
[10] G. Ciardo and K. S. Trivedi. A decomposition approach for stochastic reward net

models. Perf. Eval., 18(1):37{59, 1993.

[11] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. The MIT

Press, Cambridge, MA, 1990.

[12] S. Donatelli. Superposed generalized stochastic Petri nets: de�nition and e�cient so-

lution. In R. Valette, editor, Application and Theory of Petri Nets 1994, Lecture Notes

in Computer Science 815 (Proc. 15th Int. Conf. on Applications and Theory of Petri

Nets, Zaragoza, Spain), pages 258{277. Springer-Verlag, June 1994.

[13] P. Kemper. Numerical analysis of superposed GSPNs. In Proc. Int. Workshop on Petri

Nets and Performance Models (PNPM'95), pages 52{61, Durham, NC, Oct. 1995. IEEE

Comp. Soc. Press.

[14] D. E. Knuth. Sorting and Searching. Addison-Wesley, Reading, MA, 1973.

[15] B. Plateau and K. Atif. Stochastic Automata Network for modeling parallel systems.

IEEE Trans. Softw. Eng., 17(10):1093{1108, Oct. 1991.

[16] W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton

University Press, 1994.

[17] M. Tilgner, Y. Takahashi, and G. Ciardo. SNS 1.0: Synchronized Network Solver. In

1st International Workshop on Manufacturing and Petri Nets, pages 215{234, Osaka,

Japan, June 1996.

20

A further technique based on event locality achieves an additional reduction in the exe-

cution time, with no additional memory cost.

The results substantially increase the size of the reachability sets that can be managed,

and they can be particularly e�ective for the Kronecker-based approaches that have recently

been proposed.

In the future, we will investigate how to use our approach in a distributed fashion, as done

in [6], where N cooperating processes explore di�erent portions of the reachability set. In

particular, we plan to apply the data structure we presented and to explore ways to balance

the load among the cooperating processes automatically.

References

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling

with generalized stochastic Petri nets. John Wiley & Sons, 1995.

[2] P. Buchholz. Numerical solution methods based on structured descriptions of Markovian

models. In G. Balbo and G. Serazzi, editors, Computer performance evaluation, pages

251{267. Elsevier Science Publishers B.V. (North-Holland), 1991.

[3] P. Buchholz and P. Kemper. Numerical analysis of stochastic marked graphs. In

Proc. Int. Workshop on Petri Nets and Performance Models (PNPM'95), pages 32{

41, Durham, NC, Oct. 1995. IEEE Comp. Soc. Press.

[4] G. Chiola. Compiling techniques for the analysis of stochastic Petri nets. In Proc. 4th

Int. Conf. on Modelling Techniques and Tools for Performance Evaluation, pages 13{27,

1989.

[5] G. Ciardo, A. Blakemore, P. F. J. Chimento, J. K. Muppala, and K. S. Trivedi. Auto-

mated generation and analysis of Markov reward models using Stochastic Reward Nets.

In C. Meyer and R. J. Plemmons, editors, Linear Algebra, Markov Chains, and Queue-

ing Models, volume 48 of IMA Volumes in Mathematics and its Applications, pages

145{191. Springer-Verlag, 1993.

[6] G. Ciardo, J. Gluckman, and D. Nicol. Distributed state-space generation of discrete-

state stochastic models. ORSA J. Comp. To appear.

[7] G. Ciardo and A. S. Miner. SMART: Simulation and Markovian Analyzer for Reliability

and Timing. In Proc. IEEE International Computer Performance and Dependability

Symposium (IPDS'96), page 60, Urbana-Champaign, IL, USA, Sept. 1996. IEEE Comp.

Soc. Press.

[8] G. Ciardo, J. K. Muppala, and K. S. Trivedi. On the solution of GSPN reward models.

Perf. Eval., 12(4):237{253, 1991.

[9] G. Ciardo and M. Tilgner. On the use of Kronecker operators for the solution of gener-

alized stochastic Petri nets. J. of the Association for Computing Machinery. Submitted.

19

100

150

200

250

300

350

400

450

1 2 3 4 5

N

Search time for a single state after compression (kanban-timed)

Single i =2 R 3

3

3

3

3

3

Single i 2 R +

+

+

+

+

+

Multi i =2 R 2

2

2
2

2 2

Multi i 2 R �

�

� �

� �

Figure 14: Expected search times (microseconds) for the single and multilevel approach.

the main concern, is greatly reduced. At the same time, this reduction is achieved not at

the expense of, but in conjunction with, execution e�ciency.

18

R0 R1(a0) RK-1(a0,...,aK-2)R1(z0) RK-1(z0,...,zK-2)

|R0 |0 |R1 |0 |RK-1 |0

Local state index

Pointer to next level

Figure 13: Multilevel storage after the reachability set has been built.

desirable, since, as discussed before, only the last level has a major e�ect on the memory

requirements. Using 8 or 16 bit indices, we can then store R using only slightly more than

jRj or 2jRj bytes, respectively.

The execution time required to transform our tree-based multilevel data structure into

the array-based one is negligible, around 1/1000 of the time used by BuildRS. Hence, this

transformation is always advisable if searches are to be performed on R. This is the case,

for example, when computing 	(i) for some i 2 R̂, one of the essential operations in the

Kronecker approach we discussed. To further investigate the impact of our multilevel data

structure, we computed the expected time required to search for a reachable state i 2 R

(i.e., to compute 	(i) when i 2 R), and for a non-reachable state (i.e., to compute 	(i)

when it is null) in the kanban-timed model. Fig. 14 shows the results for the single vs. the

multilevel approach. The dramatic di�erence in the slope of the curves for the single and

multilevel approaches further con�rms that our results will greatly improve the e�ciency of

solution methods based on Kronecker operators.

Also, note how the curves for i 2 R and i 62 R intersect, in both cases. We generated

unreachable states by determining the bound bp on the number of tokens in each place p,

then randomly choosing a number np of tokens between 0 and bp for p, independently of the

other places. The resulting marking was (almost) always unreachable. For small reachability

sets, searching for a reachable state is faster than searching an unreachable state, because we

can sometimes stop the search before reaching a leaf. However, as the state space grows, it is

increasingly likely that, when searching for an unreachable state, the comparison between two

states (or substates, for the multilevel approach) stops after comparing just a few places.

Clearly, this e�ect more than o�sets the need to explore up to a leaf for the single-level

approach (in the multilevel approach, an additional advantage is that, for an unreachable

state, the search might stop at a level k < K � 1).

8 Conclusion

We have presented a detailed analysis of a multilevel data structure for storing and searching

the large set of states reachable in some high-level model. Memory usage, which is normally

17

BtrVectMatrMultiply(in: x, K, A0;A1; : : : ;AK�1
; inout: y)

1. for each i0 2 LocalSet(0; null) do

2. I0 LocalIndex(0; null; i0);

3. for each j0 s.t. A0
i0;j0

> 0 do

4. J0 LocalIndex(0; null; j0);

5. if J0 6= null then

6. a0 A0
i0;j0

;

7. for each i1 2 LocalSet(1; I0) do

8. I1 LocalIndex(1; I0; i1);

9. for each j1 s.t. A1
i1;j1

> 0 do

10. J1 LocalIndex(1; J0; j1);

11. if J1 6= null then

12. a1 a0 �A
1
i1;j1

;

. . .

13. for each iK�1 2 LocalSet(K � 1; IK�2) do

14. IK�1 LocalIndex(K � 1; IK�2; iK�1);

15. for each jK�1 s.t. AK�1
iK�1;jK�1

> 0 do

16. JK�1 LocalIndex(K � 1; JK�2; jK�1);

17. if JK�1 6= null then

18. aK�1 aK�2 �A
K�1
iK�1;jK�1

;

19. yJK�1 yJK�1 + xIK�1 � aK�1;

Figure 12: Improved procedure to multiply a vector by a submatrix of a Kronecker product.

7 Compressing R after exploration

So far we have discussed techniques to store the reachability set while it is being built by

procedure BuildRS. After this phase, though, dynamic data structures such as search trees

are unnecessary; a much more memory-e�cient data structure can be used. For superposed

GSPNs, this was proposed by Kemper [13], who uses an integer array of size jRj. The I-th

position of this array stores the I-th marking in lexical order, 	�1(I). Using this array, a

simple binary search can be used to compute 	(i) for a given i 2 R̂, where 	(i) = null if

i 62 R. An underlying assumption in [13] is that each marking can be encoded into a 32-bit

integer, and this might not be easy for very large models.

Our multilevel approach can help here as well. We can store the nodes of a tree at level

k < K � 1 as an ordered array of pairs of pointers (see Fig. 13). The �rst one points to the

local state for level k (alternatively, we could store either an index into an array containing

the elements of Rk in any order, or the local state itself); the lexical position of the particular

local state determines the array order. The second pointer points to the array used to store

the tree at the next level. At the last level, we do not need to store a pointer to a lower-level

tree, hence only one pointer or, better, one index is required for each node. This is very

16

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5

N

Time (kanban-timed)

Single 3

3 3 3

3

3

Multi +

+ + +
+

+
Local 2

2 2 2
2

2

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5

N

Time (kanban-immediate)

Single 3

3 3 3

3

3

Multi +

+ + +

+

+

Local 2

2 2 2

2

2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7

N

Time (FMS)

Single 3

3 3 3 3
3

3

3

Multi +

+ + + +
+

+

+
Local 2

2 2 2 2
2

2

2

Figure 11: Execution times (seconds) for the single and multilevel approach.

that its components 0 through k � 1 are identical to those of i. Hence, we can search for it

starting at Ik�1, that is, we only need to perform the K � k calls

LocalIndex(K � 1; : : :LocalIndex(k + 1;LocalIndex(k; Ik�1; ik); ik+1); : : : ; iK�1):

The savings due to these accelerated searches depend on the particular model and the parti-

tion chosen for it. We show the results for our three models in Fig. 11. In this case, savings

of 20% execution time or more are achieved. Except for the need to specify a partition,

which needs to be done anyway to use our multilevel approach, the technique is completely

automatic, and has no additional memory requirements.

6.2 Application to solutions based on Kronecker operators

We can also apply our multilevel approach and the principle of locality just introduced

to speed up procedure VectMatrMultiply, described in Section 4. An improved version,

BtrVectMatrMultiply of the same procedure is shown in Fig. 12. Its complexity is

O(�((A0)R0

0
;R0) � log n0 + �((A0
A1)R1

0
;R0

0
�R1) � log n1

+ � � � �((A0
 � � �
AK�1)
R
K�1

0
;R
K�2

0
�RK�1

) � log nK�1)

= O(�(A
R;R

K�2

0
�RK�1

) � log nK�1):

Indeed, the term \log nk" for the searches at level k is an upper bound, since the size of

the tree searched by LocalIndex is smaller than nk if there are any unreachable states; the

\average" size of a tree at level k is jRk
0j=jR

k�1
0 j � nk.

15

Section 7 further investigates the complexity of searching a state, reachable or not, after

the entire reachability set has been explored.

6.1 Exploiting event locality

Our multilevel search tree has an additional advantage which can be exploited to further

speed up execution. To illustrate the technique, we de�ne two functions:

� LocalSet(k; Ik�1), which, given a submodel index k, 0 � k < K, and a pointer Ik�1 to

a reachable substate (i0; : : : ; ik�1) 2 R
k�1
0 , returns a pointer to the tree containing the

set Rk(i0; : : : ; ik�1).

� LocalIndex(k; Ik�1; ik), which, given a submodel index k, 0 � k < K, a pointer Ik�1 to

a a reachable substate (i0; : : : ; ik�1) 2 R
k�1
0 , and a local state index ik 2 R

k, returns

the pointer Ik to substate (i0; : : : ; ik), if reachable, null otherwise.

Given our data structure, \a pointer Ik to a reachable substate (i0; : : : ; ik) 2 Rk
0" points to

the node corresponding to the local state ik in the tree containing the set Rk(i0; : : : ; ik�1).

To �nd whether state i is in (the current) R, we can then use a sequence of K function

calls

LocalIndex(K�1;LocalIndex(K � 2; : : :LocalIndex(1;LocalIndex(0; null; i0); i1); : : : iK�2)| {z }
IK�2

; iK�1):

The overall cost of these K calls is exactly what we just discussed when comparing the

single and multilevel approaches. However, if i is reachable and we now wanted to �nd the

index of a state i0 di�ering from i only in its last position, we could do so with a single

call LocalIndex(K � 1; IK�2; i0K�1), provided we have saved the value IK�2, the index of the

reachable substate (i0; : : : ; iK�2). A similar argument applies to other values of k. Only for

k = 0 we need to perform an entirely new search.

We can then exploit this \locality" by considering the possible e�ects of the events on

the state. Given R̂ = R0 � � � � RK�1, we can partition E into E0; : : : ; EK�1, such that

e 2 Ek ()
�
8i 2 R̂;Active(e; i) = True ^ j = New(e; i)) 8l; 0 � l < k; il = jl

�
;

that is, events in Ek can only change local states k or higher. For example, for GSPNs,

this is achieved by assigning to Ek all the transitions whose enabling and �ring e�ect on

the state depends only on places in sub-GSPN k, and possibly in sub-GSPNs k + 1 through

K � 1, but not in sub-GSPNs 1 through k � 1. This can be easily accomplished through an

automatic inspection even in the presence of guards and inhibitor and variable cardinality

arcs (although in this case the partition might be overly conservative, that is, it might assign

a transition to a level k when it could have been assigned to a level l > k).

When exploring state i, in procedure BuildRS, we remove i from U and insert it into R,

obtaining, as a byproduct, a sequence of pointers I�1 = null; I0; : : : ; IK�2, to the reachable

substates (i0); : : : ; (i0; : : : ; iK�2). Then, we can examine the events in E in any order. As

soon as we �nd an enabled event e 2 Ek, we generate i0 = New(e; i), and we are guaranteed

14

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5

N

Time (kanban-timed)

Single AVL 3

3 3 3

3

3

Single Splay +

+ + +

+

+

Multi AVL 2

2 2 2

2

2Multi Splay �

� � �

�

�

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5

N

Time (kanban-immediate)

Single AVL 3

3 3 3

3

3

Single Splay +

+ + +

+

+Multi AVL 2

2 2 2

2

2

Multi Splay �

� � �

�

�

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7

N

Time (FMS)

Single AVL 3

3 3 3 3
3

3

3

Single Splay +

+ + + +
+

+

+Multi AVL 2

2 2 2 2
2

2

2

Multi Splay �

� � � �
�

�

�

Figure 10: Execution times (seconds) for the AVL and splay trees.

the substate il we are looking for, so the jump from level l to level l + 1 might occur

before reaching a leaf.

� If i is already in R, instead, the search on the single-level tree will sometimes �nd i

before reaching a leaf, but this is true also at each level of the multilevel approach, just

as in the previous case, for the levels l < k.

� Perhaps even more important, regardless of whether i is already in the tree or not,

is the complexity of each comparison. With the multilevel approach, only substates

are compared, and these are normally small data structures. For GSPNs, this could

be an array of 8 or 16 bit integers, one for each place in the sub-GSPN (memory

usage is not an issue, since each local state for level k is stored only once). On the

other hand, with the single-level approach, entire states are compared. If the states

are stored as arrays, the comparison can stop as soon as one component di�ers in

the two arrays. However, as the search progresses down the tree, we compare states

that are increasingly close in lexical order, hence likely to have the same �rst few

components; this implies that comparisons further away from the root tend to be more

expensive. Furthermore, storing states as full arrays is seldom advisable. For example,

in SMART, a sophisticated packing is used, on a state-by-state base, to reduce the

memory requirements. In this case, the state in the node needs to be \unpacked"

before comparing it with i, thus e�ectively examining every component of the state.

13

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

1 2 3 4 5

N

Memory (kanban-timed)

Single 3

3 3 3

3

3

Multi +

+ + +
+

+

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

1 2 3 4 5

N

Memory (kanban-immediate)

Single 3

3 3 3

3

3

Multi +

+ + +

+

+

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

1 2 3 4 5 6 7

N

Memory (FMS)

Single 3

3 3 3 3

3

3

3

Multi +

+ + + +
+

+

+

Figure 9: Memory usage (bytes) for the single and multilevel approaches.

Fig. 9 shows the number of bytes used to store R and U , separately, for our three models,

using the single vs. the multilevel approach. The dashed boxes in Fig. 1 and 2 indicate how

the models have been decomposed into submodels, in all cases K = 4.

The multilevel approach is clearly preferable, especially for large models. Indeed, we

could not generate the state space using the single-level approach for N = 6 for the kanban-

timed model, while we could using the multilevel approach (all our experiments where run on

a Sun-clone with a 55 MhZ HyperSparc processor and 128 Mbyte of RAM, without making

use of virtual memory).

6 Execution time

Several factors need to be considered when studying the impact of our approach on the

execution time. First, we explored possible di�erences due to using splay trees vs. AVL

trees. Fig. 10 shows that no method is clearly better and that, in most cases, the di�erences

are minor in comparison to the e�ect due to the choice of a single vs. a multilevel data

structure.

We then focussed on this second factor, using AVL trees exclusively. The advantages of

the multilevel approach are:

� Consider �rst the case when BuildRS searches for a state i not yet in the currentR (the

same discussion holds for U). With a single-level tree, the search will stop only after

reaching a leaf, hence O(log jRj) comparisons are always performed. In the multilevel

approach, instead, the search stops as soon as the substate (i1; : : : ; ik) is not reachable,

for some k � K � 1. If all the trees at a given level are of similar size, this will require

at most O(log jRk
0j) comparisons. In practice, the situation is even more favorable,

because, for any level l < k, the tree searched, which stores Rl(i1; : : : ; il�1), contains

12

� First, the total number of nodes at levels 0 through K � 2 is a small fraction of the

nodes at level K � 1, that is, of jRj, provided the trees at the last level, K � 1, are

not \too small". This is ensured by an appropriate partitioning of a large model into

submodels. In other words, only the memory used by the nodes of the trees at the last

level really matters.

� Second, the nodes of the trees at the last level do not require a pointer to a tree at a

lower level, hence each node requires only three pointers (96 bits). Again, if we can

assume a bound on the number of local states for the last submodel, jRK�1j � 2b, we

can in principle implement dynamic data structures that require only 3b bits per node,

plus some overhead to implement dynamic arrays. Given a model, there is usually some

freedom in choosing the number of submodels, that is, the number of levels K. We

might then be able to de�ne the last submodel in such a way that is has at most 28 local

states, resulting in only slightly more than 3jRj bytes to store the entire reachability

set. When this is not the case, the next easily implementable step, 216, is normally

more than enough. Even in this case, the total memory requirements are still much

better than with a single-level implementation.

We stress that, while this discussion about using 8 or 16 bit indices seems to be excessively

implementation-dependent, it is not. Only through the multilevel approach it is possible to

exploit the small size of each local space. In the single-level approach, instead, the total

number of states that can be indexed (pointed by a pointer) is jRj, a number which can

be easily be 107, and possibly more. In this case, we are forced to use 32-bit pointers, and

we can even foresee a point in the not-so-distant future where even these pointers will be

insu�cient, while the multilevel approach can be implemented using 8 or 16 bit indices at

the last level regardless of the size of the reachability set, as long as RK�1 is not too large.

Just as with a single search tree, we can implement our multilevel scheme using splay

or AVL trees. However, the choice between storing R and U separately or as a single set

has subtler implications. If we choose to store them as a single set, distinguishing between

explored and unexplored states or, more precisely, being able to access the unexplored states

only, still requires one of the approaches discussed for the single-level case (Fig. 4). Since

only local states are stored for each level, without repetition, we can no longer use the state

array approach of Fig. 4(c). The other two methods, which involve maintaining a list of

unexplored states, would only allow us to access nodes in trees at level K � 1, which are

meaningless if we do not know the entire path from level 0. In other words, we would only

know the last component of each unexplored state, but not the �rst K � 1 components. To

obtain all the components, we must add a backward pointer from each node (conceptually,

from each tree, since all the nodes in a given tree have the same previous components) to a

node in the previous level, and so on. This additional memory overhead is substantial.

With the single-level approach, then, we store R[U in a single tree, using the state array

described in Fig. 4(c). With the multilevel approach, instead, we store R and U separately.

In this second case, states are truly deleted from U . However, we are free to remove states

in any order we choose. When using AVL trees, we use the balance information to choose,

at each level, a state in a leaf of the tree in such a way that no rebalancing is ever required.

11

i0

i1

iK-1i’K-1

i’1

i’0 } Level 0

Level 1

Level K-1

R0

R1(i0)

RK-1(i0,...,iK-2)

R1(i’0)

RK-1(i0,...,i’ K-2)

}

}
Figure 7: A multilevel storage scheme for R.

• = ><

= ><•

= ><• = ><•

= ><• = ><•

Rk(i0,...,ik-1) ak :

 fk :

 bk :

 ek :

 dk :

 ck :

Local states
for level k

Rk+1(i0,...,ik-1,ak)

Rk+1(i0,...,ik-1,bk)

Rk+1(i0,...,ik-1,ck)

Rk+1(i0,...,ik-1,dk) Rk+1(i0,...,ik-1,fk)

Rk+1(i0,...,ik-1,ek)

Figure 8: A tree at level k < K � 1, pointing to trees at level k + 1.

The total number of nodes used for trees at level k equals the number of reachable

substates up to that level, jRk
0j, hence the total number of tree nodes for our multilevel data

structure is
K�1X

k=0

jRk
0j > jR

K�1
0 j = jRj

where the last expression is the number of nodes required in the standard single-level ap-

proach of Fig. 4. Two observations are in order:

10

0 •

1 •

0 •

1 •

0 •

1 •

2 •

2 •

4 •

1 •

 a : 0 0 1

 b : 0 0 2

 c : 0 1 1

 d : 1 0 2

 e : 0 0 4

a

b

e

c

d

Figure 6: Chiola's storage scheme to store the reachability set of a SPN.

�xed-size vector i = (i0; i1; : : : ; iK�1), he proposed the strategy illustrated in Fig. 6, copied

from [4]. In the �gure, it is assumed that the SPN has three places, and that there are �ve

reachable markings, a through e. A three-level tree is then used. The �rst level discriminates

markings on their �rst component (either 0 or 1); the second level discriminates on their

second component (also either 0 or 1) within a given �rst component; �nally, the third level

fully determines the marking using the third component (1, 2, or 4).

While it is sometimes possible to apply the Kronecker approach where \submodels" are

individual places of the SPN [9], this is seldom desirable. Hence, we will use a multilevel

approach with K levels, one for each submodel (a sub-GSPN), as shown in Fig. 7. Before

explaining this data structure, we need to de�ne the following sets:

� The set of reachable substates up to k:

Rk
0 = f(i0; : : : ; ik) 2 R

0�� � ��Rk : 9(ik+1; : : : ; iK�1) 2 R
k+1�� � ��RK�1; (i0; : : : iK�1) 2 Rg:

Clearly, RK�1
0 coincides with R itself, while R0

0 coincides with R
0 i� every element of

the local state space 0 can actually occur in some global state, and so on.

� The set of reachable local states inRk conditioned on a reachable substate (i0; : : : ; ik�1) 2

Rk�1
0 :

Rk(i0; : : : ; ik�1) = fik 2 R
k : (i0; : : : ; ik) 2 R

k
0g:

Clearly, this set, when de�ned (i.e., when indeed (i0; : : : ; ik�1) 2 R
k�1
0), is never empty.

In Fig. 7, level k 2 f0; : : : ;K � 1g contains jRk�1
0 j search trees, each one storing

Rk(i0; : : : ; ik�1), for a di�erent reachable substate (i0; : : : ; ik�1) 2 R
k�1
0 . Thus, a generic

tree at level k < K � 1 has the structure shown in Fig. 8. In each one of its nodes, the

\�" pointer points to a tree at level k + 1. In the drawing, the local states for level k are

stored in an unsorted dynamically extensible array, in the order in which they are found,

and pointed by the \=" pointer in each node. Alternatively, it is possible to store a local

state directly in the node. If the submodel is quite complex, this second alternative might be

not as memory e�ective, since a local state can require several bytes for its encoding, which

are then repeated in each node, instead of just a pointer. Furthermore, if we can assume an

upper bound on the number of local states for a given submodel (e.g., 216), we can store an

index (16 bits) into the local state array, instead of a pointer (usually 32 bits).

9

VectMatrMultiply(in: x, K, R, A0;A1; : : : ;AK�1
; inout: y)

1. for each i 2 R do

2. I 	(i);

3. for each j0 s.t. A0
i0;j0

> 0 do

4. a0 A0
i0;j0

;

5. for each j1 s.t. A1
i1;j1

> 0 do

6. a1 a0 �A
1
i1;j1

;

. . .

7. for each jK�1 s.t. AK�1
iK�1;jK�1

> 0 do

8. aK�1 aK�2 �A
K�1
iK�1;jK�1

;

9. J 	(j);

10. if J 6= null then

11. yJ yJ + xI � aK�1;

Figure 5: Procedure to multiply a vector by a submatrix of a Kronecker product.

approach based on Kronecker algebra over data structures of size O(jRj). For example,

with the Power method, x is the old iterate for � while y accumulates what will be

the new iterate. We stress that the procedure VectMatrMultiply relies heavily on the

extreme sparsity of the matrices involved (assumed to be stored in sparse row-wise

format), while algorithms such as those proposed by Plateau and Stewart [16] are

more appropriate for full matrices.

In the case of superposed GSPNs [12], the test J 6= null of statement 10 is always

satis�ed, hence, it should be apparent that procedure VectMatrMultiply considers all

and only the nonzero entries in the submatrix AR;R of A. The overall complexity is

then a�ected by the log jRj overhead to compute the index J of j in R, in statement

9, within the innermost for-loop:

O (�(AR;R) � log jRj) :

Hence, two main limitations in [13] prevent the application of this approach to truly

enormous problems. First, the storage of the state space R and of the iteration vectors, also

of size jRj might require excessive memory. Second, from an execution time standpoint, the

log jRj factor represents an additional complexity with respect to the traditional approach

where the iteration matrix is stored explicitly.

In the next sections, we show how the memory requirements can be reduced, while

improving the execution complexity at the same time.

5 A multilevel search tree to store R

We extend work by Chiola, who de�ned a multilevel technique to store the reachable markings

of a SPN [4]. Since the state, or marking, of a SPN with K places can be represented as a

8

of customers in queue k. However, a realistic model can easily have dozens of queues; so

it might be more e�cient to partition the queues into K sets, and let ik be the number of

possible combinations of customers into the queues of partition k. An analogous discussion

applies to stochastic Petri nets (SPNs), and even to more complex models, as long as they

have a �nite state space.

Such a structured model de�nition is essential to the Kronecker approach for the spec-

i�cation and solution of complex Markov models recently proposed by various authors

[2, 3, 12, 13, 15]. The main idea is that the in�nitesimal generator Q of a large model

composed of K submodels can be described as (a submatrix of) a sum of Kronecker prod-

ucts of K smaller matrices, each related to a di�erent submodel. Without going into further

details, we simply list a few key features of this approach, which prompted much of our work.

� The potential set R̂ is the Cartesian product of K local state spaces, one for each

submodel. Our lexical order can be applied just as well to R̂, hence we can de�ne a

bijection 	̂ : R̂ ! f0; : : : ; jR̂j � 1g, analogous to 	. Indeed, 	̂ has a fundamental

advantage over 	: its value equals its argument interpreted as a mixed base integer,

	̂(i) = (: : : ((i0)n1 + i1)n2 � � �)nK�1 + iK�1 =
K�1X

k=0

ik � n
K�1
k+1 ;

where nji =
Qj

k=i nk.

� The reachability set R may coincide with R̂, but it is more likely to be much smaller,

since many combinations of local states might not occur.

� Numerical solutions compute the steady-state probabilities of each state using either

a vector �̂ of size jR̂j or a vector � of size jRj. In the former case, the probability

of state i 2 R is stored in �̂	̂(i), while the entries of �̂ corresponding to unreachable

states are not used, they are initially set to zero and never modi�ed [12]. In the

latter case, the same probability is stored in �	(i) [13]. We prefer this second approach

because it requires potentially much less memory. However, as described by Kemper, its

complexity has an additional O(log jRj) multiplicative factor, since, for each reachable

state i 2 R and for each possible transition from i to j, the index 	(j) of j in � must

be computed using a binary search.

� Any steady-state or transient solution method that avoids storage and execution com-

plexity of order jR̂j must iterate over the elements of R in some order. The lexical

order is acceptable, especially for methods such as Power, Jacobi, or Uniformization,

which are not a�ected by the order in which the variables are considered. To clarify the

relevant complexity issues, we show procedure VectMatrMultiply in Fig. 5, to perform

the assignment

y y + x �
�
A0
A1
 � � �
AK�1

�
R;R

;

where Ak is a matrix of order nk and the subscript \R;R" indicates the submatrix of

the Kronecker product corresponding to the reachable states only. This is the main

operation needed when solving for the steady state or transient probabilities for any

7

h ><

c >< k ><

i >< l >< f ><

e >< g ><

d ><

a >< j >< m ><

••

R∪U

•• •• •• •• •U

c >< l ><

d ><

f ><

a >< i ><

h ><

k ><

b >< e ><

g ><

j >< m ><

R

U

= ><

= >< = ><

= >< = ><= >< = ><

= >< = ><

= ><

= >< = >< = ><

R∪U

a

b

c

d

e

f

g

i

j

k

l

m

h
U

h ><

c >< k ><

i >< l >< f ><

e >< g ><

d ><

a >< j >< m ><

R∪U

•

•

• •

•U

(a) (b)

(c)

(d)

Figure 4: Four simple storage schemes for R and U .

N jRj for kanban-timed jRj for kanban-immediate jRj for FMS

1 160 152 54

2 4,600 3,816 810

3 58,400 41,000 6,520

4 454,475 268,475 35,910

5 2,546,432 1,270,962 152,712

6 11,261,376 4,785,536 537,768

7 - - 1,639,440

Table 1: Reachability set size for the three models, as a function of N .

4 Structured state spaces

We now assume that R̂ can be expressed as the Cartesian product of K \local" state spaces:

R̂ = R0�� � ��RK�1, and that Rk is simply f0; : : : nk�1g, although nk might not be known

in advance. Hence, a (global) state is a vector i 2 f0; : : : n0�1g�� � ��f0; : : : nK�1�1g. For

example, if the high-level model is a single-class queuing network, ik could be the number

6

We consider two alternatives, both based on binary search trees: splay trees [11] and

AVL trees [14]. The execution complexity2 of BuildRS when using either method is

O (jRj � jEj �CActive + jAj � (CNew + log jRj �CCompare)) ;

where Cx is the (average) cost to a call to procedure x. For AVL trees, the storage complexity,

expressed in bits, is

O (jRj � (Bstate + 2Bpointer + 2)) ;

where Bstate is the (average) number of bits to store a state, Bpointer is the number of bits for

a pointer. The additional two bits are used to store the node balance information. For splay

trees, the complexity is the same, except for the two-bit balance, which is not required.

Regarding the use of binary search trees in BuildRS, we have another choice to make.

We can use a single tree to store R[U in BuildRS as shown in Fig. 4(a,b,c), or two separate

trees, as in Fig. 4(d). Using a single tree has some advantages:

� No deletion, possibly requiring a rebalancing, is needed when moving a state from U

to R.

� Procedure SearchInsert needs to perform a single search with log(jR[Uj) comparisons,

instead of two searches in the two trees for R and U , which overall require more

comparisons (up to twice as many), since

log jRj+ log jUj = log(jRj � jUj) > log(jRj+ jUj) = log(jR [Uj)

(of course, we mean \the current R and U" in the above expressions).

However, it also has disadvantages. As explored and unexplored states are stored together

in a single tree, there must be a way to identify and access the nodes of U . We can accomplish

this by:

� Maintaining a separate linked list pointing to the unexplored states. This requires an

additional O(2jUj �Bpointer) bits, as shown in Fig. 4(a).

� Storing an additional pointer in each tree node, pointing to the next unexplored state.

This requires an additional O(jRj �Bpointer) bits, as shown in Fig. 4(b).

� Storing the markings in a dynamic array structure. In this case, the nodes of the

tree contain indices to the array of markings, instead of the markings themselves. If

markings are added to the array in the order they are discovered, R occupies the

beginning of the array, while U occupies the end. This requires an additional O(jRj �

Bindex) bits, where Bindex is the number of bits required to index the array of markings,

as shown in Fig. 4(c)

The size of R for our three models is shown in Table 1, as a function of N . Since

the models are GSPNs, they give rise to \vanishing markings", that is, markings enabling

only immediate transitions, in which the sojourn time is zero. In all our experiments, these

markings are eliminated \on the
y" [8], so that all our �gures regarding R re
ect only the

\tangible" reachable markings.

2We leave known constants inside the big-O notation to stress that they do make a di�erence in practice,

even if they are formally redundant.

5

BuildRS(in: Events, Active, New; out: R);

1. R ;; /* R: states explored so far */

2. U fi0g; /* U : states found but not yet explored */

3. while U 6= ; do

4. i ChooseRemove(U);

5. R R[fig;

6. for each e 2 E s.t. Active(e; i) = True do

7. j New(e; i);

8. SearchInsert(j;R[U ;U);

Figure 3: Procedure BuildRS

events. Formally, R is the smallest subset of R̂ satisfying:

� i0 2 R, and

� i 2 R ^ 9e 2 E;Active(e; i) = True ^ i0 = New(e; i)) i0 2 R.

While a high-level model usually speci�es other information as well (the stochastic timing

of the events, the measures that should be computed when solving the model, etc.), the above

description is su�cient for now, and it is not tied to any particular formalism.

R can be generated using the state-space exploration procedure BuildRS shown in Fig. 3,

which terminates if R is �nite. This is a search of the graph implicitly de�ned by the model.

Function ChooseRemove chooses an element from its argument (a set of states), removes it,

and returns it. Procedure SearchInsert searches the �rst argument (a state), in the second

argument (a set of states) and, if not found, it inserts the state in its third argument (also

a set of states).

The \reachability graph", (R;A), has as nodes the reachable states, and an arc from i

to j i� there is an event e such that Active(e; i) = True and New(e; i) = j. Depending on

the type of analysis, the arc might be labelled with e; this might result in a multigraph, if

multiple events can cause the same change of state. While we focus on R alone, the size of

A a�ects the complexity of BuildRS.

A total order can be de�ned over the elements of R: i < j i� i precedes j in lexical order.

We can then de�ne a function Compare : (R̂ � R̂) ! f�1; 0; 1g returning �1 if the �rst

argument precedes the second one, 1 if it follows it, and 0 if the two arguments are identical.

This order allows the e�cient search and insertion of a state during BuildRS. Once R has

been built, we can de�ne a bijection 	 : R ! f0; : : : ; jRj � 1g, such that 	(i) < 	(j) i�

i < j.

Common techniques to store and search the sets R and U include hashing and search

trees. Hashing would work reasonably well if we had a good bound on the �nal size of

the reachability set R, but this is not usually the case. We prefer search trees: when kept

balanced, they have more predictable behavior than hashing.

4

N

pm1
tm1redo1

tin1

pkanban1

pout1

pback1
tback1

tm1ok1

N

pm2
tm2redo2

tin2

pkanban2

pout2

pback2
tback2

tm2ok2

N

pm3
tm3redo3

pkanban3

pout3

pback3
tback3

tm3ok3

N

pm4
tm4redo4

pkanban4

pout4
tout4

pback4
tback4

tm4ok4
tsynch1

= tout1
= tin2

= tin3

tsynch2
= tout2

= tout3
= tin4

Figure 1: The GSPN of a Kanban system.

3 The reachability set

From the high-level description, we can build the \reachability set", R � R̂. This is the

set of states that can be reached from i0 through the occurrence of any sequence of enabled

tP3 P3sP3M2

P1
k

M1 3

2

1

k

k

tP1

P1wM1 P1M1 P1d

P1s

P1wP2

P2wP1

P2s

P2dP2M2P2wM2

P2

M2

M3

P12P12wM3P12M3P12s

tM1 tP1M1
tP1e

tP1j

tP1s

tx

tP12

tM3tP12M3
tP12s

tP2 tM2
tP2M2 tP2e

tP2j

tP2s

tP3s
tP3M2P3

Figure 2: The GSPN of a FMS system.

3

this case, the storage bottleneck is indeed due to the state space and the probability vectors

allocated when computing the numerical solution.

Sections 2, 3, and 4 de�ne the type of high-level formalismswe use, discuss the reachability

set and its storage, and motivate the decomposition of a model into submodels, respectively.

Our main contributions are in Sections 5 and 6, where we introduce a multilevel data struc-

ture and show how it can be used to save both memory and execution time when building

the reachability set. Section 7 further explores storing and searching the reachability set

after it has been built. Finally, Section 8 contains our �nal remarks.

2 High-level model description

We implemented our techniques in SMART [7], using the GSPN formalism [1, 5]. However,

these techniques can be applied to any model expressed in a \high-level formalism" which

de�nes:

� The \potential set", R̂. This is a discrete set, assumed �nite, to which the states of

the model must belong1.

� A �nite set of possible events, E.

� An initial state, i0 2 R̂.

� A boolean function de�ning whether an event is active (can occur) in a state, Active :

E � R̂ ! fTrue; Falseg.

� A function de�ning the e�ect of the occurrence of an active event on a state: New :

E � R̂ ! R̂.

Fig. 1 and 2 show the two GSPNs used throughout this paper to illustrate the e�ect of

our techniques (ignore for the moment the dashed boxes). The �rst GSPN models a kanban

systems, from [9, 17]. It is composed of four instances of essentially the same sub-GSPN.

The synchronizing transitions tsynch1 and tsynch2 can be either both timed or both immediate,

we indicate the two resulting models as kanban-timed and kanban-immediate. The second

GSPN models a
exible manufacturing system, from [10], except that the cardinality of all

arcs is constant, unlike the original model (this does not a�ect the number of reachable

markings). We indicate this model as FMS. We do not describe these models in more detail,

the interested reader is referred to the original publications where they appeared.

1A point about notation: we denote sets by upper case calligraphic letters. Lower and upper case bold

letters denote vector and matrices, respectively. �(A) is the number of nonzero entries in a matrix A; Ai;j

is the entry in row i and column j of A; AX ;Y is the submatrix of A corresponding to the set of rows X and

the set of columns Y.

2

1 Introduction

Extremely complex systems are increasingly common. Various types of high-level models

are used to describe them, study them, and forecast the e�ect of possible modi�cations.

Unfortunately, the logical and dynamic analysis of these models is often hampered by the

combinatorial explosion of their state spaces, a problem inherent with discrete-state systems.

Possible solutions are:

� Use approximate or bounding analysis methods. These are particularly e�ective when

studying the performance or reliability of a system described by a stochastic model

(such as a queueing network or a stochastic Petri net).

� Use discrete-event simulation. This does not require the generation and storing of the

entire state space. However, it is a Montecarlo method, and hence it can only state that

a certain condition is (or is not) encountered with a certain probability. For example, if

the simulation runs performed during an experiment don't �nd a deadlock, we cannot

conclude with certainty that the system is deadlock-free.

� Use exact methods that cope with large state spaces. These include the use of bet-

ter algorithms and data-structures and of distributed approaches exploiting multiple

workstations, plus, of course, the trivial (but expensive) approach of increasing the

amount of RAM.

We stress that the above approaches are not mutually exclusive. Indeed, it is quite

common to use exact methods in the early stages of a system's design, when studying

rough models over a wide range of parameter combinations, and then focus on more detailed

models using approximate methods or simulation. Indeed, many approximate decomposition

approaches use exact methods at the submodel level, thus introducing errors only when

exchanging or combining (exact) results from di�erent submodels. Then, the ability of

applying exact methods to larger models will normally result in better approximations: it

is likely that the study of a large model decomposed into four medium-size submodels, each

solved with exact methods, will be more accurate than that of the same model decomposed

into ten small-size submodels.

The �rst problem when applying exact methods is the generation and storage of the state

space. For performance or reliability analysis, the model is then used to generate a stochastic

process, often a continuous-time Markov chain (CTMC), which is solved numerically for

steady-state or transient measures. The state space itself can be of interest since it can be

used to answer questions such as existence of deadlocks and livelocks or liveness.

In this paper, we focus on techniques to store and search the state space. However, while

we do not discuss the solution of the stochastic process explicitly, our results apply not only

to the \logical" analysis of the model, but even more so to its \stochastic analysis" (indeed,

this was our initial motivation). This is particularly true given the recent developments on

the solution of complex Markov models using Kronecker operators [2, 3, 9, 12, 13, 15, 17]

which do not require the storage of the in�nitesimal generator of the CTMC explicitly. In

1

Storage alternatives for large structured state spaces�

Gianfranco Ciardo Andrew S. Miner

Dept. of Computer Science

College of William and Mary

Williamsburg, VA 23187-8795, USA

fciardo,asminerg@cs.wm.edu

Abstract

We consider the problem of storing and searching a large state space obtained from a high-

level model such as a queueing network or a Petri net. After reviewing the traditional

technique based on a single search tree, we demonstrate how an approach based on multiple

levels of search trees o�ers advantages in both memory and execution complexity, and how

solution algorithms based on Kronecker operators greatly bene�t from these results. Further

execution time improvements are obtained by exploiting the concept of \event locality." We

apply our technique to three large parametric models, and give detailed experimental results.

�This research was partially supported by the National Aeronautics and Space Administration under

NASA Contract No. NAS1-19480 while the �rst author was in residence at the Institute for Computer

Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-

00091 and by the Center for Advanced Computing and Communication under Contract 96-SC-NSF-1011

i

