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Abstract

A phenomenological characterization of hysteresis in magnetostrictive materials is pre-
sented. Such hysteresis is due to both the driving magnetic �elds and stress relations within
the material and is signi�cant throughout most of the drive range of magnetostrictive trans-
ducers. An accurate characterization of the hysteresis and material nonlinearities is necessary

to fully utilize the actuator/sensor capabilities of the magnetostrictive materials. Such a
characterization is made here in the context of generalized Preisach operators. This yields
a framework amenable to proving the well-posedness of structural models that incorporate
the magnetostrictive transducers. It also provides a natural setting in which to develop prac-
tical approximation techniques. An example illustrating this framework in the context of a
Timoshenko beam model is presented.
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1 Introduction

Important members in the class of smart materials currently employed in control applica-

tions are magnetostrictive materials. The phenomenon of magnetostriction is de�ned as the

strain which results when a magnetic material is subjected to a magnetic �eld. While this

phenomenon occurs in most ferromagnetic materials, only in recently developed rare-earth

materials are the strains and forces su�ciently large to facilitate their use in actuators and

sensors. This has led to the use of magnetostrictive materials as ultrasonic transducers, posi-

tioners, sonar projectors (500-2000 Hz) and isolators (5-60 Hz). They are also being considered

as actuators for controlling vibrations in thick structures and in heavy rotating components

such as milling machine bits (further details regarding applications in which magnetostrictive

transducers are employed as sensors and actuators can be found in [8, 16]).

To fully utilize their capabilities as either sensors or actuators, the input and output
characteristics of magnetostrictive materials must be quanti�ed in a manner amenable to
parameter estimation and control applications. As detailed in the literature (e.g., see [17, 19])
and outlined in the next section, the input/output characteristics of magnetostrictivematerials
are inherently nonlinear and display signi�cant hysteresis. To utilize the transducer responses

in a range useful for full control applications, accurate mathematical characterization of the
nonlinearities and hysteresis is required.

The general techniques we use here to characterize the magnetic nonlinearities and hys-
teresis are based on Preisach-type operators. The use of Preisach techniques for characterizing
general magnetic hysteresis is well-established in the literature (see [1, 6, 13, 15, 23, 24, 26]

and references therein) and some aspects have been extended to magnetostrictives [2, 9]. In
[2], the classical Preisach model was modi�ed for Terfenol-D materials by considering a char-
acterization for the output strain in terms of two inputs and two Preisach kernels. This was
motivated by the observation that magnetostrictive materials exhibit hysteresis with respect
to both magnetic �eld and stress. Further coupling between the kernels and input was included

in the model proposed in [9].
In this work, we consider the modeling of nonlinearities and hysteresis in magnetostrictive

transducers in the context of the generalized Preisach or Krasnoselskii-Pokrovskii kernels
developed in [6]. Such generalizations of the classical Preisach theory are motivated by the

goal of attaining a kernel which is continuous with respect to both time and shape parameters

(as proven in [6], the classical Preisach kernel is discontinuous in both aspects). This provides

a framework in which to prove well-posedness of models which incorporate magnetostrictive

transducers. Furthermore, it yields a framework which is natural for the development of
approximation techniques for both simulations and parameter estimation.

It should be noted that the modeling of nonlinearities and hysteresis through Preisach
techniques is phenomenological rather than physics-based. It provides a mathematical charac-

terization of the input/output relationships for magnetostrictivematerials in lieu of a complete
theory for the electromagnetic and magnetomechanical properties of the materials. As the

physical theory is advanced, physics-based models may provide additional insights regarding

the actuator/sensor mechanisms and hence replace the Preisach models. For example, theory
based upon magnetic domain wall motion, which is used in [21, 22] to model hysteresis in fer-

romagnetic materials, may be applicable to magnetostrictive materials. At the current time,
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however, several physical mechanisms in magnetostrictive materials are still not well under-

stood, thus motivating the phenomenological or empirical characterization of the material.

The construction of magnetostrictive transducers and physical properties of the magne-

tostrictive materials are described in Section 2. The source and form of the nonlinearities

and hysteresis are detailed to illustrate issues to be addressed in the models. The generalized

Preisach kernels and operators developed in [6] are summarized in Section 3. In Section 4,

a thick cantilever beam with magnetostrictive actuators is used as a prototype for structural

models which incorporate magnetostrictive inputs. Modi�ed Timoshenko equations are used

to model the beam dynamics while generalized Preisach or Krasnoselskii-Pokrovskii opera-

tors are used to characterize the inputs. The well-posedness of the model and parameter

estimation problem is established using the framework of [4, 6]. Although the framework is

described here in the context of a speci�c, simple structure, it is su�ciently general to include

structures comprised of plates and shells as well as structures in which nonlinear dynamics

are signi�cant.

2 Magnetostrictive Transducers

To illustrate issues which must be addressed when modeling magnetostrictive materials, the
transducer depicted in Figure 1 is considered. This transducer is typical of those currently
employed in applications and contains the basic components required for experimental use as
a control actuator. Details regarding the construction and performance of this transducer can

be found in [17].
The primary components of the transducer consist of a magnetostrictive rod, a wound wire

solenoid, and a cylindrical permanent magnet. In current transducers, the magnetostrictive
material is typically composed of terbium and dysprosium alloyed with iron. A commonly
employed material is Terfenol-D (Ter: terbium, fe: iron, nol: Naval Ordinance Laboratory, D:

dysprosium) which is constructed as a cylindrical rod and placed in the center of the trans-
ducer. The sensor/actuator capabilities of the material are due to the rotation of magnetic
moments within the rod in the presence of an applied magnetic �eld. In ferromagnetic ma-
terials such as Terfenol-D, moments are ordered and exhibit a high degree of alignment at

temperatures below the Curie point (regions in which moments are highly aligned are termed

domains). As depicted in Figure 2a, the moments within domains are primarily oriented per-

pendicular to the longitudinal rod in the absence of an applied �eld. Prestressing the rod with

the spring washer serves to increase the number of moments perpendicular to the axis (see
Figure 2b) and places the material in compression. This latter objective is necessary due to

the inherent brittleness of Terfenol-D. In the presence of a magnetic �led, the moments rotate
so as to align with the �eld. Consequently, if the �eld is applied in the direction of the rod

axis, the moments rotate in the sense depicted in Figure 2c and signi�cant strains are gener-
ated. This is termed the Joule e�ect and provides the actuator capabilities of the transducer.

Sensing is accomplished through the measurement of the magnetic �elds which result when

mechanical stresses cause rotations of the moments within domains (Villari e�ect). Details
regarding these e�ects can be found in [19, 25].

The strains generated through an applied �eld are always positive since rotation of the

moments from the prestressed perpendicular state leads to an increase in the rod length. As
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Figure 1. Cross section of a typical Terfenol-D magnetostrictive transducer.

indicated in Figure 3, the relationship between the applied magnetic 
ux or induction B and
strain e is also highly nonlinear with saturation occurring at large �eld strengths. Moreover,
slight hysteresis also exists between B and e at high drive levels (this is not depicted in the

�gure).
The generation of bidirectional strains is accomplished through either a DC current I0

applied to the solenoid which surrounds the rod, or an enclosing cylindrical permanent magnet
which provides a biasing magnetic induction B0. A time varying current I(t) is then used to
vary the induction in the rod between 0 and Bm. This provides the capability of generating

both positive and negative strains.

(a)

∆x2

x1∆

(c)

(b)

Figure 2. Magnetic domains in the Terfenol-D rod; (a) Orientation of moments within

domains in unstressed rod with no applied �eld; (b) Orientation of moments in prestressed

rod with no applied �eld; (c) Orientation of moments in prestressed rod when �eld is applied
in direction of longitudinal rod axis.
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Figure 3. Strain distribution e generated by an applied magnetic induction B.

To model the transducer for actuator and sensor purposes, it is necessary to characterize
the relationship between the current I applied to the solenoid, the resulting magnetic �eld H,
the associated magnetic induction B and �nally, the generated strains e. Furthermore, the
quanti�cation must incorporate the contributions due to the permanent magnet.

As detailed in [19], the magnetic induction and �eld are related by the permeability �

which is de�ned as

� =
B

H
:

The magnetic �eld is due both to the solenoid and the permanent magnet. The magnetic

induction from the permanent magnet is approximated by B0 = �H0 while Amp�ere's law
yields B = �nI, where n is the number of turns per unit length in the solenoid, as the
approximate magnetic induction due to the solenoid (these are approximate since edge e�ects,
air gaps, etc., are neglected).

For Terfenol-D, the permeability � is highly nonlinear and exhibits signi�cant hysteresis
as indicated by the induction/�eld relations depicted in Figure 4a. As discussed in [2], this

hysteresis is manifested with respect to both the applied magnetic �eld and stresses within
the magnetostrictive material. To indicate the latter contribution, the permeability in mag-
netostrictive applications is often denoted by ��. The hysteretic relationship between the

magnetic �eld, magnetic induction and material stress are then inherently manifested in the
�eld-strain relations as shown in Figure 4b.

As indicated by the preceding discussion, the nonlinear relationships between the applied
current and magnetic induction are augmented by nonlinearities in the behavior of the magne-

tostrictive materials. For example, experimental results in [11, 14] indicate that the Young's
modulus EH for Terfenol is dependent upon the applied magnetic �eld which partially accounts
for the dependence of magnetic hysteresis on the material stress. Furthermore, experimen-

tal results in [11, 14] demonstrate that other material properties such as magnetomechanical
coupling coe�cients are highly sensitive to operating conditions such as prestress level, AC

drive levels, operating frequencies and temperature. To provide a framework amenable to

characterization of these relationships, we summarize next necessary theory regarding gener-
alized Preisach operators. The application of this theory to magnetostrictive materials in a

structural setting is considered in the �nal section.
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Figure 4. (a) Relationship between the magnetic �eld strength H and the magnetic 
ux
density B; (b) Applied magnetic �eld H and resulting strain distribution e.

3 Preisach and Krasnoselskii-Pokrovskii Operators

In this section, we provide basic theory regarding Preisach-type operators in a Hilbert space
setting. Classical Preisach kernels and operators are de�ned �rst and are then extended to
kernels of Krasnoselskii-Pokrovskii type to attain desired continuity properties. The material

in this section summarizes theory from [6, 7], and the reader is referred to those references for
further details.

To motivate the general kernels used later, we �rst illustrate with a single delayed, relay
operator k̂. This kernel is characterized in terms of crossing times � (t) de�ned by

� (t) = f� 2 (0; T ] ju(�) = s1 or u(�) = s2g

where s = (s1; s2) are points in the Preisach half plane

S =
n
s 2 lR2

j s = (s1; s2); s1 < s2
o

and u denotes an input function. The values s1; s2 are threshold values for the multivalued
kernel as re
ected in the de�nition

[k̂s(u; �)](t) =

8>><
>>:

[k̂s(u; �)](0) if � (t) = ;

�1 if � (t) 6= ; and u(max � (t)) = s1

+1 if � (t) 6= ; and u(max � (t)) = s2 :

A depiction of this kernel is given in Figure 5. The starting value

[k̂s(u; �)](0) =

8>><
>>:

�1 if u(0) � s1

� if s1 < u(0) < s2

+1 if u(0) � s2

de�nes the initial state of the kernel in terms of the parameter � 2 f�1; 1g.
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The output remains on a branch until a threshold is reached in the monotonically increasing

input u. At that point, the output jumps to the other saturation value and remains there

until the other threshold value is reached. For example, an output response starting with a

value of �1 will retain that value until u(t) reaches s2. The output then jumps to +1 until

the threshold value of s1 is reached.

The classical Preisach operators are then de�ned in terms of parallel collections of these

single relay operators. To this end, we letM denote the set of all �nite, signed Borel measures

on S and let f be a Borel measurable function mapping S ! f�1; 1g. For u 2 C[0; T ] and

� 2 M, the Preisach operator is de�ned by

[P̂�(u; f)](t) =
Z
S

[k̂s(u; f(s))](t)d�(s):

The goal in the parameter identi�cation problem is to estimate the measure � so that the

model response \�ts" experimental data in a least squares sense.
While this provides an operator which is useful for many applications, this classical de�-

nition does not yield a kernel, and hence operator, which is continuous with respect to either
time or parameters. Speci�cally, as proven in [6], the mapping in time

t 7! [k̂s(u; �)](t)

and the parameter space mapping

s 7! [k̂s(u; �)](t)

are discontinuous for the classical Preisach kernel k̂s(u; �). Continuity in time is important
from a physical perspective while continuous parameter dependence is crucial for the devel-

opment of practical parameter estimation methods.

1 s2

k  (u)s

s u

-1

+1

Figure 5. Single Preisach relay operator with threshold values s1; s2.
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To avoid the di�culties associated with the discontinuous mappings, a Krasnoselskii-

Pokrovskii kernel of the type discussed in [6] is employed. This kernel is somewhat less

general than the in
uence operators considered in [23] and arises as an extension of smoothed

Preisach operators. These operators di�er from the previously-de�ned Preisach operator in

the manner through which an envelope of admissible paths is de�ned. In this case, an envelope

is provided by translates
rs1 = r(x� s1)

rs2 = r(x� s2)

of a Lipschitz continuous ridge function r(x) as depicted in Figure 6. For monotone inputs

um 2 C[0; T ], a monotone output operator is de�ned by

[R(um; �)](t) =

8<
:

maxf�; r(um(t)� s2)g if um is non-decreasing

minf�; r(um(t)� s1)g if um is non-increasing :

In terms of this operator, a kernel is de�ned for piecewise monotone inputs upm 2 C[0; T ] \

S1;j[0; T ], where S1;j[0; T ] is the set of piecewise linear splines with j knots in [0; T ], in the
following manner. The initial value of the operator is taken to be R0 = �. A kernel ks is then
de�ned recursively on each subinterval by

[ks(upm; �)](t) = [R(upm;Rk�1)](t) ; t 2 [tk�1; tk] (3.1)

whereRk � R(upm;Rk�1)(tk) ; k = 1; � � � ; j. The input and action of this kernel are illustrated
in Figure 7. This provides a de�nition of the kernel useful for computational algorithms in
which inputs are discretized in terms of a piecewise linear basis. This de�nition is readily

extended to arbitrary u 2 C[0; T ] through standard density arguments as detailed in [23].
It is natural in the applications considered here to formulate the hysteretic input operator

in a manner commensurate with a weak model formulation. We thus consider a space of test
functions V and state space H in which V is continuously and densely embedded in H and
forms a Gelfand triple

V ,! H ' H� ,! V �:

2

s 2 + αs 1 α+ 

s 

1
x

s 1

r(x)

-1

+1

r(x-s  )

r(x-s  )

2

Figure 6. Hysteresis envelope provided by the translates r1 and r2 of the ridge function r(x).
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Figure 7. (a) Piecewise monotone input; (b) Output from the Krasnoselskii-Pokrovskii kernel

in response to a piecewise monotone input.

The following theorem from [6] summarizes the continuity properties of the kernel ks and
quanti�es the resulting input operator B�.

Theorem 1. Let ks denote the kernel de�ned in (3.1) and let �S denote the closure of S in lR2.

(1) For each s 2 �S and � 2 f�1; 1g, the kernel satis�es ks(�; �) : C[0; T ]! C[0; T ] :

(2) For each u 2 C[0; T ]; � 2 f�1; 1g and t 2 C[0; T ], the map s 7! [ks(u; �)](t) is continuous

from �S to lR.

(3) For g 2 V � and � 2 M, the control in
uence operator B� de�ned by

[B�(u; �)](t) � g [P�(u; �)](t) � g

Z
�S
[ks(u; �)](t) d�(s) (3.2)

satis�es B�(u; �) 2 L
2((0; T );V �):

Remark 1. The kernel ks and control in
uence operator B� de�ned in this manner can be

readily incorporated in a framework for proving model well-posedness and the existence of
a measure which minimizes an appropriate parameter estimation functional. Moreover, as
illustrated in Figure 7, this kernel yields a technique for characterizing the nested hysteresis

curves which are common in magnetostrictive applications.

4 Characterization of Hysteresis for Structural Models

with Magnetostrictive Transducers

To illustrate the use of the operator framework described in the last section to characterize

hysteresis in magnetostrictive materials, we consider the modeling of magnetostrictive trans-

ducers mounted to a thick cantilever beam as depicted in Figure 8. The transducers are
considered to be mounted to the clamps at the �xed edge of the beam so that mass load-

ing from the actuators themselves is minimized. A rigid bar is used connect the end of the
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Figure 8. Cantilever beam with magnetostrictive actuators.

Terfenol-D rod in the transducer to the beam. By driving the transducers out-of-phase, bend-

ing moments are generated in a manner which can be used to attenuate beam vibrations. As
described in [12], this experimental setup has been used in initial experiments to determine
the potential of magnetostrictive transducers as structural actuators. Due to limitations in
models and control laws, driving currents in the experiments were restricted to a range in
which linearized results could be employed. Even in this restricted regime, the results of [12]

demonstrate the utility of the magnetostrictive transducers for structural applications.
It should be noted that a beam is considered here both due to its previous experimental use

and the relative simplicity of the resulting model. The operator techniques are quite general,
however, and can be applied in a similar manner to structures comprised of plates or shells as
well as structures undergoing large deformations which leads to nonlinear models (e.g., von

K�arm�an models).
For modeling purposes, we take the beam to have length `, width b and thickness h. The

density, Young's modulus, Kelvin-Voigt damping coe�cient and air damping coe�cient for the
beam are denoted by �b; Eb; cDb

and 
, respectively. The cross-sectional area of the Terfenol
rod is denoted by Amag while the Young's modulus and damping coe�cient for the Terfenol

rod are denoted by EH cHD. The length and width of the connecting bar are denoted by `r
and br, respectively, while the bar density is given by �r.

4.1 Strong Form of Beam Model

The Timoshenko equations

�(x)
@2w

@t2
(t; x) + 


@w

@t
(t; x)�

@Q

@x
(t; x) = ~f(t; x)

�r(x)
@2�

@t2
(t; x)�

@M

@x
(t; x) +Q(t; x) = �

@Mmag

@x
(t; x)

9>>>=
>>>;

; 0 < x < ` ; t > 0

w(t; 0) = �(t; 0) = 0

M(t; `) = Q(t; `) = 0

9=
; ; t > 0

(4.1)

where w and � denote the transverse displacement and cross-sectional rotation, respectively,

are used to model the beam dynamics. Exogenous surface forces to the beam are denoted by
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~f(t; x) while �(x) is the composite density of the structure. The cross-sectional area of the

beam is given byA(x), while r(x) � I(x)=A(x) where I(x) is the moment of inertia of the cross-

sectional area. Note that these quantities are spatially variable due to the nonhomogeneity

in the region of the connection rod. Finally, the internal bending moment and shear force are

given by M(t; x) and Q(t; x), respectively, while the external bending moment generated by

the magnetostrictive actuators is denoted by Mmag(t; x).

To determine appropriate functional forms for the density, internal moment and shear force,

the structural contributions due to the connecting bar and Terfenol rod must be quanti�ed.

We assume here that the connecting bars are perfectly rigid and contribute mass to the beam

but do not a�ect the bending moments (we neglect air resistance to the bars). The actuator

and Terfenol rod are considered to be supported from the boundary clamps so they do not

contribute mass to the beam. The Terfenol rod is assumed to contribute an elastic stress

which is uniform across the cross-sectional area of the rod.

Under the assumption of uniform cross-sectional strains in the magnetostrictive rods, the
density, sti�ness and Kelvin-Voigt damping parameters for the structure are then taken to be

�(x) = �bhb+ 2�rbr`r�rod(x)

EI(x) =
Ebh

3b

12
+ 2AmagE

H (h=2 + `r)
2
�rod(x)

cDI(x) =
cDb

h3b

12
+ 2Amagc

H
D (h=2 + `r)

2
�rod(x)

(4.2)

where the location of the rods is delineated by the characteristic function �rod which has a
value of 1 in the region covered by the connection bar and is 0 elsewhere. The internal moment
and shear are then given by

M(t; x) = EI(x)
@�

@x
(t; x) + cDI(x)

@2�

@x@t
(t; x)

Q(t; x) = �AG(x)�(t; x) + �AcQ(x)
@�

@t
(t; x)

(4.3)

where � is a correction factor which accounts for the fact that the outer surface of the beam

cannot support a shear stress, G(x) is the shear modulus and cQ(x) represents resistance to

the shear strain rate. Finally, the shear deformations are de�ned by

�(t; x) =
@w

@x
(t; x) + �(t; x) :

It should be noted that the contributions due to the connection rods are dependent upon
the exact experimental setup and di�erent assumptions and models can also be used to in-

corporate the passive rod contributions. In all cases, the piecewise constant parameters

�(x); r(x); EI(x); G(x); cDI(x); cQ(x) and constant parameter 
 must be estimated through
a least squares �t to experimental data to attain a reasonable model for the speci�c experi-

mental device (The values determined by (4.2) cannot be used with certainty when modeling
the experimental apparatus due to inaccuracies in manufacturer speci�cations, etc.; however,
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they can be used as initial values for the optimization routine.) Note that in the moment and

shear expressions (4.3) and equations (4.1), parameters have been combined to yield a single

value to be estimated.

To characterize the external moment generated by the magnetostrictive transducers, we

will assume that an o�set DC current I0 is used to provide the magnetic �eld bias necessary

to attain bidirectional strains. Amp�ere's law then yields the magnetic induction

B(t) = ��n[I(t) + I0] (4.4)

where again, n is the number of terms per unit length in the solenoid, I(t) is the current

applied to the solenoid, and �� is the permeability. As noted in Section 2, the permeability

exhibits both stress-dependent nonlinearities and hysteresis due to the magnetic �eld.

The strain can be related to the magnetic induction through the nonlinear equation

e(t) = KBB(t) (4.5)

where KB depends upon the magnetic induction B. Moreover, the external stress-strain
relation

�(t) = EHe(t) (4.6)

is also nonlinear since the Young's modulus EH for the Terfenol-D rod can be highly dependent
upon the applied magnetic �eld. Finally, the external moment generated by the Terfenol-D
rod is

Mmag(t; x) = 2Amag(`r + h=2)�(t)�rod(x) (4.7)

where `r denotes the length of the connection bar and Amag is the cross-sectional area of the
Terfenol rod.

Combination of (4.7) with (4.4)-(4.6) will yield a relationship for the external moment in
terms of the applied current I(t). However, this relationship is not directly useful for modeling
transducer dynamics since the parameters ��;KB and EH are highly nonlinear and exhibit
signi�cant hysteresis.

An alternative is to characterize the external moment through the �tting of hysteresis and

material nonlinearities in terms of the Preisach kernels described in Section 3. Speci�cally,

the external moment generated by the magnetostrictive transducer can be described by the
relation

Mmag(t; x) = 2Amag(`r + h=2)[P� (I; �)](t)�rod(x) (4.8)

where

[P�(I; �)](t) �
Z
S

[ks(I; �)](t) d�(s) : (4.9)

The kernel ks is the extension of that de�ned in (3.1) to I 2 C[0; T ]. In essence, the method
characterizes the hysteresis and material nonlinearities through curve �tting in terms of a

measure � which, for a given set of experimental operating conditions, is estimated through

a least squares �t to data. Due to its generality, the technique can be used to characterize

a wide variety of transducer responses. Furthermore, the technique provides a framework

suitable for parameter estimation and subsequent controller design.
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4.2 Weak Form of Beam Model

As noted when (4.3) and (4.8) are employed in (4.1), the use of the strong form of the beam

model leads to the di�erentiation of discontinuous material parameters and inputs. It also

necessitates the use of high-order approximating elements. To alleviate these di�culties and

provide a framework amenable to analysis and approximation, we consider a corresponding

weak form of the model.

For this system, the state is taken to be y = (w;�) in the Hilbert space H = L2(0; `) �

L2(0; `) with the inner product

h�;	iH =
Z `

0
��1 1 dx+

Z `

0
�r�2 2 dx

where � = (�1; �2);	 = ( 1;  2). The space of test functions is V = H1
L(0; `) � H1

L(0; `),

H1
L(0; `) � f� 2 H1(0; `) j �(0) = 0g, with the inner product

h�;	i
V
=
Z `

0
(�01 + �2)( 

0
1 +  2) dx +

Z `

0
�02 

0
2 dx :

It should be noted that with these choices, V is continuously and densely embedded in H and

that V and H form a Gelfand triple; that is

V ,! H ' H� ,! V � :

A weak form of the modeling equations is then

Z `

0
� �w 1 dx+

Z `

0

 _w 1 dx +

Z `

0
Q 01 dx+

Z `

0
�r�� 2 dx+

Z `

0
M 02 dx+

Z `

0
Q 2 dx

=
Z `

0
Mmag 

0

2 dx+
Z `

0

~f 1 dx

(4.10)

for all 	 = ( 1;  2) 2 V . In this form, derivatives are transferred onto suitably smooth
test functions. This alleviates the di�culties associated with the discontinuities and reduces

smoothness requirements on approximate solutions.

4.3 Model Well-Posedness

To provide a framework amenable to proving the well-posedness of the model and parameter

estimation problem, it is advantageous to formulate the model in terms of sesquilinear forms
and the operators which they generate. To this end, recall that y(t) = (w(t; �); �(t; �)) and

de�ne

�1(q)(y(t);	) =
Z `

0
EI�0 02 dx+

Z `

0
�AG(w0 + �)( 01 +  2) dx

�2(q)(y(t);	) =
Z `

0
cDI�

0 02 dx+
Z `

0
�AcQ(w

0 + �)( 01 +  2) dx +
Z `

0

w 1 dx

(4.11)
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where q = (�; r;EI;G; cDI; cQ; 
) is considered in an admissible parameter space Q. It can be

directly veri�ed that �1 and �2 satisfy the boundedness and ellipticity conditions

(H1) j�1(q)(�;	)j � c1j�jV j	jV ; c1 2 lR

(H2) Re�1(q)(�;�) � c2j�j
2
V ; c2 > 0

(H3) j�2(q)(�;	)j � c3j�jV j	jV ; c3 2 lR

(H4) Re�2(q)(�;�) + c4j�j
2
H � c5j�j

2
V ; c4 2 lR; c5 > 0

for all �;	 2 V where the constants c1; � � � ; c5 are independent of the parameters q 2 Q.

From (4.8), it follows that the transducer contributions can be represented in terms of the

operator B� : U ! V � by

h[B�(u; �)](t);	iV �;V
= h[P�(u; �)](t)g;	iV �;V

� [P�(u; �)](t)
Z `

0
2Amag(`r + h=2) 02�rod dx

where U = lR, h�; �i
V �;V

is the usual duality product and P� is de�ned in (4.9). Note that

from Theorem 1, it follows that B�(u; �) 2 L
2((0; T );V �). Finally, with the de�nition f(t) =

(��1 ~f (t; �); 0), we can write the weak form (4.10) in the abstract variational form

h�y(t);	iV �;V + �2(q)( _y(t);	) + �1(q)(y(t);	) = h[B�(u; �)](t) + f(t);	iV �;V

y(0) = y0 ; _y(0) = y1
(4.12)

for all 	 2 V .

An equivalent system can be obtained by invoking the boundedness of �1; �2 to de�ne
operators Ai(q) 2 L(V; V

�) ; i = 1; 2, by

hA1�;	iV �;V
= �1(q)(�;	)

hA2�;	iV �;V
= �2(q)(�;	)

; �;	 2 V :

In operator form, the equations governing the beam dynamics then have the form

�y(t) +A2(q) _y(t) +A1(q)y(t) = [B�(u; �)](t) + f(t) (4.13)

in V �.
The subsequent result concerning the existence, uniqueness and regularity of solutions

follows directly from Theorem 2.1 and Remark 2.1 of [4].

Theorem 2. Let Q denote a compact metric space and M denote the set of �nite, signed

Borel measures on S. Consider inputs u 2 C[0; T ] and f 2 B(S; f�1; 1g). Finally, let �1; �2
be given by (4.11) and hence satisfy (H1)-(H4). For each (q; �) 2 Q�M, there then exists a

unique solution y to (4.12) which satis�es

y 2 C((0; T );V ) � L2((0; T );V )

_y 2 C((0; T );H) \ L2((0; T );V )

�y 2 L2((0; T );V �) :
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Remark 2. As noted in Remark 4.2 of [8], the regularity results in Theorem 2 can actually

be strengthened to yield
y 2 C((0; T );V )

_y 2 C((0; T );H) :

4.4 Parameter Estimation

The goal in the parameter estimation problem is to determine material parameters q =

(�; r;EI;G; cDI; cQ; 
) and a measure � given data measurements ẑ from some observable

subspace Z of the state space. The form of the quadratic functional to be minimized depends

on the experimental data which is available. For time domain data consisting of position,

velocity or acceleration measurements at points �x on the beam, an appropriate functional is

J(q; �) =
X
i

�����
@sy

@ts
(ti; �x; q; �)� ẑi

�����
2

(4.14)

with s = 0; 1 or 2. Other functionals incorporating either time or frequency domain data can
be found in [8]. In each case, the minimization is performed subject to y satisfying (4.12) for
q 2 Q and � 2 A �M where A is an appropriate class of measures.

As noted previously, the parameters �; r;EI;G; cDI; cQ are assumed to be piecewise con-
stant with partition points at the connection rod edges. The air constant 
 is constant, and
all seven parameters are positive. The admissible parameter space Q is then taken to be a
compact subset of the metric space ~Q = [L1(0; `)]6 � lR with elements piecewise constant
between partition points and satisfying the positivity constraints.

An appropriate choice for A is a set of probability measures with a metric which yields

convergence in distribution. Speci�cally, let S� be a compact subset of �S and let P(S�)
denote the set of Borel probability measures � on S�. The space A is then de�ned to be
P(S�) endowed with the Prohorov metric which is de�ned for �1; �2 2 P(S�) by

�(�1; �2) = inf f" > 0 j �1(F ) � �2(F
") + "; F closed; F � S�g

(see [10] for details regarding this metric). Here F " denotes an " neighborhood for F .

Remark 3. As detailed in [3, 6, 7, 10], the space A satis�es the following properties.

(a) Let C(S�) denote the space of continuous functions on S�. Since P(S�) � [C(S�)]
�,

convergence in the Prohorov metric is equivalent to weak� convergence; that is

�k ! � ()

Z
S�

fd�k !

Z
S�

fd�

for f 2 C(S�).

(b) A is a compact metric space.
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(c) Consider the control in
uence operator B� de�ned in (3.2) and let y(q; �) be a solution to

(4.12). For the functional J(q; �) de�ned in (4.14) with �xed q 2 Q, the map � ! J(q; �)

is weak� lower semicontinuous from P(S�) to lR.

The following theorem taken from [6] speci�es conditions under which the parameter esti-

mation problem with the magnetostrictive material inputs is well-posed. When combined with

theory from [5], it provides a framework for numerically estimating physical and hysteresis

shape parameters through a least squares �t to experimental data.

Theorem 3. Let B� denote the magnetostrictive input operator de�ned in (3.2) and y(q; �)

be the solution to (4.12). If S� is a compact subset of �S, then there is a probability measure

�0 2 P(S�) which solves the minimization problem

J(q; �0) = inf
�2P(S�)

J(q; �)

for the functional J(q; �) de�ned in (4.14).

5 Concluding Remarks

This paper addresses the characterization of material nonlinearities and hysteresis inherent to
magnetostrictive materials at middle to high range drive levels. The hysteresis is induced by
both magnetic �elds and stresses within the material while additional nonlinearities arise in

the strain-magnetic induction relations and stress-strain relations. Some of the mechanisms
leading to these nonlinear input/output relations have been modeled in terms of electromag-
netic and magnetomechanical theories [20, 21, 22]. However, several mechanisms governing
magnetostrictive properties are still not completely characterized by physics-based models.
This motivates a mathematical characterization in terms of phenomenological Preisach tech-

niques.
Preisach models are empirical in the sense that they can be used to mathematically rep-

resent hysteresis curves in terms of shape parameters determined through least squares �ts

to experimental data. Since the models are not directly derived from the physics of the sys-
tem, they can be used to model dynamics in which the underlying physics is not thoroughly
understood. The price paid for this generality is the loss of insight which can sometimes be

provided by a physic-based model.

In this work, Krasnoselskii-Pokrovskii kernels are used to characterize magnetostrictive
inputs to a 
exible structure. As detailed in [6], such kernels are advantageous over classical

Preisach kernels due to the property that they are continuous with respect to both time
and shape parameters. The operators generated via these kernels are then used to formulate

the models in a Hilbert space framework. Well-posedness of the models is obtained through

the theory of [4] while existence of optimal physical parameters and an optimal measure for
characterizing the hysteresis curve follows from the theory of [3, 5, 6]. Hence for structural

systems with magnetostrictive transducers, this characterization technique provides a model
which is amenable to analysis and approximation. In future investigations, the practical

e�cacy of this model will be tested through validation experiments.
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