an FACR(l)-like algorithm could be formed to further

improve current results for optimal solution. Also, with appropriate modi�cations, the fourth order

algorithm is likely extendible to six order solutions and to more general boundary and domain

conditions. Many issues have opened for future work.

18

Table 8. Neumann-Dirichlet problem: Pxx + Pyy = R on unit square with P = cos(xy)

By FCT

N = 8 16 32 64 128 256 512

Maximal error 1.08E-05 7.59E-07 4.97E-08 3.17E-09 2.00E-10 1.26E-11 5.39E-13

Relative error 2.10E-06 1.10E-07 6.34E-09 3.85E-10 2.38E-11 1.50E-12 7.38E-14

Order 3.8 3.9 4.0 4.0 4.0 4.5

Time(seconds) 0.004 0.019 0.066 0.26 1.23 6.1 23.7

Table 9. Neumann-Dirichlet problem: Pxx + Pyy � P = R on unit square with P = (x3 � x2)cosy

By FST

N = 4 8 16 32 64 128 256

Maximal error 6.98E-05 5.98E-06 4.16E-07 2.72E-08 1.73E-09 1.09E-10 6.89E-12

Relative error 2.23E-04 1.34E-05 8.25E-07 5.20E-08 3.30E-09 2.08E-10 1.40E-11

Order 3.5 3.8 3.9 4.0 4.0 4.0

Time(seconds) 0.001 0.008 0.016 0.086 0.269 1.24 5.30

Appendices

A Direct Second Order Solution

Using traditional �nite-di�erence scheme, the second order approximation of the Laplacian is given

by

h�2

0
B@

1

1 �4 1

1

1
CAP i;j = 4P i;j +O(h2); (36)

and the discretization of the Neumann boundary conditions is given by

P�1;j � P 1;j

2h
= P 0;j

x +O(h2): (37)

Table 10. Neumann-Dirichlet problem: Pxx + Pyy � 24:75P = R on unit square with P = x5:5 + y5:5

By FST

N = 8 16 32 64 128 256 512

Maximal error 2.54E-03 2.26E-04 1.65E-05 1.10E-06 7.13E-08 4.53E-09 2.85E-10

Relative error 2.02E-03 1.46E-04 9.46E-06 5.96E-07 3.73E-08 2.33E-09 1.44E-10

Order 3.5 3.8 3.9 3.9 4.0 4.0

Time(seconds) 0.004 0.016 0.059 0.285 1.24 5.3 22

19

Applying (36) and (37) to discretize equation (1) and boundary condition (19) respectively, yielding

D P = �h2 R+ 2hU +O(h3) ; (38)

where the vector U stores the linear combination of the function values of b(x; y) in (19) at di�erent

boundary points, and matrix D has the same structure as matrix A given by (25) except that the

submatrix A2 is the N �N identity matrix, and A1 is given by

A1 =

0
BBBBBB@

4 + �h2 �2 0 � 0 0 0

�1 4 + �h2 �1 � 0 0 0

� � � � � � �

0 0 0 � �1 4 + �h2 �1

0 0 0 � 0 �2 4 + �h2

1
CCCCCCA

:

The truncation error of (38) is

T2(i; j) = �h4

12

�
@4

@x4
+ @4

@y4

�
P i;j for interior point (i; j);

T2(0; j) = �h4

12

�
@4

@x4
+ @4

@y4

�
P 0;j � h3

3
P 0;j
xxx for boundary point (0; j);

T2(0; 0) = �h4

12

�
@4

@x4
+ @4

@y4

�
P 0;0 � h3

3

�
@3

@x3
+ @3

@y3

�
P 0;0 for boundary point (0; 0):

Since the solution error depends not only on the truncation error, but also on the matrix of the

discretized system, a study of matrix D is needed.

MatrixD has the same eigenvectors as that of matrix A in equation (25). Eigenvalues of matrix

D are

dk;l = 4 + �h2 � 2cos(
k�

M
)� 2cos(

l�

N
) ; (39)

for k = 0; 1; :::;M and l = 0; 1; :::; N . Compared with the eigenvalues of matrix A given in (46), we

can see that

dk;l = �k;l �

1 +

�h2 + 4

8
�h2 � cos(

k�

M
)cos(

l�

N
)

!
< �k;l :

Like the eigenvalues of matrix A, dk;l are all positive, and satisfy the monotone property

dk�1;l < dk;l; and dk;l�1 < dk;l;

and d0;0 2 O(h2) and dk;l 2 O(1) for (k; l) such that k � M
10

or l � N
10
. Following a similar analysis to

that of the fourth order method given in appendix C, we can conclude that the solution error of the

second order method ranges from O(h) to O(h3) when considering all possible extreme situations,

and in general, will be around O(h2).

The conventional second-order direct solver, which is �rst proposed by Hockney [4] and modi�ed

and extended by many since then [12], is a Fourier transform based algorithm. It goes through the

same seven steps as the fourth order solution listed in Section 4, but with di�erent computations in

steps 2), 3) and 4) due to the di�erence in discretization. The conventional second order method

20

has 3N multiplications and N additions for step 2), 4N multiplications and 4N additions for step

3), and 4N additions for step 4). Therefore, the total operation count of the second order fast

solver is
N2(2 log

2
N + 5) +N(2 log

2
N + 7) multiplications and

N2(3 log
2
N + 7) +N(�2 log

2
N + 14) additions

= N2(5 log
2
N + 12) + 21N operations:

(40)

B The In
uence Matrix Method

A Poisson-Neumann problem can be solved by solving two Poisson-Dirichlet problems through the

in
uence matrix method. Here we brie
y describe the in
uence matrix method based on [7].

To solve the Neumann problem (1) with boundary condition dP
dn

= 0, a sequence of solutions to

the following problem is �rst determined:

4qi � �qi = 0

qi = �i;j
(41)

for each discrete boundary grid point �xj. So there are 4N equations on a square of partition size

N � N . The Dirac delta function �i;j is de�ned as �i;j = 1 for i = j and �i;j = 0 for i 6= j. Upon

computation of the vectors of normal gradients dqi

dn
at all the boundary points, these vectors are

then stored in columns to yield a matrix INF that is referred to as the in
uence matrix.

The Neumann problem then is equivalent to the following solution of two Dirichlet problems.

First, solve

4P1 � �P1 = R in

P1 = 0 on @
 :
(42)

Again, compute the gradients normal to the boundary and store them in vector G. Then, solve

4P2 � �P2 = 0 in

P2 = I
�1
NF G on @
 :

(43)

The �nal solution that satis�es the original equation (1) and boundary condition (19) is P1 � P2.

The in
uence matrix method can be combined with the direct fourth-order Dirichlet solver [6]

to solve Equation (1) with Neumann conditions. Solving (41) and (42) by the fourth order method

of [6] results in two linear systems with truncation error of order O(h6), with a same symmetric

matrix with eigenvectors

Sk;l =
�
S
k;l
1;1; S

k;l
1;2; :::; S

k;l
1;N�1 ; ::: ; S

k;l
M�1;1; S

k;l
M�1;2; :::; S

k;l
M�1;N�1

�T
;

where S
k;l
i;j = sin(ik�

M
)sin(jl�

N
) with respective eigenvalues �k;l being the same as the eigenvalues

given by (46, for k = 1; 2; :::;M � 1, and l = 1; 2; :::; N � 1.

Note that the eigenvalues �k;l are the same as those of the proposed high order direct solver

except for k = 0;M or l = 0; N . We also have that �1;1 is of O(h2), and �
M�1;N�1

is of O(1). So

21

based on the error analysis given in appendix C, solving (41) and (42) results in solutions with error

ranging from O(h4) to O(h6). Suppose they achieve O(h6). Then after computing the in
uence

matrix INF and the vector G, the truncation error of (43) increases to at least O(h5), because �rst

order di�erentiation reduces the order by one. Also the discrete system of (43) has the same matrix

as (41) and (42), which in the sense of l2 norm is not better than matrix A of (22).

The operation count of the in
uence matrix method is mainly due to the computation of the

in
uence matrix, which requires solving a sequence of 4N Helmholtz-Dirichlet equations given by

(41) on a square domain of size N �N . To solve each equation in the sequence (41) using cyclic

reduction and Fourier analysis based method has an asymptotic operation count of 3N2 log
2
(log

2
N)

multiplications and 3N2 log
2
(log

2
N) additions as given in the review paper [13]. Therefore the

computation count of the in
uence matrix is

12N3 log
2
(log

2
N) multiplications and 12N3 log

2
(log

2
N) additions. (44)

C Error Estimation of the Fourth-Order Neumann Solver

In this section, we give the error analysis of the newly proposed high-order compact �nite-di�erence

discretization. First we derive the truncation error of the discretized linear system, and then an

eigenvalue analysis of the matrix is presented, and �nally we give a global solution error estimation

by using the eigenvalue properties of the matrix and the truncation error derived.

The truncation error Tx of the boundary condition (21) at the boundaries of x-dimension when

all di�erential operators replaced by their respective discrete counterparts is:

Tx(0; j) =
h4

120

@5

@x5
P 0;j + h4

18

@3

@x3

�
4P 0;j + �P 0;j

�
+ h4

72

@5

@x@y4
P 0;j ;

Tx(0; 0) =
h4

120

@5

@x5
P 0;0 + h4

18

@3

@x3

�
4P 0;0 + �P 0;0

�
+ 11h4

72

@5

@x@y4
P 0;0:

The truncation error Ty of the boundary condition at the boundaries of y-dimension has similar

formula as Tx, and is therefore omitted.

To eliminate outside point (�1;�1) of (18) at point (0; 0), both the x- and y- dimensional

boundary conditions are needed. And the truncation error of both the x- and y- dimensional

boundary condition at point (0; 0) is given by

Txy(0; 0) =

�
h4

120

�
@
@x

+ @
@x

�
5

+ h4

18

�
@3

@x3
+ @3

@y3

�
(4+ �) + 11h4

36

�
@5

@x4@y
+ @5

@x@y4

��
P 0;0:

After substituting the Laplacian in (18) by its discrete version, the truncation error for (18) is

22

given by

T1(i; j) = h4
h

1

144
(@6

@x4@y2
+ @6

@x2@y4
)� 1

240
(@6

@x6
+ @6

@y6
)
i
P i;j

+ h4

96

�
@4

@y4
+ @4

@x4

�
(4P i;j + �P i;j);

T1(0; j) = h4
h

1

144
(@6

@x4@y2
+ @6

@x2@y4
)� 1

240
(@6

@x6
+ @6

@y6
)
i
P 0;j

+ h4

96

�
@4

@y4
+ 11 @4

@x4

�
(4P 0;j + �P 0;j);

T1(0; 0) = h4
h

1

144
(@6

@x4@y2
+ @6

@x2@y4
)� 1

240
(@6

@x6
+ @6

@y6
)
i
P 0;0

+ 11h4

96

�
@4

@y4
+ @4

@x4

�
(4P 0;0 + �P 0;0):

So the truncation error of (22) when all di�erential operators replaced by their respective discrete

versions is

T (i; j) = h2T1(i; j);

T (0; j) = h2T1(0; j) � 2hTx(0; j) �
h
2
(Tx(0; j � 1) + Tx(0; j + 1)) ;

T (0; 0) = h2T1(0; 0) � 2h (Tx(0; 0) + Ty(0; 0))
h
2
(Tx(0; 1) + Ty(1; 0) + Txy(0; 0)) ;

or

T (i; j) =
h
h6

144
(@6

@x4@y2
+ @6

@x2@y4
)� h6

240
(@6

@x6
+ @6

@y6
) + h6

96

�
@4

@y4
+ @4

@x4

�
(4+ �)

i
P i;j;

T (0; j) =
h
h6

144
(@6

@x4@y2
+ @6

@x2@y4
)� h6

240
(@6

@x6
+ @6

@y6
) + h6

96
(@4

@y4
+ 11 @4

@x4
)(4+ �)

i
P 0;j

� h5
h
1

40

@5

@x5
+ 1

6

@3

@x3
(4+ �) + 1

24

@5

@x@y4

i
P 0;j;

T (0; 0) = h6
h

1

144
(@6

@x4@y2
+ @6

@x2@y4
)� 1

240
(@6

@x6
+ @6

@y6
) + 11

96

�
@4

@y4
+ @4

@x4

�
(4+ �)

i
P 0;0

�h5
h

1

240
(@
@x

+ @
@y
)5 + 1

60
(@5

@x5
+ @5

@y5
) + 5

36
(@3

@x3
+ @3

@y3
)(4+ �) + 11

24
(@5

@x@y4
+ @5

@x4@y
)
i
P 0;0

�h5
�

1

240

@5

@x5
+ 1

36

@3

@x3
(4+ �) + 1

144

@5

@x@y4

�
P 0;1

�h5
�

1

240

@5

@y5
+ 1

36

@3

@y3
(4+ �) + 1

144

@5

@x4@y

�
P 1;0:

The solution error E, i.e. the di�erence between the exact solution and the computed solution,

is not only dependent on the truncation error T but also on the matrix A. In fact,

E = A
�1T: (45)

To see how the matrix A in
uences the solution error E, we look at its eigenvectors and eigenvalues

�rst.

Matrix A has eigenvectors

V 0
k;l =

�
V
k;l
0;0 ; V

k;l
0;1 ; ::: ; V

k;l
0;N ; ::: ; V

k;l
M;0; V

k;l
M;1; :::; V

k;l
M;N

�T
;

where V
k;l
i;j = cos(ik�

M
)cos(jl�

N
), with respective eigenvalues

�k;l = d� 2cos(
k�

M
)� 2cos(

l�

N
)� cos(

k�

M
)cos(

l�

N
) (46)

for k = 0; 1; :::;M; and l = 0; 1; :::; N , and d = 5 + �h2+12
8

�h2.

23

Matrix A�1 has the same eigenvectors as A with corresponding eigenvalues 1=�kl. Since there

are (M + 1)(N + 1) distinct eigenvalues in the (M + 1)(N + 1) dimensional discrete space, the

(M +1)(N +1) eigenvectors are linear independent and thus span the (M +1)(N +1) dimensional

vector space in which we are solving the equation. Therefore the truncation error T can be expended

in terms of the spanning eigenvectors Vkl normalized from V 0
kl for k = 0; 1; :::;M and l = 0; 1; :::; N

as

T =
MX
k=0

NX
l=0

CklVkl : (47)

Thus by (45)

kEk2 = kA�1Tk2 =

vuut MX
k=0

NX
l=0

C2

kl

�2kl
: (48)

Since in any �nite dimensional space l2 norm k � k2 and in�nity norm k � k are equivalent, we use

(48) to estimate the error of the proposed high order direct solution. Since the truncation error

T is of O(h5), (47) means that
P

k;lCklVkl is of O(h
5). The eigenvalues of A are all positive and

satisfy

�k�1;l < �k;l; and �k;l�1 < �k;l:

Therefore vuut MX
k=0

NX
l=0

C2

kl

�2
M;N

� kEk2 �

vuut MX
k=0

NX
l=0

C2

kl

�2
0;0

:

But �0;0 is of O(h
2), �

0;
p
N
and �p

M;0
are of O(h), and �

k;l
is of O(1), for all (k; l) pairs such that

k � M
10

or l � N
10
, which implies that the order of E ranges from O(h3) to O(h5). For the solution

to be of O(h3), the truncation error T must concentrate on the near-zero low frequence (i.e. all

coe�cients Ck;l are almost equal to 0 for k, l not near zero) in the expansion (47). Assuming

uniform distribution for the coe�cients Ck;l's, the probability of E being O(h3) is close to zero

when M and N are large. In general, this high order method is approximately fourth order.

References

[1] Buneman, O. A compact non-iterative poisson solver. Report 294, 1969.

[2] Collatz, L. The numerical treatment of di�erential equations. Springer, 1960.

[3] Hirsh, R. Higher order accurate di�erence solutions of
uid mechanics problems by a compact

di�erencing technique. J. Comput. Phys. 19 (1975), 90{109.

[4] Hockney, R. A fast direct solution of Poisson's equation using Fourier analysis. J. ACM 12

(1965), 95{113.

[5] Hockney, R. The potential calculation and some applications. Meth. in Comput. Phys. 9

(1970), 135{211.

[6] Houstis, E. N., and Papatheodorou, T. S. High-order fast elliptic equation solver. ACM

Trans. on Math. Software 5, 4 (Dec. 1979), 431 { 441.

24

[7] Joslin, R., Streett, C., and Chang, C.-L. Validation of three-dimensional incompressible

spatial direct numerical simulation code. NASA Technical Report, TP-3025, NASA Langley

Research Center, July 1992.

[8] Kaufman, L., and Warner, D. High-order, fast-direct methods for separable elliptic equa-

tions. SIAM J. Numer. Anal. 21, 4 (1984), 672 { 694.

[9] Kaufman, L., and Warner, D. A program for solving separable elliptic equations. ACM

Trans. Math. Software 16, 4 (1990), 325 { 351.

[10] Kreiss, H., and Oliger, J. Methods for the approximate solution of time dependent prob-

lems. GARP Report No 10, 1973.

[11] Lele, S. Compact �nite di�erence schemes with spectral-like resolution. J. Comp. Phys. 103,

1 (1992), 16{42.

[12] Strang, G. Introduction to Applied Mathematics. Wellesley-Combridge Press, 1986.

[13] Sun, X.-H. Application and accuracy of the parallel diagonal dominant algorithm. Parallel

Computing (Aug. 1995), 1241{1267.

[14] Sun, X.-H., and Joslin, R. A simple parallel pre�x algorithm for almost Toeplitz tridiagonal

systems. International Journal of High Speed Computing (Dec. 1995).

[15] Sun, X.-H., and Rover, D. Scalability of parallel algorithm-machine combinations. IEEE

Transactions on Parallel and Distributed Systems (June 1994), 599{613.

[16] Swarztrauber, P. N. The methods of cyclic reduction, Fourier analysis and the FACR

algorithm for the discrete solution of Poisson's equation on a rectangle. SIAM Review 19, 3

(1977), 490{501.

25

