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Abstract

The compressible nature of the source terms in Lighthill’s acoustic analogy can be closed. For

weakly compressible flows, in the absence of thermoacoustic effects, the compressibility of the

source field is known in terms of solenoidal modes of the vortical flow field. In such flows, the

square of the fluctuating Mach number is small and this fact, coupled with the singular nature of

the acoustic problem, and the fact that the phase speed of the acoustic sources is the advective

speed, is used to formally close the compressible portion of the fluctuating Reynolds stresses. The

closure resolves, as expressed in Crow’s 1970 paper, the inconsistent incompressible approximation

to Lighthill’s source term. It is shown that the incompressible approximation to Lighthill’s source

term, accurate to order of the square of the Mach number, predicts an acoustic field accurate to

order Mach number.
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1. Introduction

Many investigations in aeroacoustics begin with Lighthill’s (1952, 1954) acoustic analogy: it is

derived, without approximation, from the equations of motion and constitutes an exact solution for

the acoustic field. The source term in Lighthill’s equation while exact, requires in any application

of the acoustic analogy, approximation. Any lack of agreement between Lighthill’s theory and

experiment is then due to approximations made when the source term is modeled. Lighthill (1952,

1954) showed that an estimate of the source term neglecting its compressible nature, and where the

density was taken to be the local mean density, constituted a useful approximation. Also underlying

Lighthill’s analogy is the hypothesis that the flow field, which is the source of the acoustic field,

is distinct from an ambient constant property stationary medium enclosing the flow field; in the

ambient medium Lighthill’s source terms are assumed to be zero. Several issues, limitations, and

ambiguities regarding the utility of such assumptions have been investigated by Crow (1970).

In this article the compressible nature of the source terms in Lighthill’s acoustic analogy are closed.

That this might be possible, for compact sources, is suggested by the singular nature of the aeroa-

coustic problem: in the near field source region, the wave operator, rescaled on the length and

time scales of the source flow, becomes elliptic, Crighton (1975), Kambe (1986). The compressible

aspects of the acoustic source are then given by a series of Poisson equations whose source terms

are given by the solenoidal of the inner source field. A form of Lighthill’s analogy accounting for

the compressibility of the vortical source field is obtained and the incompressible approximation to

the source terms in Lighthill’s acoustic analogy can be understood and, if necessary, avoided.

Problem statement

Lighthill’s acoustic analogy is written, Lighthill (1952), as

ρ,tt − c2
∞ρ,jj = Tij ,ij = [ ρuiuj + ( p − c2

∞ρ) δij ],ij . (1)

It is convenient, for the present problem, to work in terms of pressure: Lighthill’s analogy can then

be written as

c−2
∞ p,tt − p,jj = (ρuiuj),ij + c−2

∞ ( p − c2
∞ρ),tt (2)

The quantity ( p − c2∞ρ),tt is responsible for thermoacoustic effects, Crighton et al. (1992); it

will be neglected for the class of flows that are the subject of this article. The present analysis is

understood to be limited to the class of flows relevant to subsonic aeroacoustics: high Reynolds

number (turbulent), weakly compressible, compact flows with a relatively constant mean density.

In such a flow it can be shown, using the perturbation series derived below, that the quantity

( p − c2∞ρ) makes contributions that are of O(M2
t ) with respect to the highest order terms
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included in the present analysis. Here Mt = uc/c is the fluctuating Mach number for which uc

is a characteristic fluctuating velocity; its square is a measure of the strength of the effects of

compressibility.

In many analyses using Lighthill’s analogy an incompressible approximation of the source terms is

used: ρuiuj ' ρ∞vivj where vi represents the solenoidal velocity field. Lighthill’s acoustic analogy

is then written as

c−2
∞ p,tt − p,jj = ρ∞(vjvi),ij (3)

and the difference between the compressible and incompressible term, [ρuiuj − ρ∞vivj ],ij , is ne-

glected. This article addresses the compressibility correction term,

T c
ij ,ij = [ρuiuj − ρ∞vivj],ij , (4)

which can be viewed as encompassing, in the absence of thermoacoustic effects, the compressible

nature of Lighthill’s source term. The present focus will be on understanding the 1) scalings

of T c
ij, 2) identifying its acoustic nature, and 3) its contribution to the radiated acoustic field.

The main result of this article, however, is a closure for the compressible correction term, as a

result the full Lighthill source term (ρuiuj),ij is then known. As a consequence, the incompressible

approximation to the source term in Lighthill’s acoustic analogy can be analytically and numerically

better assessed. It is seen that in many cases of practical interest the incompressible approximation

is sufficient. When it is not sufficient the contributions due to compressibility can now be obtained.

Outline

In the next section, §2, some background material and a clarification of diverse issues are provided.

In §3 single-time low Mach number expansions of the governing equations are conducted. The

consequences and shortcomings of this procedure and its reliance on an unjustifiable imposition

of a Helmholtz decomposition are indicated. In §4 a two-time low Mach number expansions is

used; this procedure distinguishes acoustic from compressible modes by phase speed – as opposed

to the Helmholtz decomposition used by Crow (1970) and in §3. The analysis highlights important

kinematic features regarding the coupling between the solenoidal and the compressible strain field

which allows a simple and straightforward closure for the compressible portions of the source term.

In §5 the nature and scaling of the compressible source terms are investigated.

2. Preliminaries

Some background information useful for motivating the analysis and understanding the procedure is
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now given. As the singular nature of the problem is in fact what allows a closure for the compressible

correction, it is described first.

The singular nature of the aeroacoustical problem

In the present closure for the effects of compressibility on the source terms in Lighhill’s acoustic

analogy the singular nature of the aeroacoustical problem is used to advantage. The singular nature

of the acoustics problem manifests itself in the nonuniformity, Lauvstad (1970), of an expansion

procedure; important physical processes take place on different length scales, Crighton (1975),

Kambe (1986), Kambe, Minota and Takaoka (1993). The ratio of the two length scales goes to

zero as the small parameter, Mt, goes to zero. When the problem is scaled using the length and

time scales of the vortical flow field, [`, `/uc], the Lighthill equation, c−2∞ p,tt − p,jj = (ρuiuj),ij
devolves to a Poisson equation for the pressure and one obtains a set of equations that are used to

describe an incompressible flow: ρ∞(vi,t + vkvi,k ) + p,i = 0, vi,i = 0 and

∇2p = − ρ∞(vivj),ij . (5)

The problem is elliptic in nature. On the outer or acoustic scales, [`/Mt, `/uc], one obtains the

sourceless wave equation

c−2
∞ p,tt − p,jj = 0. (6)

On the outer scales of the problem the hyperbolic nature of the problem manifests itself. The nature

of the two problems is clearly different; Crighton (1975) provides a pithy view. On the inner scales

the Laplacian is more singular than the double time derivative. This fact is exploited to obtain

closure for T c
ij ,ij ; the compressible portions of the source terms will then be related to a series

of Poisson (elliptic) equations whose source term is given by the solenoidal field and is therefore

known. The essential point is that the compressible nature of the source term is known without

solving the acoustic radiation problem. In the way that the leading order contribution to the sound

field is obtained from the solenoidal modes, ρ∞vivj , so also is the compressibility correction, T c
ij .

Observations by Crow

The neglect of the compressible portions of the source term, T c
ij ,ij, is sometimes justified on the

grounds that T c
ij is of O(M2

t ) with respect to (vivj). This implicitly (and unjustifiably) assumes

that the compressible correction, T c
ij,ij , is quadrupole as is (vivj),ij . Crow (1970) has examined

this idea.

Crow (1970) investigated the structure of the Lighthill equation as a perturbation series in the
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fluctuating Mach number.

M2
t p,tt − p,jj = T 0

ij ,ij + T c
ij ,ij +... = ρ∞(vivj),ij + M2

t T 1
ij ,ij +... . (7)

The source term T 1
ij ,ij represents contributions to the source term from interactions between incom-

pressible and, in Crow’s (1970) nomenclature, acoustic modes of the flow. Crow (1970) makes the

point that to treat the sound problem by retaining O(M2
t ) in the wave operator while neglecting

in Tij a compressible term of O(M2
t ), T 1

ij ,ij is inconsistent 2. Despite his demonstration of this

inconsistency, he concludes that the incompressible approximation to the fluctuating quadrupole

is adequate for compact flows with small fluctuating Mach number. This appears to be due to the

nonuniformity of the problem; p,tt is not important in regions of the flow where T 1
ij,ij is important,

and, in regions of the acoustic field where p,tt is important, T 1
ij ,ij is not important – because of this

behavior the effects of the truncation relative to the the term p,tt is mitigated. Crow (1970) makes

an additional point: a simple source in T 1
ij will contribute terms of the same order as those in the

incompressible quadrupole (vivj)ij . The major issue then appears to be whether the contribution

to the acoustic field due to M2
t T 1

ij ,ij can be neglected relative to T 0
ij ,ij ; this will not true if T 1

ij,ij

contains a simple source. This important question motivates, in part, this analysis; its resolution

requires a delineation of the compressible source terms which is only possible once a closure for

these terms is obtained.

The governing equations

The following equations are used to describe the flow:

ρ∗,t + u∗kρ
∗,k = − ρ∗u∗p,p (8)

ρ∗u∗i ,t + ρ∗u∗ku
∗
i ,k + p∗,i = 0 (9)

p∗/p∞ = (ρ∗/ρ∞)γ . (10)

An asterisk denotes the fact that the superscripted variable is dimensional. The last equation comes

from the assumption of isentropy: D
Dt s = 0 ⇒ ρ D

Dt h = D
Dt p from which the equation follows given

the ideal gas law. The enthalpy, h, is given by h(γ−1) = c2 where c2 = γp∗/ρ∗ and D
Dt = ∂

∂t+u∗k
∂

∂xk
.

The momentum and continuity equations can be combined to give ρ∗,tt − p∗,jj = (ρ∗u∗i u∗j ),ij ,

which becomes a wave equation for ρ or p if the gas law is used to eliminate one in favor of the

other. For clarity of exposition, the viscous terms are not carried; they can be shown, for a high

Reynolds number flows, to be of higher order. Perturbing about a reference state, (p∞, ρ∞), the

nondimensional forms of the pressure and density are taken as p∗ = p∞(1 + p) and ρ∗ = ρ∞(1 + ρ).
2A similar inconsistency in Ribner’s (1962) dilatational acoustic theory has been indicated in Ristorcelli (1997).
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The equations, where [ρ, p] are now dimensionless, become

ρ,t + u∗kρ,k = − (1 + ρ)u∗p,p (11)

(1 + ρ)[u∗i ,t + u∗ku
∗
i ,k ] +

c2∞
γ

p,i = 0 (12)

p− γρ =
1
2
γ(γ − 1)ρ2 (13)

ρ,tt − c2∞
γ

p,jj = [(1 + ρ)u∗i u
∗
j ],ij . (14)

The velocities are still dimensional. In these equations c2∞ = γp∞/ρ∞. These equations will be

used as the starting point. The following definitions for the strain and the rotation will also be

needed: sij = 1
2 [vi,j +vj,i ] and rij = 1

2 [vi,j −vj,i ]. The superscript “c” as in sc
ij and rc

ij will denote

the strain and the rotation associated with the compressible portion of the velocity field.

3. A single time perturbation analysis

A small fluctuating Mach number expansion of the compressible Navier-Stokes equations is now con-

ducted. The analysis is understood to be addressing high Reynolds number, weakly compressible,

turbulent flows – the class of flows relevant to subsonic aeroacoustics for which isentropy implies

dp = c2dρ. Similarites to the Crow (1970) analysis are discussed. Shortcomings are highlighted.

A single time perturbation analysis

Regular expansions of the form p = ε2 [ p1 + ε2p2 + ...], ρ = ε2 [ ρ1 + ε2ρ2 + ...], ui/uc = vi + wi =

vi + ε2 [ w1i + ε2w2i + ...], are inserted into the governing equations. To the lowest order a set of

equations that are the same as that used to describe an incompressible flow,

vi,t + vpvi,p + p1,i = 0 (15)

vi,i = 0 (16)

∇2p1 = − (vivj),ij (17)

p1 = γρ1 (18)

are obtained. The velocity has been made nondimensional with uc and ε2 = γM2
t = γu2

c/c
2∞ where

c2∞ = γp∞/ρ∞. The independent variables are still dimensional — length and time scales have not

been chosen. The fluctuating pressure, p1 is obtained from a Poisson equation whose source term

is known in terms of the solenoidal modes of the velocity field; the leading order density fluctuation

is linearly related to the leading order pressure. The next order equations are

ρ1,t + vpρ1,p = −w1k,k = − d1 (19)
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w1i,t + vpw1i,p +w1pvi,p + p2,i = − ρ1(vi,t +vpvi,p ) (20)

p2 − γρ2 =
1
2

γ(γ − 1)ρ2
1 (21)

− p2,jj = (w1ivj + w1jvi + ρ1vivj),ij − 1
γ

p1,tt . (22)

The compressible portion of the source flow, [w1i, ρ1, p2], does not involve a wave equation. In the

near field region the compressible pressure is felt effectively instantaneously. Since γρ1 = p1, the

next order continuity equation yields a diagnostic relationship for the dilatation, d1 = w1k,k,

−γd1 = p1,t + vkp1,k =
D

Dt
p1. (23)

where D
Dt ≡ ∂

∂t + vk
∂

∂xk
. The dilatation is, to leading order, not an acoustic quantity – it does

not propagate with the acoustic phase speed. The dilatation, d1 = w1i,i is related to the pressure

that satisfies ∇2p1 = − (vivj),ij . It can be shown, Crow(1970), that the solenoidal pressure falls

off from the source region as p1 ∼ x−3. Using the continuity equation indicates that w1i,i = d1 ∼
D
Dt p1 ∼ x−3 and w1i ∼ x−2 which differs from the acoustic scaling, w1i ∼ x−1.

Lighthill’s acoustic analogy is reconstituted, in dimensional form, as

c−2
∞ p,tt − ∇2p = ρ∞[vivj ],ij + ρ∞[wivj + wjvi + ρvivj ],ij . (24)

The identifications wi = γM2
t ucw1i and ρ = γM2

t ρ1 have been made. This is what Crow (1970)

has called a self-consistent form of Lighthill’s acoustic analogy — O(M2
t ) terms on both sides of

the equation are retained.

Imposition of a Helmholtz decomposition

In order to close the source terms expressions for ρ1 and w1i are required. This is readily accom-

plished as the leading order problem [vi, p1] is considered known.

In the perturbation anslysis above the small parameter was used to order various dynamical aspects

of the physics. The problem, following Crow(1970), is now kinematically partitioned: the Helmholtz

decomposition allows, for any suitably compact vector field, a unique decomposition into the curl

of vector, vi, and the gradient of a scalar, wi: ui = vi + wi = vi + φ,i. The decomposition implies,

of course, w1i = φ1,i and ∇2φ1 = d1 and the usual Biot-Savart relation ∇2vi = εijkωk,j . Here

ωi = εijkvj ,k is the vorticity. The compressible modes are therefore determined by the inversion of

the following Poisson equation for the potential

−γ∇2φ1 =
D

Dt
p1, (25)
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using the methods of Green’s functions. The homogeneous solution is the trivial solution. The

velocity field is given by

−γ∇2w1i = (
D

Dt
p1),i ⇒ w1i = − 1

γ
∇−2(

D

Dt
p1),i . (26)

There are several other simplifications that can be made to this expression using the fact that wi1

is a double convolution. This does not suit present intentions. The fluctuating density is, of course,

linearly related to the fluctuating pressure γρ1 = p1. Thus all terms in [w1ivj + w1jvi + ρ1vivj ] are

closed once

∇2p1 = − [vivj],ij (27)

is solved. The Lighthill equation, to order M2
t , has now been formally closed. This is similar

to Crow’s (1970) analysis; Crow (1970), however, was interested in different questions and did

not pursue the question of a closure for the compressible correction T c
ij,ij = [ρuiuj − ρ∞vivj],ij =

ρ∞[wivj + wjvi + ρvivj ],ij .

There are some theoretical and practical problems with this result.

• The Helmholtz decomposition has partitioned the flow field such that all the vorticity is in the

leading order problem, [vi, p1]; all the effects of compressibility are in the irrotational mode.

The Helmholtz decomposition precludes any representation of a compressible rotational mode.

• Inspection of the evolution equation for w1i shows that w1i is not irrotational.

• Contributions to the source term w1i,j vj ,i = (sc
ij +rc

ij)vj ,i does not account for the interaction

term rc
ijvj ,i since the rotational compressible are not captured in this representation. Here

sc
ij = 1

2 [w1i,j +w1j,i ] and rc
ij = 1

2 [w1i,j −w1j,i ]

• Any calculation of the compressible correction requires a double convolution. Any solution

for the acoustic field requires a triple convolution.

These shortcomings can be resolved with a multi-time analysis.

4. A two-time perturbation analysis

The ability of a two-time expansion to distinguish, in the source field, compressible from acoustic

modes is essential to closing for the compressible aspects of the source terms in Lighthill’s acoustic

analogy. The multi-scale procedure distinguishes acoustic modes, with acoustic phase speed from
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compressible modes, with advective phase speed. This is a distinction that is not possible with the

methodology employed above.

In the flow field there are two velocity scales, the sound speed, c, and a characteristic fluctuating

velocity, uc. In the flow field one length scale is recognized: `. Two time scales can be identified:

a fast time that scales with the eddy crossing time, `/c∞, and a slow time that scales with the

eddy turnover time, `/uc. The ratio of these two time scales is the turbulent Mach number and

is the small parameter in a two-timing procedure. The problem is recognized as being driven by

the vortical flow which evolves on the advective (slow) time scale: if there were no flow evolving

on the slow time there would be no compressible or acoustic field. The problem can be viewed as

a forced linear oscillator with forcing coming from the slow vortical modes with advective scales

[uc, `]. While simple in concept diverse subtelties associated with the aeroacoustical problem can

be more readily seen if the two-time procedure is first applied to the forced linear oscillator.

The forced linear oscillator

Consider the forced linear oscillator driven with frequency ω much slower than the natural frequency

of the oscillator, ω0, ω/ω0 << 1:

ü + ω2
0 u = ω2

0cos ωt. (28)

The exact solution is written as a sum of homogeneous and particular solutions:

u(t;ω0, ω) = uH(t;ω0) + uP (t;ω0, ω) = A1e
+iω0t + A2e

−iω0t +
ω2

0

ω2
0 − ω2

cos ωt. (29)

Note that the homogeneous solution has no relation whatsoever to the forcing, uH(t;ω0) 6= f(ω).

This property of the homogeneous solution will be used to eliminate its consideration as a solution

relevant to the acoustic source generated by the flow field. If the initial conditions are such that

the eigensolutions are not stimulated, A1 = A2 = 0, the solution is the particular solution, u(t) =
ω2

0cosωt

ω2
0−ω2 = cos(ωt) +O(ω2

ω2
0
).

The forced linear oscillator is now treated by the method of multiple-scales. The role a small

parameter will be played by ε = ω/ω0 << 1. Time can be rescaled, t′ = ω0t to produce, after

dropping the primes,

ü + u = cos εt. (30)

Following the usual multi-scale procedures the original time variable, [ t ], is replaced by two

independent time variables, [t0, t1]; t0 is the fast time scale and t1 is the slow time scale. The

multi-time-scale ansatz for the dependent variable is u(x, t) = u(x, t0, t1), where t0 = t and t1 = εt.
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The time derivative of u(x, t) is then written, using the chain rule, d
dt u(t; ε) = ∂t0

∂t
∂

∂t0
u(t0, t1; ε) +

∂t1
∂t

∂
∂t1

u(t0, t1; ε) = ∂
∂t0

u(t0, t1, ε) + ε ∂
∂t1

u(t0, t1, ε). Expanding u(t; ε) = u0(t0, t1) + εu1(t0, t1) +

ε2u2(t0, t1) + ... the problem for the forced oscillator takes the form

∂2

∂t20
u0 + u0 = cos t1 (31)

∂2

∂t20
u1 + u1 = − 2

∂2

∂t0∂t1
u0. (32)

The leading order solution can be written as a sum of homogeneous and particular solutions,

u0(t0, t1) = A1(t1) e+it0 + A2(t1) e−it0 + cos t1. (33)

The slow time coefficients, Ai(t1), are determined by the removal of secular terms in the equation

for u1. They are constants for this problem. The solution, when the eigenmodes are not stimulated,

A1 = A2 = 0, is the particular solution: u0(t0, t1) = u0P (t1) = cos t1 = cos ωt which is, to O(ε2),

the exact solution given above. The realization that the particular solution u0(t1;ω) is the solution

relevant to the forcing and that the homogeneous solution, u0H(t0;ω0), is not associated with the

forcing and not relevant to the aeroacoustical problem driven by the fluctuating velocity field.

Multi-scaling the compressible source flow

A multi-scaling of the compressible Navier Stokes equations, modulo viscosity, is now conducted.

An analogy between the compressible aspects of the source flow and the forced linear oscillator is

made. The time scale of the forcing, ω−1, can thought of as an eddy turnover time of the turbulent

source field, `/uc. The slow or advective time scale is `/uc. The time scale ω−1
0 , can be identified

with the sound crossing time, `/c∞. The fast or acoustic time scale is `/uc. The small parameter

is the turbulent Mach number which is the ratio of these two time scales.

Compressible portions of the flow evolving on the fast time scale will be called acoustic modes;

compressible portions of the flow evolving on a slow time scale will be called advective compressible

modes. The multi-time procedure is crucial to distinguishing these two aspects of the compressible

flow. The compressible portions of Lighthill’s source terms will be seen to be a function of the

advective compressible modes.

Starting with the compressible Navier Stokes equations given in §2 the following ansatz, as suggested

by earlier results, for the dependent variable is proposed:

u∗i = uc(vi + φwwi) (34)

p = φ0(ps + φ1 pC) (35)

ρ = φ0(ρs + φ1 ρC). (36)
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The subscript “s” is understood to indicate solenoidal in reference to vi which has zero divergence

and from which both ps and ρs are derived. The subscript “C” will signify the compressible nature

of the nondimensional pressure and density fields. Inserting the decompositions into the governing

equations produces on the inner length and time scales the problem:

vi,t + vkvi,k + ps,i = 0 vk,k = 0 (37)

ps,jj = − (vivj),ij γρs = ps. (38)

The leading order problem is described by equations used to model an incompressible flow with

characteristic time, length and velocity scales [ `
uc

, `, uc]. The gauge function φ0 = γM2
t is established

by balance.

The compressible portion of the problem, [pC , ρC , wi], is

[1 + φ0(ρs + φ1ρC)][wi,t +vkwi,k +wkvi,k +φwwkwi,k ]φw +
c2∞
γ

φ0φ1pC ,i =

= −φ0(ρs + φ1ρC)[vi,t +vkvi,k ] (39)

φ0φ1[ρC ,t +vkρC ,k +φwwkρC ,k ] + [1 + φ0(ρs + φ1ρC)]wk,k φw = −φ0[ρs,t +vkρs,k ] (40)

φoφ1(pC − γρC) =
1
2
γ(γ − 1)φ2

0(ρs + φ1ρC)2.(41)

The dependent variables of this problem are all nondimensional: [vi, wi, ps, pC , ρs, ρC ] are in units

of [uc, p∞, ρ∞]. It is important to note that the independent variables are dimensional: length and

time scales have not yet been chosen. The scalings for length and time will determine φ1 and φw.

Choosing the `/c and ` for the scalings the only consistent balance of the momentum and continuity

equations produces φw = M2
t and φ1 = Mt.

The compressible independent and dependent variables are now expanded in a series of form:
D

Dt
f(x, t) =

D

Dt0
f(x, t0, t1) + ε

D

Dt1
f(x, t0, t1) (42)

wi(x, t0, t1) = w0i(x, t0, t1) + ε w1i(x, t0, t1) + ... (43)

pC(x, t0, t1) = p0(x, t0, t1) + ε p1(x, t0, t1) + ... (44)

ρC(x, t0, t1) = ρ0(x, t0, t1) + ε ρ1(x, t0, t1) + ... . (45)

Here D
Dt0

≡ ∂
∂t0

+ vk
∂

∂xk
and D

Dt1
≡ ∂

∂t1
+ vk

∂
∂xk

. The equations are made nondimensional with

the integral length scale, `, and the fast time scale, `/c. Inserting the expansions for the dependent

variables and the temporal differential operators produces to leading order:
D

Dt0
w0i + p0,i = 0 (46)

D

Dt0
p0 + w0k,k = − D

Dt1
ps (47)

p0 − γρ0 = 0. (48)

10



The set of equations are equivalent to those of the forced linear oscillator, ẏ1−y2 = 0 and ẏ2+ω2
0 y1 =

cos (ωt). The analogy can be seen in Fourier space where the complications of the spatial derivative

on w0i are removed. (The second order equations are given in the appendix.) The compressible

velocity gradients evolve according to:

D

Dt0
w0i,j = − p0,ij − vp,j w0i,p , (49)

from which the equations for the divergence and the vorticity are readily obtained,

D

Dt0
w0j ,j = − p0,jj − vp,j w0j ,p . (50)

D

Dt0
ω0q = − εqijvp,j w0i,p . (51)

The associated wave equations are given in the Appendix.

The particular solution and its consequences

Recalling the forced oscillator analog, the general solution for the leading order problem is written

as a sum of homogeneous and particular solutions, w0i = w0iH(x, t0)+w1iP (x, t1), p0 = p0H(x, t0)+

p1P (x, t1). The homogeneous solution is independent of the forcing and is relevant to acoustic fields

that are generated by initial or boundary conditions and is not of interest to the acoustic source

problem.

The portion of the compressible problem driven by the slow solenoidal modes is of interest; the

solution of relevance is the particular solution, w0i = w0iP (x, t1), p0 = p0P (x, t1). As was seen in the

forced linear oscillator example, the particular solution, to O(ε2), is found by setting D
Dt0

[w0, p0] =

0. Thus:

w0k,k = − D

Dt1
ps (52)

p0(x, t1) = ρ0(x, t1) = 0. (53)

The two-time expansion indicates slow compressible modes are, at this order, irrotational, and

found by

w0k,k = ∇2φ(x, t1) = − D

Dt1
ps. (54)

Rotational modes can exist at this order; they are associated with the homogeneous solution and

are a function of arbitrary initial conditions. The equation for the divergence with, D
Dt0

w0j ,j = 0,

indicates that the particular solution has the following property:

vp,j w0j ,p = vp,j φ,jp = 0. (55)

11



This is a consequence of the two-time expansion; it is, as will be seen, a very useful fact. Kine-

matically it is understood as indicating that vp,j w0j ,p = spjs
c
jp = 0; the principal axes of the

compressible strain rate are orthogonal to the principle axes of the solenoidal strain field. In the

compressible portions of the acoustic source quantities such as (w1ivj),ij can be simplified using

the above fact: (vjφ,i ),ij = vj ∇2φ,j + vi,j φ,ij = vj∇2φ,j = − vj( D
Dt1

ps),j since vp,j φ,jp = 0. The

compressible correction term, T c
ij ,ij = ρ∞[w0ivj + w0jvi + ρ1vivj],ij = ρ∞[φ,i vj + φ,j vi + ρsvivj ],ij ,

is then written as

T c
ij,ij = ρ∞[− 2 (vj

D

Dt1
ps),j + (ρsvivj),ij ] (56)

and Lighthill’s acoustic analogy is reconstituted, in dimensional variables, as

c−2
∞ p,tt − ∇2p = ρ∞(vivj),ij +

1
γ

c−2
∞ [(psvivj),ij − 2(vj

D

Dt
ps),j ]. (57)

As the perturbation analysis is finished, ps, is now dimensional. The compressible nature of the

source terms can be obtained from the solenoidal field and the equation is closed: ps is obtained

from its Poisson equation; −∇2ps = ρ∞(vivj),ij . Several features and advantages of the multi-scale

closure are summarized:

• The compressible field is, to leading order, irrotational. The multi-scale result justifies the

assumption of a Helmholtz decomposition in the previous section (and in Crow’s (1970)

analysis).

• The principal axes of the compressible strain rate are orthogonal to the principle axes of the

solenoidal strain field, since vp,j w0j ,p = 0.

• The compressible correction term can be written in terms of the solenoidal modes of the

source flow:

T c
ij ,ij =

1
γ

c−2
∞ [(psvivj),ij − 2(vj

D

Dt
ps),j ]. (58)

• The solenoidal field, [vi, ps], is calculated from the leading order equations — a set of equations

that is describes an incompressible flow.

• The compressible correction term does not require a double convolution.

Caveat

The analysis presented is relevant to a general fluctuating flow in which there is one characteristic

fluctuating velocity scale and whose characteristic Mach number, the turbulent Mach number, is

12



small. For such a flow the slow compressible field is, to leading order, irrotational. The irrotation-

ality of the slow compressible field, for subsonic flows, is a useful approximation as long as the mean

strain rate, S, does not approach the eddy crossing time: ie. when S`/c → 1. When S`/c ∼ 1, the

slow compressible modes become rotational and S`/c enters the analysis as an additional governing

parameter. Thus the present analysis is relevant to applications for which S`/c < 1; this is the case

for many developed turbulent flows for which uc ∼ S`.

5. Detailing the compressible contribution to the acoustic source

As the analytical work is now complete the presentation returns to the dimensional variables as

used in §1. The main result of this work has been the closure for the compressible correction to

the Lighthill source terms,

T c
ij ,ij = [ ρuiuj − ρ∞vivj],ij =

1
γc2∞

[(psvivj),ij − 2(vj
D

Dt
ps),j ].

Various properties of this closure for the compressible source terms are now investigated. The far

field solution to the wave equation is presented and the nature of the new source terms is defined.

The asymptotic scaling of each of the terms is also indicated. It is first noted that the second

compressible source term can be rewritten

− (vj
D

Dt
ps),j = (vjd),j (59)

as the flux of the leading order dilatation using the diagnostic relation, d = − D
Dt ps, derived above.

Note that if the pressure, ps, were frozen, it would not contribute to the compressible source term.

The nature of the compressible contribution to the source

The contribution of the compressible source terms to the acoustic field is, however, determined by

integrating over the volume of the source field. The closed Lighthill analogy reads

c−2
∞ p,tt − ∇2p = ρ∞(vivj),ij +

1
γ

c−2
∞ [(psvivj),ij − 2(vj

D

Dt
ps),j ], (60)

and the solution, for an unbounded flow, is obtained by convolution,

p(x, t) =
1
4π

∂2

∂xi∂xj

∫
ρ∞[vivj ]

dx′

|x− x′|
+

1
4πγ

1
c2∞

∂2

∂xi∂xj

∫
[psvivj ]

dx′

|x− x′|
− 2

4πγ

1
c2∞

∂

∂xj

∫
[vj

D

Dt
ps]

dx′

|x− x′| (61)
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where the square brackets indicate a quantity evaluated at [x′, tr] where tr = t − |x−x′|
c∞ . is the

retarded time.

Following the usual procedures for the far field solution, ∂
∂xj

= −xj

x
1

c∞
∂
∂t , due to symmetry in space

and time. The far field solution is,

p(x, t) =
1
4π

1
c2∞

1
x

xixj

x2

∂2

∂t2

∫
ρ∞[vivj] dx′

+
2

4πγ

1
c3∞

1
x

xj

x

∂

∂t

∫
[vj

D

Dt
ps] dx′

+
1

4πγ

1
c4∞

1
x

xixj

x2

∂2

∂t2

∫
[psvivj ] dx′. (62)

From a mathematical point of view the three contributions to the acoustic field — ordered according

to the expansion parameter — are seen to scale, respectively, as O(M2
t ) + O(M3

t ) + O(M4
t ). It

is seen that though T c
ij is O(M2

t ) with respect to vivj , in Lighthill’s wave equation, its contribution

to the acoustic field is O(Mt) with respect to the contribution from vivj . From a more applied

viewpoint the contributions to the acoustic pressure scale as

p(x, t) ∼ O(u4
c) + O(u5

c) + O(u6
c). (63)

The first term produces the well known eight power velocity scaling for the sound intensity of a

quadrupole source, Lighthill (1952). To leading order 〈pp〉 ∼ u8
c ; to next higher order crossterms

will produce a u9
c scaling.

The second term, involving the flux of the dilatation, can be understood as a lateral quadrupole.

Using the momentum equation the flux of the dilatation can be rearranged as

vj
D

Dt
ps =

D

Dt
(vjps) +

1
2
(psps),j , (64)

giving a clearer indication of quadrupole nature. The (psps),j will make a higher order contribution,

at the same order in Mt as the last term. The second term will, nonetheless, be left as a flux of

the leading order dilatation. The last source term is a quadrupole.

Asymptotic decay of the compressible portion of the source field

As a consequence of the Biot Savart law, Crow (1970), Howe (1975), Kambe (1986), the boundedness

of the first moment of the vorticity indicates that the fall off of the solenoidal velocity associated with

a compact vorticity distribution is vi ∼ x−3. As a consequence, the incompressible approximation

to the source falls off, with distance from the source region, as vivj ∼ x−6.

Similarly it has been shown, see Crow (1970), that ps ∼ x−3. As a consequence

w0j,j ∼ D

Dt
ps ∼ x−3 (65)

14



and wi ∼ M2
t x−2. Using the above facts the source terms in Lighthills acoustic analogy, vivj +

wivj + wjvi + psvivj, fall off, from the source region, as:

vivj ∼ x−6

wivj ∼ x−5

psvivj ∼ x−9.

Thus in the inner source flow there are contributions due to the compressible nature of the fluctu-

ations that are both more and less compact than the incompressible approximation to the source

term. The assumption underlying Lighthill’s acoustic analogy, that Tij = 0 outside the source

region, is validated when the compressible nature of the source term is included.

Note that the compressible velocity field scales as x−2; this is not the acoustic scaling assumed in

Crow (1970). Crow’s (1970) arguments were based on the fact that the compressible component of

the velocity scaled as x−1 thus wivj ∼ x−4. As has been shown the compressible correction term,

T c
ij , is due to the advective nature of the compressible flow, not its acoustic nature.

6. Summary and conclusions

For a high Reynolds number weakly compressible flow, in the absence of important irreverssible

processes, a multi-time scale procedure has been used to distinguish compressible modes with acous-

tic phase speed from compressible modes with advective phase speed. The advective compressible

modes are identified as acoustic source terms. The procedure has produced the following results:

• The assumption underlying Lighthill’s acoustic analogy, that Tij = 0 outside the source region,

is justified when the compressible nature of the source term is included.

• The compressible strain field is orthogonal to the solenoidal strain field: spjφ,jp = 0.

• A closure for the compressible correction, T c
ij,ij = [ρuiuj − ρ∞vivj ],ij , to the incompressible

approximation of Lighthill’s source term, ρ∞(vivj),ij , has been obtained.

• Lighthill’s acoustic analogy can be written in closed form:

c−2
∞ p,tt − ∇2p = ρ∞(vivj),ij + γ−1c−2

∞ [(psvivj),ij − 2(vj
D

Dt
ps),j ]

where −∇2ps = ρ∞(vivj),ij . The incompressible approximation to the Lighthill source term

is, of course, ρ∞(vivj),ij , the dominant term.

• Though T c
ij is of O(M2

t ) with respect to vivj its contribution to the acoustic field is of O(Mt)

with respect to the contribution from vivj.
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• The O(M2
t ) incompressible approximation to the Lighthill source term, ρuiuj ≈ ρ∞vivj ,

predicts an acoustic field accurate to O(Mt).

The results indicate the possibility of investigating the consequences of compressibility analyti-

cally. The results also indicate a procedure that extends the possibility of incompressible DNS to

investigate the compressible effects on sound generation. This has some utility as incompressible

simulation methodologies are better understood, further advanced, and cheaper, allowing larger

Reynolds number and longer simulation times.
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Appendix: leading order compressible equations

Additional aspects of the leading order compressible problem given in §4 are summarized. The

leading order compressible momentum, continuity and thermodynamic equations are

D

Dt0
w0i + p0,i = 0 (66)

D

Dt0
p0 + w0k,k = − D

Dt1
ps (67)

p0 − γρ0 = 0. (68)

The equations are nondimensional — the sound speed is unity. The compressible velocity gradients

evolve according to:

D

Dt0
w0i,j = − p0,ij − vp,j w0i,p , (69)

from which the equations for the divergence and the vorticity are readily obtained,

D

Dt0
w0j ,j = − p0,jj − vp,j w0j ,p . (70)

D

Dt0
ω0q = − εqijvp,j w0i,p . (71)

On the slow time scale, setting D
Dt0

= 0 one finds p0 = 0, w0k,k = − D
Dt1

ps and vp,j w0j ,p = 0. The

vorticity results solely from the initial conditions D
Dt0

ω0q = 0 on the homogeneous solution. Some

wave equations are derivable

D2

Dt20
p0 −∇2p0 = vp,j w0j,p (72)

taking D
Dt0

the leading order equations can be combined to give a third order wave equation

D

Dt0
[
D2

Dt20
p0 −∇2p0] = vp,j

D

Dt0
w0j ,p . (73)

For the slow portion of the compressible field D
Dt0

w0i,j = 0, and the following sourceless wave

equation describes the fast acoustic modes:

D

Dt0
[
D2

Dt20
p0 −∇2p0] = 0. (74)

In the general case D
Dt0

w0i,j 6= 0, and a Lilley type wave equation, Goldstein (1976), results:

D

Dt0
[
D2

Dt20
p0 −∇2p0] + vk,i p0,ik = −vk,i vp,k w0i,p . (75)

Had the problem included a mean shear a form of Lilley’s equations with the familiar factors of 2

in the refractive term and source terms would have resulted.
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