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Abstract

The matrix D� kI in polynomial approximations of order N is similar to a large Jordan

block which is invertible for nonzero k but extremely sensitive to perturbation. Solving the

problem (D� kI)f = g involves similarity transforms whose condition number grows as N !,

which exceeds typical machine precision for N > 17. By using orthogonal projections, we

reformulate the problem in terms of Q, the pseudo-inverse of D, and therefore its optimal

preconditioner. The matrix Q in commonly used Chebyshev or Legendre representations

is a simple tridiagonal matrix and its eigenvalues are small and imaginary. The particular

solution of (I � kQ)f = Qg can be found for all real k at high resolutions and low compu-

tational cost (O(N) times faster than the commonly used Lanczos tau method). Boundary

conditions are applied later by adding a multiple of the known homogeneous solution. In

Chebyshev representation, machine precision results are achieved at modest resolution re-

quirements. Multidimensional and higher order di�erential operators can also take advantage

of the simple form of Q by factoring or preconditioning.
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1 Introduction

In many situations it is necessary to solve a family of di�erential equations of the form

Akf = g whereAk is a di�erential operator, k is a parameter, and f 2 D(Ak) and g 2 R(Ak)

are functions of the independent variable x 2 
. A common example of this problem is the

di�erential equation  
d

dx
� k

!
f(x) = g(x) (1)

where k is real and the absolute value of k is bounded by a possibly large number K. The

domain on which the di�erential equation holds is a �nite interval, say x 2 (�1; 1), and the

Dirichlet boundary condition f(xb) = 0 is applied at the boundary xb 2 f�1g. Since the

problem admits the homogeneous solution fh(x) = ek(x�xb) which can rapidly grow in the

sgn(k) direction, it is essential to apply the boundary condition at the proper side of the

domain (xb = sgn(k)) in order to have a well posed problem.

Our choice of the model problem (1) is motivated by physical applications, but also by

the fact that the polynomial approximation of (1) has the form of a Jordan block matrix.

Since any matrix can be written as A = S + N where S is diagonalizable, N is nilpotent

and SN = NS, the correspondence between (1) and its polynomial approximation is of

fundamental importance. The well known numerical di�culties with Jordan blocks of a

matrix are re
ected in solving the problem (1).

We shall show that continuous and discrete versions of the problem (1) may be replaced

by a reformulated optimally preconditioned problem whose solution involves operations with

simple tridiagonal matrices. The reformulated problem leads to a solution procedure which

is very e�cient, numerically stable, and accurate to machine precision (� � 2:22 � 10�16

when double precision is used) in Chebyshev polynomial representation at modest resolution

requirements which grow slowly with jkj.

1.1 An example

In cylindrical geometry, the Laplacian operator may be written as

r
2 =

1

r2

2
4 @

@ log(r)

!2

+

 
@

@�

!2
3
5 : (2)

Taking the Fourier transform in the � direction, we may write

r
2
k =

1

r2

2
4 d

d log(r)

!2

� k2

3
5

=
1

r2

"
d

d log(r)
� jkj

# "
d

d log(r)
+ jkj

#

def
=

1

r2
BF (3)

where k is the circumferential wavenumber and F and B are operators of the form (1) with

x = log(r). This factorization of the Laplacian arises in the context of applying the exact
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arti�cial boundary conditions [6]. To prohibit the growing mode as r !1, one must have

that "
d

d log(r)
+ jkj

#
fk(r)

�����
r=R

= 0 (4)

at the limit r = R of the �nite computational domain. This boundary condition is nonlocal

and it is best applied in the Fourier domain. To solve the problem

r
2 = �! (5)

with the boundary conditions  jr=1 = 0 and  ! 0 as r !1, assume that the support of

! is contained within the computational domain of radius R. Given that ! = 0 outside the

computational domain, the boundary condition (4) applied at r = R is the exact equivalent

of the boundary condition at in�nity. The solution in the Fourier domain takes three steps

and may be written as

�k = �r2!k (6)

�k = B
�1�k where �k(r)jr=R = 0 (7)

 k = F
�1�k where  k(r)jr=1 = 0 (8)

where the inverses of the operators F and B are taken by applying the indicated boundary

conditions. Therefore, this numerical solution depends on solving the equation (1).

2 Polynomial approximation

Our aim shall be to solve this equation numerically on function spaces consisting of polyno-

mials of degree at most N . Let D be the discretized representation of the derivative operator

on the (N+1)-dimensional space PN of N -th order polynomials, and let us write the original

equation as follows:

(D � kI)f = g (9)

where f and g are vectors representing the functions f(x) and g(x) in PN . The boundary

condition also has to be satis�ed, but as we shall see, this leads to an overdetermined problem

whenever k 6= 0. In this regard, polynomial approximations are intrinsically di�erent from

the original continuous problem.

There are two di�culties that have to be resolved. First, each di�erentiation reduces

the degree of the polynomial, cascading all polynomials in PN to zero in at most N + 1

di�erentiation steps. Therefore, D is a nilpotent operator with the characteristic polynomial

�(s) = sN+1, which is also its minimal polynomial. It follows that for all k 6= 0 the ma-

trix D � kI is invertible and our representation has a unique solution, which is in general

incompatible with the boundary condition.

Since �(D) = DN+1 = 0, we can write this solution exactly as a �nite sum when k 6= 0:

f = �
1

k

NX
n=0

�
D

k

�n
g (10)
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This equation, while exact, is extremely poorly conditioned for large N ; this constitutes

the second di�culty [5]. By changing the polynomial basis functions from xn to xn=n!,

we see that the above formula de�nes an upper triangular Toeplitz matrix T with entries

Tij = �ki�j�1 for j � i. However, the similarity transform between the basis functions

xn and xn=n! has the condition number N !, which appears singular to machine precision

when N > 17. Therefore, this exact equation is not computationally useful in the context

of solving di�erential equations where N needs to be much larger than just 17.

This problem becomes even harder when orthogonal polynomials are used. The condition

number of the similarity transform between the Chebyshev polynomial basis fTn(x)g
N
n=0 and

the companion form basis fxn=n!gNn=0 is 2N�1N !, which exceeds machine precision as soon

as N > 14.

Both di�culties can be traced to the loss of the homogeneous solution in the discretized

problem. More degrees of freedom are needed to resolve the di�culties. The Lanczos tau

method [4] introduces an additional high order polynomial of degree N + 1 in order to

satisfy the boundary condition. The resulting system of equations on PN+1 may be written

as (A + uvT)f = (gT ; 0)T , where A restricted to PN coincides with D � kI and the outer

product uvT arises from the boundary condition. Even though the matrix A may have a

simple structure, A + uvT is hard to invert since one cannot directly apply the Sherman-

Morrison formula [3]

(A+ uvT )�1 = A�1 �
A�1uvTA�1

1 + vTA�1u
(11)

due to the fact that inverting the restriction of A to PN is ill-conditioned.

We propose a procedure which is well conditioned and still preserves the tridiagonal form

of the matrices involved. This approach is O(N) times faster than the the tau method which

introduces a full row into the matrix to be inverted.

3 Problem reformulation

The source of di�culties is the nilpotent part of D � kI. We note that D is a non-normal

operator for which the commutatorDD��D�D is of rank 2 in companion form representation

and acts by

DD�
�D�D :

NX
n=0

anx
n

n!
7�! a0 �

aNx
N

N !
(12)

so it is natural to use a preconditioner based on D. Fortunately, the optimal preconditioner

in typical spectral representations has a simple form. This important observation suggests

the following solution method.

Instead of using the Lanczos tau method to apply the boundary condition, we shall

construct an integration operator Q as the pseudo-inverse of D and seek a particular solution

of the discretized problem rewritten as follows:

(I � kQ)fp � Qg = Q(D � kI)f: (13)

The approximation QD � I will be justi�ed later, in section 6. The reformulated prob-

lem (I � kQ)fp = Qg has the solution fp = (I � kQ)�1Qg. The full solution of (9) is
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then obtained as f = fp + � fh where fh represents the homogeneous solution ek(x�xb) and

� = �fp(xb). This delayed application of the boundary condition allows us to choose an

integration operator Q with optimal numerical properties, which can be thought of as a sur-

rogate boundary condition. This two step solution procedure is analogous to the use of the

Sherman-Morrison formula. The reformulated problem now involves integrations instead of

di�erentiations. This change leads to well behaved numerical implementations. Moreover,

we shall demonstrate that in typical polynomial representations the matrix Q has a simple

form which leads to e�cient algorithms.

Integration preconditioners for di�erential operators in spectral methods are tridiagonal

for arbitrary classical orthogonal polynomial families [2]. The use of the pseudoinverse of D,

proposed here, is an improvement which simpli�es analysis and guarantees optimal numerical

results in each orthogonal polynomial representation.

4 The pseudo-inverse of the derivative operator

The pseudo-inverse Q of the matrix D is the unique minimal Frobenius norm solution to

minkDQ�IkF . This condition amounts to the requirement that DQ and QD be orthogonal

projections onto image(D) and image(Q), respectively [3].

To construct the pseudo-inverse ofD we �rst note that ker(D) = P0 and that image(D) =

PN�1 � PN . From the commutative diagram

PN
D
�! PN

� # " �

PN=P0
�
�! PN�1

(14)

where � is the canonical projection to the coset space PN=P0, � is invertible, and � is the

insertion map, we conclude that the pseudo-inverse D(�1) is given by

Q
def
= D(�1) = �(�1)��1�(�1) (15)

where �(�1) is the orthogonal projection to PN�1 and �(�1) is the insertion map whose image

is P?

0 , the subspace orthogonal to P0. In this construction orthogonality plays a key role.

Each Q depends on a chosen inner product on PN , which will be clear from the context.

This de�nition satis�es the conditions that QD and DQ be the orthogonal projections

to image(Q) = P?0 and image(D) = PN�1, respectively. The commutator is

[D;Q] = DQ�QD = �PN�1 ��P?
0

= �P0 ��P?
N�1

(16)

which is an operator of rank 2, showing that Q andD nearly commute. Orthogonal projection

operators �V to various subspaces V will be appear often in the following discussion.

Let fpng
N
n=0 be orthogonal basis polynomials (not necessarily normalized) such that

deg(pn) = n. The matrix form of D is

D =

"
0N�1 �

01�1 01�N

#
(17)

4



and therefore

Q =

"
01�N 01�1
��1 0N�1

#
(18)

This gives us a simple method of constructing Q. For example, if the polynomials pn(x) =

xn=n! are de�ned to be orthogonal, D is reduced to its companion form where � = I and

Q = DT .

For the metric generated by the Chebyshev polynomials pn(x) = Tn(x) = cos(n cos�1(x)),

one obtains the tridiagonal matrix

Q =

2
6666666666666664

0 0 0 0 � � � 0

1 0 �
1
2

0

0 1
4

0 �
1
4

. . .
. . .

. . .
...

...
. . .

. . .
. . .

1
2(N�2)

0 �
1

2(N�2)
0

0 1
2(N�1)

0 0

0 � � � 0 0 1
2N

0

3
7777777777777775

(19)

while the Legendre polynomials lead to a slightly di�erent tridiagonal matrix

Q =

2
6666666666666664

0 0 0 0 � � � 0
1 0 �

1
5

0
0 1

3
0 �

1
7

. . .
. . .

. . .
...

...
. . .

. . .
. . .

1
2N�5

0 � 1
2N�1

0

0 1
2N�3

0 0

0 � � � 0 0 1
2N�1

0

3
7777777777777775

(20)

Numerical evidence indicates that the eigenvalues of Q in both Chebyshev and Legendre

representations lie on the imaginary axis. This favorable distribution of eigenvalues need not

happen in general. We conclude that in all three cases (companion form, Chebyshev and

Legendre representations) the matrix I � kQ is an invertible tridiagonal system for all real

k.

5 Eigenvectors and eigenvalues of Q

Given an orthonormal basis of PN ordered by basis polynomial degree, let us denote the

components of a vector v 2 PN by v0; v1; : : : ; vN . In any polynomial representation, for

eigenvalue � 6= 0 the equation Qv = �v implies that the constant polynomial component

satis�es v0 = 0 so that v ? P0. Thus, we obtain

DQv = �Dv (21)
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where DQ is an orthogonal projection to PN�1, the range of D. Recall that pN ? PN�1 and

scale v so that v = u+ pN where u 2 PN�1. Therefore, DQv = v � pN and

(I � �D)v = pN (22)

so that

v = (I � �D)�1pN =
NX
n=0

�nDnpN (23)

where v ? P0 provided that � is an eigenvalue of Q. This exact equation de�nes the

eigenvectors once the nonzero eigenvalues of Q have been obtained, but it is very sensitive

to perturbations in � due to the same numerical di�culties as the equation (9). Conversely,

eigenvalues � are very sharply de�ned. Our aim shall be to determine the form of eigenvectors

analytically.

We note that the homogeneous solution of the continuous equivalent of the eigenvector

equation (22) is ex=�, a highly oscillatory function for small but nonzero imaginary �. One is

reminded of the Fourier series, since the frequencies j1=�j are approximately evenly spaced

given Chebyshev representation. The integration operator Q in Chebyshev representation

may be thought of as a rough approximation of the Fourier integration operator. This

suggests that the Jordan decomposition of Q may be reasonably well conditioned.

A particularly simple form of v can be derived when N + 1 = 2J . In this case, the sum

of N + 1 terms can be factored as a product of only log2(N + 1) terms so that

v =
J�1Y
j=0

(I + (�D)2
j

)pN : (24)

The eigenvalue zero has multiplicity at least one, since QpN = 0. A basis for the invari-

ant subspace associated with � = 0 can be constructed by seeking nontrivial solutions to

equations of the form Qjvj = 0. For basis polynomials xn=n! which bring D to its companion

form, all eigenvalues of Q are zero, and Q acts by mapping xn=n! 7! xn+1=(n+1)! for n < N .

For Chebyshev or Legendre polynomials the matrix Q is related to the simple matrix

2
6666666666666664

0 0 0 0 � � � 0
1 0 �1 0
0 1 0 �1

. . .
. . .

. . .
...

...
. . .

. . .
. . .

1 0 �1 0

0 1 0 0
0 � � � 0 0 1 0

3
7777777777777775

(25)

by row or column scaling, respectively. This matrix also corresponds to another Q obtained

from polynomial basis functions which satisfy the recurrence relation pn+1(x) � pn�1(x) =R
pn(x)dx.

6



Let � be a nonzero eigenvalue of this matrix. The �rst N components v0; : : : ; vN�1 of the

corresponding eigenvector may be then written as

vn = i�n sin(n�) (26)

with the last component being vN = � cos(N�) tan(�)iN=2. This follows from the formula

i sin((n � 1)�) �
1

i
sin((n+ 1)�) = 2i cos(�) sin(n�) (27)

and the requirement that sin(N�) = 0. Nontrivial solutions can be obtained for � = m�=N

wherem = 1; : : : ; N�1 (except that m 6= N=2). The corresponding eigenvalues � = 2i cos(�)

all lie on the imaginary axis. The remaining 2 (for odd N) or 3 (for even N) eigenvalues

are zero, with the eigenvector pN . Therefore, all eigenvalues lie on the imaginary axis and

j�j � 2.

For Q obtained from the Chebyshev polynomial basis, we write the eigenvector compo-

nents v0; : : : ; vN�1 as vn = i�nZn and require Z0 = ZN = 0. The last component is then

vN = i1�NZN�1=(2N�). We obtain the recurrence relation

Zn�1 + Zn+1 = �2in�Zn (28)

whose solutions for nonzero � are linear combinations of Bessel functions [1]

Zn = �Jn(!) + �Yn(!) (29)

where we have de�ned ! = �i=�.

We can obtain eigenvectors v provided that � is a root of the equation

det

"
J0(!) Y0(!)
JN (!) YN (!)

#
= 0 (30)

or equivalently

arg

0
@H(1)

0 (!)

H
(1)
N (!)

1
A = 0; � (31)

where Hankel functions H(1)
n (!) = Jn(!) + iYn(!) are introduced.

Remembering that arg(z) = im(log(z)), we consider the imaginary part of the function

�(!) =
d

d!
log

0
@H(1)

0 (!)

H
(1)
N (!)

1
A (32)

=
H

(1)
1 (!)

H
(1)
0 (!)

�
H

(1)
N�1(!)�H

(1)
N+1(!)

2H
(1)
N (!)

(33)

which is approximately 1 over an interval of width O(N) and decays towards zero for ! � N .

The plot of im(�(!)) for the caseN = 32 is shown in �gure 1. We conclude that in Chebyshev

representation the eigenvalues � = �i=! are nearly evenly spaced in ! over a broad range.
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Figure 1: Derivative of the phase di�erence of Hankel functions vs. ! for the caseN = 32. Dots are

placed on the computed curve at ! values corresponding to the numerically computed eigenvalues

� = �i=!. The area under the curve between any two consecutive dots is �.
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The smallest root ! corresponds to the largest �. For ! � N , the equation (31) reduces

to arg(H
(1)
0 (!)) � �=2 and we conclude that min(j!j) � j0;1, the �rst zero of the Bessel

function J0(!). The corresponding max(j�j) � 1=j0;1 = 0:415831.

Since QpN = 0, � = 0 is an eigenvalue with multiplicity at least one. The basis of the

invariant subspace associated with � = 0 depends on the parity of N . For odd N , � = 0 has

multiplicity 2 and Q acts by mapping

N (1; 0; 2; 0; 2; 0; : : : ; 2; 0)
T Q
7�! pN

Q
7�! 0 ; (34)

while for even N , the zero eigenvalue has multiplicity three and one obtains the sequence

N
�
N2=2; 0; N2

� 22; 0; N2
� 42; 0; : : : ; N2

� (N � 2)2; 0; 0
�T Q
7�!

N (0; 2; 0; 2; 0; : : : ; 2; 0)T
Q
7�! pN

Q
7�! 0: (35)

This longer sequence is also responsible for a substantial increase in the condition number

of the similarity transform S between the Q in Chebyshev representation and its Jordan

decomposition. For example, �(S) is 36:3848 for N = 63, increases to 1:38497 � 106 for

N = 64, and goes back down to 23:3846 for N = 65. In general, odd N produced better

conditioned Jordan decomposition in all of the numerical tests, with �(S) � O(N=2). We

shall pay particular attention to odd N of the form 2J � 1.

The physical interpretation of these sequences generated by the nilpotent part of Q

for large N is that polynomial representations of functions whose �rst (and possibly second)

integrals have discontinuities at the boundaries (x = �1) are mapped to pN , which is mapped

to zero.

While this completes the description of the e�ect of Q in Chebyshev representation, the

equation (31) could not be solved in closed form for all roots !. Instead, the characteristic

polynomial of Q was derived analytically in Mathematica 3.0 for N = 32, con�rming that

machine precision intervals around the numerically computed eigenvalues bracket the true

roots. Numerical evidence suggests that all eigenvalues of Q obtained from the Chebyshev

polynomial basis lie on the imaginary axis and that j�j � 0:415831. This inequality is in

excellent agreement with the analytic approximation (within machine precision for N >

12). Similarly, eigenvalues of Q arising from the Legendre polynomial basis are also on the

imaginary axis, with j�j � 0:318310.

Finally, the square of the Frobenius norm of Q in the limit N !1 is given by

1 +
1

4
+

1

4(N � 1)2
+

1

4N2
+

N�2X
n=2

1

2n2
�!

�2

12
+
3

4
= 1:57247 (36)

for the Q derived in the Chebyshev representation and by

1 +
1

32
+

N�1X
n=2

2

(2n+ 1)2
�!

�2

4
�
10

9
= 1:35629 (37)

for the Q derived in the Legendre representation.
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6 Numerical results

Since Q is singular and its eigenvalues � lie on the imaginary axis, for all real k the condition

number of I � kQ is

�(I � kQ) =
q
1 + (kmax(j�j))2 (38)

which approaches jkjmax(j�j) for large jkj. The eigenvalues of (I � kQ)�1Q are of the

form � = �=(1 � k�). For real k one obtains j�j2 = j�j2=(1 + k2j�j2). We conclude that

max(j�j) = max(j�j). Both Chebyshev and Legendre polynomial bases have small upper

bounds on j�j, so that the spectral radius of the proposed numerical scheme is well behaved

for all real k.

The accuracy of the proposed method can be analyzed as follows. Let ft represent the

true solution satisfying the boundary condition and let (D � kI)ft = g. When k = 0, the

truncation error in representing ft(x) corresponds to setting the last coe�cient gN to zero.

Similarly, the truncation error in representing the exact homogeneous solution fh(x) is also

involved when k 6= 0. The error in determining fp needs to be analyzed next.

Since QD = I � �P0 and DQ = I � �P?
N�1

, writing (I � kQ)fp = Qg = (QD � kQ)f

leads to

fp = (I � kQ)�1(I � kQ��P0)ft (39)

so that

ft � fp = (I � kQ)�1�P0ft (40)

and since D � kI = D(I � kQ)��P?
N�1

(D � kI)fp = g + k�P?
N�1

(I � kQ)�1�P0ft: (41)

The last equation follows from the observation that D�P0 = 0. Let f0 = (p0;�P0ft) be the

constant function component of ft. Therefore, fp is the exact solution of a modi�ed problem

where a term proportional to pN (x)f0 has been added to the right hand side.

When k = 0 or f0 = 0, the method is exact apart from the truncation error. When k 6= 0

and f0 6= 0, the additional term in (41) follows from the expansion by minors, which is easily

evaluated since Q is tridiagonal in representations of interest. For example, in Chebyshev

representation, we obtain

2k
(k=2)N

N !
c(k;N)pN (x)f0

def
= "(k;N)pN (x)f0 (42)

where

c(k;N) =
1

det(I � kQ)
=

1

(�k)N+1�N(1=k)
(43)

and �N(�) is the characteristic polynomial of Q. The proportionality constant is given by

"(k;N) =
4

(�2)N+1N !�N(1=k)
(44)

and decreases rapidly as N !1.
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Let us consider the continuous analogue

h(x)� k

Z
h(x)dx = 1 where

Z
h(x)dx ? P0 (45)

and the exact solution

h(x) =
ekx

I0(k)
: (46)

The Chebyshev polynomial representation of h(x) is

h(x) = 1 +
1X
n=1

2In(k)

I0(k)
Tn(x) (47)

where I�(k) are the modi�ed Bessel functions. For large enough N the truncation error

becomes small and jhN+1j < jhN j � �. Therefore, whenever jkj � N

(I � kQ)h = 1 � k
hNpN

2(N � 1)
� k

hN+1pN+1

2N
� 1 (48)

so that h is approximately the solution of the discrete problem as well. We obtain

"(k;N) �
2kIN (k)

I0(k)
when jkj � N: (49)

However, the range of applicability of this approximation is too narrow since the term

"(k;N) may be small even if jkj � N . The resolution criterion j"(k;N)j � � leads to

j�N(1=k)j �
4

�N ! 2N+1
�

4

�

 
e

2(N + 1)

!N+1
s
N + 1

2�
(50)

where the approximation follows from Stirling's asymptotic formula for N ! = �(N + 1)

applicable for N � 1. This criterion can be simpli�ed as follows.

Clearly c(0; N) = 1. For each N , nonzero eigenvalues of Q occur in conjugate pairs on

the imaginary axis and det(I � kQ) is the product of the terms of the form 1 + k2j�j j
2 > 1,

showing that jc(k;N)j ! 0 as jkj ! 1. One would expect that the solution k to j"(k;N)j � �

depends on the ability to resolve the thin boundary layer near xb. Indeed, by curve �tting

the numerical results for N = 4; 5; : : : ; 128 one obtains the criterion that machine precision

� = 2:22045� 10�16 is approximately reached provided that N � 2:06131+8:53338
q
1 + jkj.

Truncation error in representing fh(x) must also be considered. The resolution require-

ments are virtually identical. For Chebyshev polynomial basis and jkj � 1, fh(x) can be

represented to machine precision provided that the last coe�cient of fh (which is given in

terms of the modi�ed Bessel function IN(�)) satis�es 2IN (jkj)e
�jkj � �. This leads to the

approximate criterion N � 2:81178+8:05974
q
1 + jkj, according to asymptotic analysis and

curve �tting to numerical experiments.

The simpli�ed combined criterion

N � 3 + 9
q
jkj+ 1, jkj �

(N � 3)2

81
� 1 and N � 12 (51)
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works well in practice (�gure 2). The criterion (51) has been veri�ed for 12 � N � 256,

where j"(k;N)j � 6:60738 � 10�15 and the truncation error is even lower. For N > 256, the

resolution requirements are only slightly more stringent, since the worst case residual error

appears to be slowly growing with N . A more complicated criterion of the form

q
jkj+ 1 �

N

10
+
4

5
log(N)� 3 (52)

�ts the numerical results almost exactly for 128 � N � 256 and may be extrapolated to

larger N . Our numerical results indicate that the criterion (52) produces worst case residues

j"(k;N)j of less that 100� at N = 4096 and less than 10�10 at N = 216 = 65536.

Numerical tests in Chebyshev polynomial representation were done at N = 16; 32; 64

and k = �10;�1; 0; 1; 10 and compared to the analytically obtained integrals for g(x) =

Tn(x) where n = 1; 2; 4; 8; : : : ; N=2. Standard precision was used to obtain the polynomial

approximation of the solution but the exact integrals

f(x) =
Z x

xb

ek(x�s)g(s)ds (53)

were obtained analytically and then evaluated in extended precision using Mathematica 3.0,

which was essential to capture the delicate cancellations in the exact solutions. For example,

the exact solution of
df(x)

dx
� f(x) = T32(x) (54)

with the boundary condition f(1) = 0 satis�es

f(0) = 1523681485112275626378695517688630699203508225=e �

560531093266377270849883382873867646780763137 (55)

which is about �0:00062, i.e. 48 orders of magnitude less than the terms involved.

In 63 of the 75 tests, the L2 and L1 relative norms of the error at the Chebyshev

collocation points were below 10�14. The remaining 12 results are summarized in Table 1.

These results match the above analysis. For example, when jkj = 10 and N = 16, the relative

truncation error in representing ek(x�xb) is 2:73 � 10�6 and does not become negligible until

N = 32.

7 Generalizations

The method presented here may be generalized to higher order equations in one variable of

the form
JX
j=0

DjAjf = g (56)

rewritten as
JX

j=0

QJ�jAjfp = QJg =
JX
j=0

QJDjAjf (57)

12
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Figure 2: The maximum residual log10 j"(k(N); N)j vs. N for the worst case k(N) according to

the resolution criteria (51) [upper points] and (52) [lower points]. The criterion (51) gives residues

closer to � for N � 80 and remains usable at somewhat larger N , but the slightly more conservative

criterion (52) is closer to achieving full precision for N > 80. Horizontal lines indicate the machine

precision � = 10�15:6536 and the error tolerance set at 100�.
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N k n k�k2=kfk2 k�k1=kfk1
16 -10 1 8:55882 � 10�7 8:71212 � 10�7

16 -10 2 1:28628 � 10�6 2:01382 � 10�6

16 -10 4 3:03513 � 10�6 3:05528 � 10�6

16 -10 8 7:85599 � 10�5 8:82017 � 10�5

16 -1 8 4:96642 � 10�13 4:46525 � 10�13

16 1 8 4:97129 � 10�13 4:47325 � 10�13

16 10 1 8:55882 � 10�7 8:71212 � 10�7

16 10 2 1:28628 � 10�6 2:01382 � 10�6

16 10 4 3:03513 � 10�6 3:05528 � 10�6

16 10 8 7:85599 � 10�5 8:82017 � 10�5

32 -10 16 1:11479 � 10�12 1:09573 � 10�12

32 10 16 1:11461 � 10�12 1:09789 � 10�12

other 63 tests < 10�14 < 10�14

Table 1: Relative error in the L2 and the L1 norm at the Chebyshev collocation points for
each resolution.

so that fp becomes

fp =

0
@ JX
j=0

QJ�jAj

1
A
�1

QJg: (58)

Invertibility depends on the speci�c Aj. Furthermore, J boundary conditions are to be satis-

�ed by adding a linear combination of J precomputed homogeneous solutions. Alternatively,

problems of the form
JY
j=1

(D �Aj)f = g (59)

can be converted into a sequence of �rst order problems

fpj = (I �QAj)
�1Qgj (60)

where g1 = g, fJ = f and gj = fj�1 for j = 2; : : : ; J . In addition to invertibility require-

ments, this approach requires precomputing the homogeneous solutions of the J subproblems.

Boundary conditions on each fj = fpj + �jfhj must also be available.

In multidimensional domains, the number of homogeneous solutions is proportional to

the number of boundary points. Therefore, the proposed method is most bene�cial in low

dimensional problems where the di�erential operators have a favorable structure. However,

some multidimensional problems may be factored into a sequence of one dimensional prob-

lems, for which the proposed method can be very e�ective. In fact, this investigation was

motivated by a factorization of the 2D Laplacian. This example shows that non-normal

operators of type (9) arise naturally in solving partial di�erential equations as well.
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8 Conclusion

The advantages of the proposed method include numerical stability, high accuracy and ef-

�ciency. The pseudo-inverse of the derivative operator has a simple tridiagonal form in

commonly used polynomial representations and I � kQ is easily inverted for real k. The

boundary condition is applied afterwards. By contrast, the Lanczos tau method applies

the boundary condition by introducing a full row into the matrix to be inverted, and thus

increases the computational e�ort by a factor of O(N).

Our analysis and numerical experiments indicate that the pseudo-inverse ofD and delayed

application of boundary conditions are most useful in one-dimensional problems and low

multidimensional problems which may be factored into one-dimensional subproblems.
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