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Abstract 1

Ribner's (1962) dilatational acoustic theory is revisited. A rigorous connection between the 
uctu-

ating dilatation rate and the acoustic source �eld is established; this vindicates Ribner's heuristic

contention while indicating additional acoustic source terms in his dilatational acoustic theory. It

is also shown that Ribner's acoustic source term is quadrupole. Interesting consequences of the

dilatational point of view are indicated. It is found that in the region of vortical 
uid motion the

dilatation scales as the square of the turbulent Mach number, M2

t , and has little to do with the

acoustic �eld; its time rate of change, however, is a portion of the sound generation mechanism.

Away from the vortical region the 
uid dilatation is an acoustic variable and scales as M4

t . The

mathematical link established is useful to interpreting direct numerical simulation of aeroacoustical


ows in which the dilatation is computed.
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1. Introduction

In the nascent �eld of direct computation of aeroacoustical 
ows, the dilatational �elds are some-

times investigated, see for example, Colonius, Lele, and Moin [1] or Mitchell, Lele, and Moin [2].

One has, in general, an intuitive appreciation of the fact that sound and dilatation are linked. This

link has not been rigorously con�rmed for the aerodynamic source problem. Links have been made

to 
uctuating Reynolds stresses, Lighthill [3], Phillips [4], the 
uctuating vorticity, Powell [5], Howe

[6], the pseudo-pressure, Ribner [7], the 
uctuating triple velocity gradient, Lilley (1974) (more eas-

ily found in Goldstein [10]) and the 
uctuating enthalpy Howe [6]. This article also provides and

clari�es some mathematical details missing in [7]'s heuristic analysis. In addition to formally es-

tablishing the link between the dilatation rate and sound source some of Ribner's contentions are

vindicated. Useful DNS consequences of the dilatational point of view are indicated. As the dilata-

tional approach to an aeroacoustic theory appears to have generated some controversy some three

decades ago, it seems necessary to make clear at the outset that the object of this article is not

related to the use of the dilatational theory as an acoustic analogy.

In the present era, some useful items related to Ribner's [7] dilatational theory suggest a reap-

praisal of Ribner's ideas. Ribner [7] related the acoustic source to the second time derivative of

the incompressible pressure. Ribner [7] gives physical arguments relating his sound source to the


uctuating dilatation. His arguments have not, however, been given formal mathematical expres-

sion or justi�cation. This article formally establishes Ribner's [7] heuristic assertion: that sound

generation is related to the time rate of change of dilatation 2. The derivation of this mathematical

connection and related consequences as well as some useful aspects of the dilatational point of view

are the subjects of this article. In addition to exploring and clarifying Ribner's [7] ideas some useful

and relevant consequences for DNS and LES are obtained. In focussing on Ribner's analysis, the

discussion is limited to compact 
ows with negligible nonisentropic or di�usive e�ects. Implicit in

the development is the limitation to the class of 
ows for which the Lighthill form of the acoustic

analogy is useful. Many of the e�ects accounted for in more advanced acoustic theories, such as

those of Lilley or Phillips, are not addressed in this article.

In summary: 1) a formal link between the sound source and the dilatation is derived; 2) Ribner's

source term is shown to be quadrupole; 3) additional source terms in Ribner's dilatational theory

are determined; and, 4) the potential of the time rate of change of the dilatation as a diagnostic

tool is indicated.

2
For this article the quantity ui;i will be called the dilatation (it does in fact have units of a rate).
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2. Some preliminaries and the Ribner analysis

A few introductory comments and an informal outline of some useful physical ideas, following

Ribner [7], are summarized. In this section Ribner's [7] mathematical development is followed; this

is in order to highlight its di�erences with a more mathematical analysis.

For the present class of 
ows the term (p � c2
1
�);tt, following [7], is neglected and the pressure


uctuations in a 
uid satisfy the following Lighthill equation,

c�21 p;tt � p;jj = (�uiuj);ij (1)

where p represents the deviations of the 
uid pressure from a static reference value. In medium of

uniform mean density �1, it is customary to approximate �uiuj = �1vivj since higher order terms

scale as the square of the 
uctuating Mach number. Here vi represents the solenoidal velocity.

Ribner [7] assumes at the outset the validity of this approximation. Ribner distinguishes two

pressures, an \acoustic" pressure which propagates and a \pseudo-pressure" 3 associated with

the convective motions of the 
uid. The pressure �eld in the Lighthill equation includes both

acoustic and convective pressures. The 
uid pressure, following [7], is partitioned into convective

and propagating parts p = ps + pa where ps satis�es

� r2ps = �1(vivj);ij : (2)

The subscript s is used to denote the incompressible or pseudo-pressure associated with the

solenoidal velocity �eld. The acoustic pressure, pa; following Ribner satis�es

pa;tt � c2
1
r2pa = � ps;tt (3)

{ the sound source has been related to the incompressible pressure which satis�es the Poisson

equation whose solution is given by convolution. Ribner [7] then goes on to argue, without giving

proof, that �ps (the overdot signi�es a time derivative) is related to the dilatation.

The following section establishes a rigorous connection of Ribner's contention of a relation between

the pseudo-pressure sound source and the dilatation. Some subtleties regarding Ribner's very useful

decomposition p = ps + pa are described. It is seen that the decomposition retains terms that are

of the same order in M2

t as terms discarded in the truncation �uiuj = �1vivj .

3. A perturbation analysis leading to Ribner's acoustic analogy

The following analysis is understood to address high Reynolds number, weakly compressible (low


uctuating Mach number), turbulent compact 
ows with constant mean density { the class of 
ows

3
The term \pseudo-pressure" coined by Blokhintsev (1956) as quoted in [7] is adopted.
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relevant to subsonic aeroacoustics for which the energy equation implies p � �
. A low 
uctuating

Mach number perturbation analysis of the compressible Navier-Stokes equations,

�;t + uk�;k = � �uk;k (4)

�ui;t + �ukui;k + p;i = 0 (5)

p=p1 = (�=�1)

 (6)

�;tt � p;jj = (�uiuj);ij (7)

is required. Perturbing about a reference state, (p1; �1), the nondimensional forms of the pressure

and density are taken as p = p1(1 + p0); � = �1(1 + �0). The independent variables are rescaled

with the energy containing length and time scales of the turbulent 
ow �eld: `=uc and `. Dropping

primes the compressible Navier-Stokes equations become

�;t + uk�;k = �(1 + �)uk;k (8)

(1 + �)ui;t + (1 + �)upui;p +��2 p;i = 0 (9)

p� 
� = 1=2 
(
 � 1)�2 (10)

�;tt � ��2p;jj = [(1 + �)uiuj ];ij : (11)

A wave equation related to the last equation, in nondimensional units, is


�1p;tt � ��2p;jj = [(1 + �)uiuj ];ij + [
�1p � �];tt : (12)

In these equations �2 = 
M2

t = 
u2c=c
2

1
and c2

1
= 
p1=�1. The characteristic 
uctuating velocity

might be identi�ed with the energy of the turbulent 
uctuations: u2c �
2

3
k = 1

3
< ujuj >. The

conventional de�nition of the Mach number (in contradistinction to the larger 
uctuating Mach

number used in DNS of compressible turbulence) is used. Expansions of the form p = �2 [ p1+�
2p2+

:::], � = �2 [ �1 + �2�2 + :::], ui = vi + �2 [ wi + �2w2i + :::], are chosen. Substituting the expansions

into the equations produces, to the lowest order, the incompressible form of the equations,

vi;t + vpvi;p + p1;i = 0 (13)

vi;i = 0 (14)

r2p1 = � (vivj);ij (15)

p1 = 
�1: (16)

Note that variables are now dimensionless. The lowest order form of the equations of state indicates

that the pressure is the solenoidal or pseudo-pressure 4. Additional details can be found in Ristorcelli

[13].

4
In dimensional form this is statement that �1 = c

�2

1
ps=�1.
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The inner form of the wave equation is, to order M2

t ,

�r2p2 = [(1 + �1)uiuj � vivj ];ij � 
�1p1;tt : (17)

Note that for brevity and clarity, the quantity uiuj has not been expressed in the pertubation

variables. The term in square brackets is more physically meaningful if left as is: it is the di�erence

between the compressible and incompressible 
uctuating Reynolds stresses. The continuity equa-

tion, at next order, is �1;t + vk�1;k = �wk;k. Using the equation of state p1 = 
�1, the �rst order

continuity equation yields a diagnostic relationship for the leading order dilatation, d = wk;k,

�
d = p1;t + vkp1;k : (18)

Ribner's [7] interpretation of the second time derivative of the pseudo-pressure as dilatation rate is

now formally established: �p1 = �
 _d� (vkpk);t and p2 satis�es, to O(M
2

t ),

� r2p2 = _d+ [(1 + �1)uiuj � vivj ];ij + 
�1(vkp1);kt : (19)

Lighthill's equation, c�21 p;tt � p;jj = (�uiuj);ij, can be reconstituted in dimensional terms (with-

out implied length and time scales). Using Ribner's decomposition p = ps + pa where the dimen-

sional quantities [ps; pa] corresponding to the nondimensional [p1; p2] produces, to O(M
2

t ),

c�2
1
pa;tt � r2pa = 
c�2

1
p1 _d+ �1[(1 + �0)uiuj � vivj ];ij + 
�1c�2

1
(vkps);kt : (20)

The divergence of the pressure 
ux is an octupole (see Appendix) and of higher order in Mt than

the dilatation rate. The wave equation in Ribner's dilatational acoustic theory is, consequently,

c�21 pa;tt � r2pa = 
c�21 p1 _d+ �1[(1 + �0)uiuj � vivj ];ij : (21)

The dilatation is seen to be one portion of the acoustic source; additional quadrupoles (in the square

brackets) arise from the compressible nature of the Reynolds stresses. These terms do not appear

in the Ribner analysis as �uiuj � �1vivj was assumed at outset - a truncation of terms of the same

order as _d. (The source term can be expanded [(1+�0)uiuj � vivj ] = viwj+ vjwi+�0vivj +h:o:t:)

It should be noted out that Crow's [9] analysis of Ribner's theory, in which it is shown that Ribner's

source term
R
�psdy = 0, would have been di�erent if the retarded time had been included. Retention

of the full retarded time would have given a non-zero integral of Ribner's source term invalidating

one of Crow's conclusion regarding Ribner's theory. Ffowcs Williams [12] indicates that ps � x�3

and the integral is in fact weakly (logarithmically) divergent requiring very careful source term

modeling and integration, if it is to be used as an acoustic analogy. In contradistinction, the source

term in the Lighhill analogy scales as the double divergence of vivj � x�6.
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While the expression c�21 pa;tt � r2pa = 
c�21 p1 _d + :::: identi�es a new quantity, _d, it does not

contain any new physics. The quadrupole nature of the sound source �eld is retained as can be seen

from the following application of the convolution algebra: The solution for the solenoidal-pressure

is

ps(x) = [vivj(x
0)];i0j0 
 Go(x� x0) = (vivj)
Go;i0j0 = (vivj)
Go;ij = [(vivj)
Go];ij : (22)

Go is the three-dimensional Greens function for the Laplacian, Go = � 1

4�
jx�x0j�1. The dilatation

rate is related to the second time derivative of the incompressible pressure and the source term is

re-expressed as

_d � �ps � [(vivj);tt 
 Go];ij : (23)

In less abstract terms

�ps = �1[
1

4�

Z
(vivj);tt

dx0

jx� x0j
];ij = Sij ;ij (24)

The source term is a double divergence and the quadrupole nature of the source term is retained.

It appears that _d (and, of course, Ribner's original �ps) are to be understood as a quadrupole.

In summary: In this revisit to Ribner's [7] theory 1) the source term �ps; has been formally linked

to the dilatation; 2) the source term in his theory [7] has been shown to be a portion of the sound

source; and 3) the source term has been shown to be a quadrupole as is consistent with the Lighthill

formalism that underlies Ribner's procedure.

As has been alluded to in the literature, [12] [8], the dilational point of view, despite its mathemat-

ically exact derivation, does not appear to be practical with the assumptions that are required in

an acoustic analogy. The acoustic analogy formalism requires a model for the source term _d. The

dilatation would be related to the solenoidal motions; this is done by de�nition as _d would be given

in terms of �ps. However, a convolution must be taken and the procedure loses compactness and

direct relation between sound source and a local (compact) 
uid mechanical mechanism is lost; the

integral is over a region larger than that which contains the vorticity (Howe [6], Ffowcs Williams

[12], Crighton [8]), and integrations must be done very precisely. This is consistent with the scalings

�ps � x�3, vivj � x�6. The fact that this is not an easily applicable result in the context of an

acoustic analogy is not relevant; our purpose is a more systematic clari�cation of the Ribner's ideas

and a presentation of consequences of the dilatational point of view that bear relevance to the DNS

of aeroacoustical 
ows in fundamental studies such as [1], [2].

4. Some consequences in the context of compressible DNS

The dilatation indicated by the diagnostic relationship derived above is the dilatational �eld asso-
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ciated with the incompressible pressure, ps. The dilatational �eld computed in the DNS of a sound

generating 
ow will contain a contribution from the pseudo-sound pressure, ps, and a higher order

contribution from the acoustic pressure, pa. This can be shown from the next higher order expan-

sion of the continuity equation. In the source �eld the dilatation associated with the incompressible

pressure (\pseudo-dilatation") using the continuity equation, scales as

ds �
1

�1

D

Dt
� �

1

�1c21

D

Dt
ps �M2

t

uc

`
(25)

since ps � �1u2c . Although ds is a measure of the compressibility of the 
ow, it is not to be

interpreted as an acoustic variable. In the sourceless region, 22pa = 0, and the usual linear scalings

pa = �ac
2

1 = �1w are relevant; thus w = �a
�1

c. For quadrupole radiation the Lighthill analogy, [3],

[8], [6], gives �a
�1

� `

jxj
M4

t , the dilatation associated with the acoustic �eld scales as

da �
w

�
�

�a

�1

c

�
�

�a

�1

uc

`
�M4

t

uc

`
(26)

since uc=` � c=�. Thus da � M2

t ds. The acoustic dilatation, in the acoustic regime is, of course,

related to the pressure in the usual way, da �
�
pa and satis�es 22da = 0 as does, of course, _da.

The dimensional set [ds; da] correspond to the nondimensional set [d1; d2], (in our nomenclature the

subscript 1 on the leading order term has been dropped).

In fundamental studies involving the compressible simulation of aeroacoustical 
ows, [1] or [2],

both da and ds are calculated. In the source region ds will dominate and the dilatation has little

to do with the acoustic �eld per se; it is, however, the source of the acoustic �eld. This is subtly

acknowledged in [1] in which the near-�eld dilatation is not shown { see their Figures 5, 6 and

10. The near-�eld acoustic dilatation could in principle be plotted after subtracting ds from the

computational data. Far enough away from the source region, jxj > �, the acoustic portion of the

dilatation will of course dominate, da > ds as the dilatation associated with the solenoidal velocity

�eld through the pressure, ds, which decays since _d � jpsj �
1

jxj3
.

5. Conclusions

The intention of the present article has been to explore and clarify several issues relating to Ribner's

[7] dilatational theory. Given the controversy Ribner's ideas caused some thirty �ve years ago, the

issue appeared to warrant attention that appears to be missing in the published literature. In

vindication of Ribner's contention, the sound source has been formally related to the dilatation

- a link never rigorously made in Ribner's [7] treatment. The analysis has also indicated, in the

context of the 
ows of interest in Ribner's formulation, additional sound source terms.

There is relevance, in the present era of computational possibilities, of Ribner's ideas as a diagnostic

tool to be used to investigate numerical data from compressible DNS. The dilatational rate is one
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sound source in the near-�eld and in the far-�eld it is one of several adjunct acoustic variables

[�a; �; pa; da; _da] { any one of which serve to generate the linear sound �eld. Thus in DNS investiga-

tions using dilatational �elds, the dilatation rate { _d, not the dilatation { d, appears to be the more

potentially useful �eld for the physical interpretation of computational results. It has properties

that relate to both the sound generation and the sound propagation aspects of the aeroacoustical

problem { its character being determined by where it is evaluated.
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Appendix: Some details

The pressure 
ux source term, (vkp);kt, is now shown to be an octupole. The solution for the

pressure is ps = [(vivj)
Go];ij = Pij ;ij . The pressure 
ux can be written, using vk;k = 0,

(vkp);k = vk p;k = vk Pij ;ijk (27)

and the source term is seen to be a triple divergence and thus a more ine�cient octupole. For

those not familiar with this style of reasoning { the procedure is standard in aeroacoustics { a few

overview comments o�ered. The three-dimensional Greens function for the wave equation is, in its

far-�eld approximation,

G1(x0; t0; x; t) = G1(x� x0; t� t0) =
1

4�c2jxj
�(t� t0 � jx� x0jc�1) =

1

4�c2jxj
G�: (28)

For a generic source term S(x) = Sijk:::;ijk::: skipping the intermediate steps already given, the

solution is

pa(x) =
1

4�c2jxj
Sijk:::;i0j0k0::: 
 G� =

1

4�c2jxj
Sijk::: 
 G�;ijk::: : (29)

The symmetry in time and space of G� allows time derivatives to replace spatial derivatives { each

additional spatial derivative contributing a power of the 
uctuating Mach number as the symmetry

in (x; t) allows @

@xi
= �1

c

xi
jxj

@

@t
. Thus G�;i= �1

c

xi
jxj
G�;t and

pa(x) �
1

4�c2jxj

xi

cjxj

xj

cjxj

xk

cjxj
::: [Sijk:::;ttt:::
 G�]: (30)

Hence the pressure 
ux source term, Pij ;ijk is an order higher in the turbulent Mach number than

the dilatation rate.
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