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A WAVELET OPTIMIZED ADAPTIVE MULTI-DOMAIN METHOD

J. S. HESTHAVEN∗ AND L. M. JAMESON†

Abstract. The formulation and implementation of wavelet based methods for the solution of multi-
dimensional partial differential equations in complex geometries is discussed. Utilizing the close connection
between Daubechies wavelets and finite difference methods on arbitrary grids, we formulate a wavelet based
collocation method, well suited for dealing with general boundary conditions and nonlinearities.

To circumvent problems associated with completely arbitrary grids and complex geometries, we propose
to use a multi-domain formulation to solve the partial differential equation, with the ability to adapt the grid
as well as the order of the scheme within each subdomain. In addition to supplying the required geometric
flexibility, the multi-domain formulation also provides a very natural load-balanced data-decomposition,
suitable for parallel environments.

The performance of the overall scheme is illustrated by solving two dimensional hyperbolic problems.
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1. Introduction. The ability of wavelets to accurately and efficiently represent strongly inhomogeneous
piecewise continuous functions[1, 2, 3] has spawned intensive research into applying wavelets for the solution
of partial differential equations with the promise of significantly reducing the necessary computational effort
and memory requirements. Traditionally, this effort has been centered around using wavelets as an orthogonal
and complete basis, spanning a space in which to seek approximate solutions satisfying the equation in a
Galerkin sense [4, 5, 6]. Besides from the well known difficulties associated with such an approach for non-
linear problems, one is also faced with the problem of dealing with non-trivial boundary conditions in an
accurate and stable manner.

Such restrictions on the applicability of wavelet based methods for the solution of problems of more
general interest have, in recent years, induced significant interest into grid-based collocation wavelet methods,
with various different approaches being taken [4, 6, 7, 8, 9]. The formulation and implementation of multi-
dimensional pure wavelet collocation methods, however, remains a challenging task and many issues require
attention.

In the present work we take a somewhat different approach to arrive at a grid based method utilizing the
unique properties of wavelets. Rather than using the wavelets as a basis, we utilize the ability of wavelets to
not only detect the existence of high-frequency information but also to supply information about the spatial
location of such strongly inhomogeneous regions. Such a region would, in the Galerkin formulation, require
one to use many wavelet coefficients while, within a collocation formulation, such information would indicate
the need for a very fine grid.
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The gap between wavelets and finite difference schemes may seem rather large. However, a very close
connection between these two issues has recently been established in a series of papers [10, 11, 12] in which
it has been advocated that wavelets should be used for grid generation and order selection only, whilst
the scheme for solving the partial differential equation is based solely on finite difference schemes defined on
variable grids. In particular, as we shall discuss in some detail shortly, the differentiation operators associated
with wavelet based collocation methods are in some cases are equivalent to operators appearing from variable
grid finite difference operators [13, 14]. This suggests that the wavelet analysis provides the information
required to construct adaptive finite difference schemes on arbitrary grids with the error estimation being
based on the wavelet analysis. Using this finite difference interpretation immediately alleviates the problems
associated with non-linear terms and, to some extend, with arbitrary boundary conditions through the use
of one-sided finite difference schemes. We shall return to this very fruitful connection between collocation
wavelet methods and finite difference schemes in the following section.

Let us, however, for a minute simply claim that wavelets provide the proper tool for the formulation
of adaptive, arbitrary grid finite difference schemes and consider the difficulties associated with taking such
an approach. Besides from obvious difficulties associated with implementing an arbitrary grid and order
multi-dimensional finite difference method, finite difference schemes defined on arbitrary grids are known to
introduce numerical artifacts [7, 6], resulting in an amplification of numerical noise and, as a consequence,
makes coarsening in smooth regions of the solution a less than trivial task, in particular when considering
the use of high-order methods. Moreover, it is well known that wavelets are best suited for application on
equidistant grids which, for problems beyond one dimension, suggests a tensor-product approximation. This,
on the other hand, makes the application of such methods hard for problems in complex domains.

The requirement for a somewhat structured grid, while maintaining the need for geometric flexibility,
points towards the introduction of a multi-domain formulation as the proper way of progressing. Indeed, as
has been realized over the last decade within the community of spectral methods [15, 16, 17], multi-domain
methods alleviate many of the problems associated with the use of high order methods in complex geometries,
while, for many problems, providing the computationally most efficient framework [18] in which to solve a
multitude of problems of more general interest. In this work, we propose to combine the geometric flexibility
and computational efficiency of a multi-domain scheme with the adaptivity, facilitated by the wavelet analysis
and the associated finite difference operators, to arrive at a scheme which, as we shall see, circumvents most
of the problems discussed above while, at the same time, providing a very natural data-decomposition and
a mechanism for load-balancing within a parallel framework.

The remaining part of this paper is organized as follows. In Section 2 we discuss the relation between
finite-difference methods on arbitrary grids and the wavelet decomposition based on Daubechies wavelets.
To extend the wavelet based grid and order adaptation to multi-dimensional and geometrically complex
problems, we find it necessary to introduce a minimum amount of structure into the global grid. These
issues are addressed in Section 3 where we propose to combine the wavelet analysis with a multi-domain
formulation such as to alleviate various problems hitherto associated with wavelet based methods. Examples
of the performance of the scheme for solving pure wave problems is also included, while Section 4 contains
a few concluding remarks.

2. From Wavelets to Finite-Difference Methods. In the following we shall discuss various aspects
of the relation between collocation wavelet methods and finite-difference schemes to arrive at a proper
understanding and formulation of wavelet based methods for the solution of partial differential equations.
We shall also address the issue of computational efficiency of such wavelet optimized finite-difference methods
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and compare them to traditional compression based schemes.

2.1. Wavelets and Relations. Let us, however, first recall a few fundamental properties of wavelets,
essential for the subsequent discussion.

The term wavelet is used to describe a spatially localized function, i.e. the wavelet is assumed to have
compact or almost compact support. We shall restrict the attention to wavelets having compact support
and focus only on the family defined Daubechies [19, 2].

To define the Daubechies wavelets, consider the two functions, φ(x) and ψ(x), appearing as solutions to
the equations

φ(x) =
√

2
L−1∑
k=0

hkφ(2x− k),(1)

ψ(x) =
√

2
L−1∑
k=0

gkφ(2x− k),(2)

with φ(x) being normalized as ∫ ∞

−∞
φ(x)dx = 1 .

Let

φj
k(x) = 2−

j
2φ(2−jx− k) , ψj

k(x) = 2−
j
2ψ(2−jx− k) ,

where j, k ∈ Z, denote the dilations and translations of the scaling function, φj
k(x), and the wavelet, ψj

k(x),
respectively.

The sets, H = {hk}L−1
k=0 and G = {gk}L−1

k=0 , are related as gk = (−1)khL−1−k for k = 0, ..., L − 1. Fur-
thermore, H and G are chosen so that dilations and translations of the wavelet, ψj

k(x), form an orthonormal
basis on L2(R) and such that the mother wavelet, ψ(x), has M = L/2 vanishing moments. In other words,
ψj

k(x), satisfies

δklδjm =
∫ ∞

−∞
ψj

k(x)ψm
l (x)dx ,(3)

where δkl is the Kronecker delta function, and the mother wavelet, ψ(x) = ψ0
0(x), satisfies

∀m ∈ [0, . . . ,M − 1] :
∫ ∞

−∞
ψ(x)xmdx = 0 .(4)

It is usual to let the spaces spanned by φj
k(x) and ψj

k(x) over the parameter k, with j fixed, be denoted by
Vj and Wj , i.e.

Vj = span
{
φj

k(x)
}

k∈Z
, Wj = span

{
ψj

k(x)
}

k∈Z
.

These spaces, Vj and Wj , are related as [19]

... ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ ...,

and

Vj = Vj+1 ⊕Wj+1 ,
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i.e. Wj+1 is the orthogonal complement of Vj+1 in Vj . Utilizing orthonormality of the wavelets, ψj
k, we

obtain the important statement

L2(R) =
⊕
j∈Z

Wj ,(5)

i.e. the wavelet basis is complete. Hence, any f(x) ∈ L2(R) can be written as,

f(x) =
∑
j∈Z

∑
k∈Z

dj
kψ

j
k(x) ,(6)

where the set of expansion coefficients, {djk}, appears as a result of orthogonality

dj
k =

∫ ∞

−∞
f(x)ψj

k(x)dx ,(7)

where the decay of the expansion coefficients depends on the local regularity of f(x) as

|dj
k| ≤ C2−j L+1

2 max
ξ∈[k2−j ,(k+M−1)2−j ]

∣∣∣f (M)(ξ)
∣∣∣ .(8)

From Eq.(8) we find that if f(x) behaves like a polynomial of order less than M inside the small interval,
then dj

k vanishes exactly. If f (M) differs from zero, it will nevertheless decay exponentially with the scale
parameter, j. Indeed, the information given by Eq.(8) is of very local character and isolated strong gradients
does not ruin the decay away from such features, a scenario much different from expansions based on
polynomials, see e.g. [15]. Thus, by considering the magnitude of dj

k one obtains a local measure of the
variation of the function, an observation crucial to the remaining part of this work.

Naturally, infinite sums and integrals are meaningless when one begins to implement a wavelet expansion
on a computer and we must limit the range of the scale parameter j and the location parameter k.

In the wavelet expansion, Eqs.(6)-(7), functions with arbitrarily small-scale structures can be represented.
In practice, however, there is a limit to how small the smallest structure can be depending on, e.g., the
numerical grid resolution or the sampling frequency in a signal processing scenario. Hence, on a computer
an approximation would be constructed in a finite space such as

V0 = W1 ⊕W2 ⊕ . . .⊕WJ ⊕ VJ ,

with the approximation being

PV0f(x) =
∑
k∈Z

sJ
kφ

J
k (x) +

J∑
j=1

∑
k∈Z

dj
kψ

j
k(x) ,(9)

with

dj
k =

∫ ∞

−∞
f(x)ψj

k(x) , sJ
k =

∫ ∞

−∞
f(x)φJ

k (x) ,

utilizing orthogonality. Within this expansion, the scale j = 0 is arbitrarily chosen as the finest scale
required, and scale J would be the scale at which a kind of local average, φJ

k (x), provides sufficient large
scale information, i.e. the first term in Eq.(9) provides the local mean around which the function oscillates.
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One must also limit the range of the location parameter, k Assuming periodicity of f(x) implies period-
icity on all wavelet coefficients, sj

k and dj
k, with respect to k. For the non-periodic case, since k is directly

related to the location, a natural limit is imposed on k through the extension of the finite domain.
The number of vanishing moments, M , of the wavelet, ψ(x), defines the accuracy of approximation. For

Daubechies wavelets, DL, the number of elements in H and G, or the length of the filters H and G, denoted
by L, is related to the number of vanishing moments M by 2M = L. Moreover, L also reflects the support
of the wavelet, i.e. small L implies narrow local support.

The famous Haar wavelet, which also enters as D2, is arrived at by defining H as h0 = h1 = 1. For this
filter, H , the solution to the dilation equation, Eq.(1), φ(x), is the box function

φ(x) =

{
1 x ∈ [0, 1]
0 otherwise

.

While the Haar function is very useful as a learning tool it is not very useful as a basis function by which to
expand another function as it is only C0. The filter coefficients, H , needed to define compactly supported
wavelets with a higher degree of regularity can be found in [19]. As expected, the regularity increases with
the support of the wavelet.

2.2. Wavelet Differentiation and Finite Difference Grid Adaptation. In the following we shall
show that Daubechies-based wavelet methods, when considered in physical space, are equivalent to explicit
finite difference methods with local grid refinement. In a Daubechies wavelet method the refinement is
accomplished by adding wavelet basis functions, dj

k, in Eq.(9), in regions where structure exists corresponding
to the scale of the wavelet used for analysis. On the other hand, in a finite difference method refinement is
accomplished by adding grid points in regions chosen according to some error estimator.

We argue that since wavelet methods correspond to central finite difference operators when the grid is
uniform and since wavelet methods contain a natural and effortless mechanism for increased local resolution,
wavelets, or rather the magnitude of the wavelet coefficients, dj

k, supplies the sought after local error estima-
tor. Hence, the wavelet coefficients play an indirect role only, while the computational kernel is based solely
on the use of finite difference operators on non-uniform grids. Thus, boundary conditions are imposed in
a way similar to that of finite difference operators through the use of one-sided differences. Moreover,there
is no longer a difficulty with nonlinear terms requiring constant transformation between the physical space
and the coefficient space since all calculations are done in the physical space.

However, to realize that this is indeed the most beneficial use of the wavelet expansions, we shall need
to take a deeper look at the computation of derivatives using wavelet expansions. We shall arrive at this
result through a number of steps, starting with the construction of the wavelet decomposition matrix and
the relation between finite difference schemes and the derivative of D4 approximations of periodic functions.
A final argument for this particular use of wavelet expansions shall be emphasized in terms of a discussion
of computational complexity of the pure wavelet scheme compared to that of the wavelet optimized finite
difference scheme.

2.2.1. Wavelet and Finite Difference Derivatives. The wavelet decomposition matrix is the matrix
embodiment of the dilation equation, Eq.(1), defining the scaling function and the accompanying equation
defining the wavelet, Eq.(2). The following two recurrence relations for the coefficients, sj

k and dj
k, in Eq.(9)

are given as

sj
k =

L∑
n=1

hns
j−1
n+2k−2 , dj

k =
L∑

n=1

gns
j−1
n+2k−2 ,
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as obtained from Eqs.(1)-(2), and we recall that hn refers to the chosen filter while we have gn = −(−1)nhL−n.

Denote the decomposition matrix embodied by these two equations, assuming periodicity, by P j,j+1
N

where the matrix subscript denotes the size of the square matrix while the superscripts indicate that P is
decomposing from scaling function coefficients at scale j to scaling function and wavelet function coefficients
at scale j + 1, i.e. P j,j+1

N maps ~sj onto ~sj+1 and ~dj+1:

P j,j+1
N :

[
~sj

]
→

[
~sj+1

~dj+1

]
,(10)

where we by ~sj refer to the vector containing the coefficients at scale j. Note that the vectors at scale j + 1
are half as long as the vectors as scale j.

Suppose, for illustration, the wavelet being used is the four coefficient D4 wavelet, and that one wants
to project from 8 scaling function coefficients at scale j to 4 scaling function coefficients at scale j + 1 and
4 wavelet coefficients at scale j + 1. The decomposition matrix, P j,j+1

8 , thus becomes

P j,j+1
8 ≡



h1 h2 h3 h4 0 0 0 0
0 0 h1 h2 h3 h4 0 0
0 0 0 0 h1 h2 h3 h4

h3 h4 0 0 0 0 h1 h2

g1 g2 g3 g4 0 0 0 0
0 0 g1 g2 g3 g4 0 0
0 0 0 0 g1 g2 g3 g4

g3 g4 0 0 0 0 g1 g2


,(11)

where the periodicity is reflected in the coefficients being wrapped around.

While the wavelet decomposition itself plays an important role in areas like data compression and
analysis, we recall that the key point in utilizing wavelets for the solution of partial differential equations is
the evaluation of derivatives

Let the four matrices, Aj
N , Bj

N , Cj
N , and Rj

N , [13, 20], contain the derivative projection coefficients,

Aj
N : ~dj → ~́

dj , Bj
N : ~sj → ~́

dj ,

Cj
N : ~dj → ~́sj , Rj

N : ~sj → ~́sj ,

where ~́sj and ~́dj denote the coefficients of the expansion of the derivative of the function which is initially
defined by the expansion coefficients ~sj and ~dj , i.e. the approximation to the derivative of f(x) is obtained

by using ~́sj and ~́dj in the wavelet expansion, Eq.(9).

While the exact form of the matrices Aj
N , Bj

N and Cj
N is less important at this point, this is not so

for the matrix Rj
N×N . Indeed, it is always a finite difference operator. For the D4 wavelet Rj

N corresponds
exactly to the optimal central 4th order finite difference operator on an equidistant grid. For higher order
wavelets, D6, D8, etc., Rj

N remains a finite difference operator, but is non-optimal in the sense of having
more than minimum support for a given accuracy. The numerical values of the entries are given in [20], e.g.
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for the D4 wavelet, Rj
N , is given as

Rj
8 =

1
12



0 8 −1 0 0 0 1 −8
−8 0 8 −1 0 0 0 1

1 −8 0 8 −1 0 0 0
0 1 −8 0 8 −1 0 0
0 0 1 −8 0 8 −1 0
0 0 0 1 −8 0 8 −1

−1 0 0 0 1 −8 0 8
8 −1 0 0 0 1 −8 0


,

which we immediately recognize as the 4th order centered finite difference approximation to the first deriva-
tive.

One can calculate the derivative of a wavelet expansion at any level in the wavelet decomposition. Let
us first examine the entire process of going from point values in the physical space to scaling function
coefficients in V0, differentiating, and finally returning to point values of the differentiated function in the
physical space. Suppose that a periodic function, f(x), has been approximated on a equidistant grid using
16 scaling function coefficients to get ~s0. The exact procedure by which we obtain ~s0 is less important at
this point and a number of quadrature formulas is available for this purpose. For simplicity we shall simply
assume an invertible relation as

~s0 = Q16
~f ,

where ~f represents the grid points vector of f(x) and QN represents the matrix formulation of the chosen
quadrature formula of order N . We recall that QN is an invertible transformation and is represented by
a circular matrix for periodic problems [13]. Note also that periodicity of f(x) induces periodicity on the
coefficients ~s0.

To differentiate the samples of f(x) at the grid points using a 4th order central finite difference operator,
Dfd4, we apply

~́
f = Dfd4

~f.(12)

On the other hand, the scaling function coefficients, ~́s0, for the approximation to the derivative in V0 is given
as

~́s0 =
1

∆x
R0

16~s0 =
1

∆x
R0

16Q16
~f .

Now, returning to the physical space we get,

~́
f = Q−1

16 Q16
1

∆x
R0

16
~f =

1
∆x

R0
16
~f ,

since QN as well as R0
N are circular and thus commute. and recover Eq.(12) since

Dfd4 ≡ 1
∆x

R16 .

Hence, under the assumption of periodicity and without data compression we recover that D4 wavelet
differentiation corresponds exactly to centered 4th order finite differencing. The case for differentiation based
on higher order wavelets, e.g., D6 or D8, is less obvious in that we do not exactly recover the minimum width
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stencil. However, the close connection between wavelet differentiation and finite difference differentiation
remains a valid observation.

However, data compression is the goal of any wavelet method. In coefficient space, compression is
facilitated by introducing a treshhold value below which all wavelet coefficients are assumed to vanish,
thereby reducing the dimension of the problem. In physical space, the embodiment of data compression is
a nonuniform grid, i.e. the grid must be dense in regions where high gradients require fine resolution while
the grid can be sparse in areas of slow variation.

To see how the wavelet analysis yields the information to properly chose the appropriate grid in the
physical space, let us consider the first decomposition of V0 = W1 ⊕ V1 in which data compression can be
achieved.

As in V0, we have 16 basis functions, but now the subspace V0 is decomposed into low frequency, V1,
and high frequency, W1, components as V0 = V1 ⊕W1, utilizing the transformation in Eq.(10) with j = 0.
To calculate the coefficients for the derivative expansion in V1 ⊕W1 we apply the projection[

~́s1
~́
d1

]
=

1
2∆x

[
R1

8 C1
8

B1
8 A1

8

] [
~s1
~d1

]
.(13)

If one now applies the matrix (P 0,1
16 )T (T denotes transpose and hence inverse for this unitary matrix) to the

derivative coefficients at scale j = 1 one gets,

[
~́s0

]
= (P 0,1

16 )T

[
~́s1
~́
d1

]
,

to arrive at exactly the same coefficients as before when the matrix R0
16 was applied to ~s0.

Now suppose that f(x) is smooth enough such that a grid of eight points resolves the function to a
certain desired accuracy, i.e. the elements of ~́d1 are all below a certain treshhold and consequently assumed
to be zero. Hence, only the scaling function coefficients need to be included in the computation of ~́s0, thereby
reducing the problem since Eq.(13) becomes

~́s1 =
1

2∆x
R1

8~s1 ,

while also the reconstruction of ~́s0 is being reduced.
Let us now see how this all relates to the issue of adaptive finite difference schemes. If, indeed, f(x) is

smooth enough such that 8 grid points resolves the function to the desired level of accuracy, then we may
define ~f2 to be the 8 element vector containing every other entry of the 16 element vector ~f and compute
the 4th order derivative of ~f as

~́
f2 =

1
2∆x

R1
8
~f2. ,

which is equivalent to the computation of the derivative using only ~́s1 as discussed earlier.
Hence, if we work only in V0 the wavelet differentiation, based on D4, is equivalent to a 4th order

finite differencing with a grid spacing of ∆x, while when working only in V1 we arrive at a 4th-order finite
differencing with a grid spacing of 2∆x. However, the two subspaces, V0 and V1, are related by V0 = V1⊕W1,
and the subspace, W1, contains basis functions which are locally oscillatory and compactly supported. An
inner product of this basis with f(x) will detect local oscillations in f(x) and provide exactly the information
necessary to refine the grid locally from 2∆x to ∆x. Moreover, this wavelet analysis can be used not only
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to add wavelet basis functions where one has a large inner product but also to refine the physical grid in
the same region and at a scale corresponding to the wavelet scale and, thus, adapt the grid according to the
variation of the function.

2.2.2. Computational Efficiency - A Comparison. One of the most compelling reasons for main-
taining the pure wavelet formulation is the ease by which data compression can be applied as has so suc-
cessfully been done in e.g. signal analysis and picture manipulation. The situation, however, is entirely
different when considering the solution of partial differential equations, where, as we shall see shortly, it is
questionable whether one gains anything by maintaining the pure wavelet formulation as compared to the
grid point formulation advocated here.

To illustrate this point when computing derivatives of compressed data in W1⊕V1, let us explicitly build
the relevant matrices and observe the action of each element.

Consider the Haar wavelet in which there are two nonzero low-pass filter elements and two nonzero high-
pass filter elements. The wavelet decomposition matrix, projecting from the scaling function coefficients on
the finest scale to the scaling function coefficients and wavelet coefficients on the next coarser scale, is

s21

s22

s23

s24

d2
1

d2
2

d2
3

d2
4


=



h1 h2 0 0 0 0 0 0
0 0 h1 h2 0 0 0 0
0 0 0 0 h1 h2 0 0
0 0 0 0 0 0 h1 h2

g1 g2 0 0 0 0 0 0
0 0 g1 g2 0 0 0 0
0 0 0 0 g1 g2 0 0
0 0 0 0 0 0 g1 g2





s11

s12

s13

s14

s15

s16

s17

s18


.

Assume now that the data is represented by the basis functions in W1 ⊕ V1 and let us observe the elements
in the matrix which maps to the approximate derivative of this data on the form given by Eq.(13) as

s′11
s′12
s′13
s′14
s′15
s′16
s′17
s′18




d′11
d′12
d′13
d′14
d′15
d′16
d′17
d′18



=



r2 r3 0 0 0 0 0 r1 c2 c3 0 0 0 0 0 c1

r1 r2 r3 0 0 0 0 0 c1 c2 c3 0 0 0 0 0
0 r1 r2 r3 0 0 0 0 0 c1 c2 c3 0 0 0 0
0 0 r1 r2 r3 0 0 0 0 0 c1 c2 c3 0 0 0
0 0 0 r1 r2 r3 0 0 0 0 0 c1 c2 c3 0 0
0 0 0 0 r1 r2 r3 0 0 0 0 0 c1 c2 c3 0
0 0 0 0 0 r1 r2 r3 0 0 0 0 0 c1 c2 c3

r3 0 0 0 0 0 r1 r2 c3 0 0 0 0 0 c1 c2

b2 b3 0 0 0 0 0 b1 a2 a3 0 0 0 0 0 a1

b1 b2 b3 0 0 0 0 0 a1 a2 a3 0 0 0 0 0
0 b1 b2 b3 0 0 0 0 0 a1 a2 a3 0 0 0 0
0 0 b1 b2 b3 0 0 0 0 0 a1 a2 a3 0 0 0
0 0 0 b1 b2 b3 0 0 0 0 0 a1 a2 a3 0 0
0 0 0 0 b1 b2 b3 0 0 0 0 0 a1 a2 a3 0
0 0 0 0 0 b1 b2 b3 0 0 0 0 0 a1 a2 a3

b3 0 0 0 0 0 b1 b2 a3 0 0 0 0 0 a1 a2





s11

s12

s13

s14
s15

s16

s17

s18




d1
1

d1
2

d1
3

d1
4

d1
5

d1
6

d1
7

d1
8


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Note that in going from the space of uniform scaling functions at the finest scale, V0, to a space of the same
dimension, W1 ⊕ V1, the number of nonzero entries in the ”differentiation matrix” has doubled. Of course,
we have not yet compressed the data, but even with very good compression shall the larger number of entries
in the differentiation matrix cancel out any benefit obtained by compression.

Now let us commence with compression. The following represents the coefficients in the various spaces
beginning with non-compressed uniformly spaced scaling functions, and proceeding to a hypothetical com-
pressed set of coefficients. Note that this compression has reduced the dimension of the space from 16 to 10
as 

s01

s02

s03

s04

s05
s06

s07

s08

s09

s010

s011

s012

s013

s014

s015

s016



P 0,1
16×16−→



s11

s12

s13

s14

s15
s16

s17

s18



d1
1

d1
2

d1
3

d1
4

d1
5

d1
6

d1
7

d1
8



Compress−→



s11

s12

s13

s14

s15
s16

s17

s18



0
0
0
d1
4

d1
5

0
0
0


We optimize the differentiation matrix by equating to zero every entry in the matrix which is not needed for
differentiation in this compressed space, resulting in the compressed matrix and data on the form

s′11
s′12
s′13
s′14
s′15
s′16
s′17
s′18




0
0
0
d′14
d′15
0
0
0



=



r2 r3 0 0 0 0 0 r1 0 0 0 0 0 0 0 0
r1 r2 r3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 r1 r2 r3 0 0 0 0 0 0 0 c3 0 0 0 0
0 0 r1 r2 r3 0 0 0 0 0 0 c2 c3 0 0 0
0 0 0 r1 r2 r3 0 0 0 0 0 c1 c2 0 0 0
0 0 0 0 r1 r2 r3 0 0 0 0 0 c1 0 0 0
0 0 0 0 0 r1 r2 r3 0 0 0 0 0 0 0 0
r3 0 0 0 0 0 r1 r2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 b1 b2 b3 0 0 0 0 0 0 a2 a3 0 0 0
0 0 0 b1 b2 b3 0 0 0 0 0 a1 a2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0





s11

s12

s13

s14
s15

s16

s17

s18




0
0
0
d1
4

d1
5

0
0
0


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Let us now simply count required operations and memory needed to complete the computation. Beginning
with the non-compressed case, where all operations are performed in V0, i.e. at the finest possible scale, we
count operations as 96 = 6× 16 and the storage requirements are 3+16+16 for the circulant differentiation
matrix, the vector of data and the vector of differentiated data.

Following the compression, the operations can be counted as 40 multiplies, while the memory require-
ments are 20 for the vectors of data and differentiated data with the differentiation matrix requires 3 × 4
memory locations yielding a total storage requirement of 32. Note that the non-compress data requires 35
memory locations.

Indeed, in terms of memory we have gained only little by using the compressed data while some ad-
vantage may appear to be found in reduced operation count. However, one should keep in mind that the
increased complexity of any software which would efficiently implement the above compressed differentiation
would be quite significant, questioning the usefulness of pure wavelet methods for the solution of partial
differential equations. Moreover, these observations become even more striking when considering more gen-
eral representations as in, e.g. W1 ⊕W2 ⊕ V2, being a more interesting situation. However, as more and
more wavelet decompositions are taken, the differentiation matrix becomes more and more dense. Although
also offering a greater potential for compression when using more levels of in the wavelet decomposition, it
becomes increasingly difficult to take advantage of this in a practical implementation. This is particularly
true when considering the use of wavelets for solving partial differential equations, for which the compression
certainly is time-dependent. Hence, the complexity and decreasing sparseness of the differentiation operator
might well eliminate the effect of compression except in extreme cases.

The situation when using the wavelets only a diagnostic tool for adaptive grid selection within an adaptive
finite difference framework is entirely different. Not only is the construction of the differentiation operators
trivial, even for arbitrary grids [21], but also inexpensive. Moreover, the memory usage might easily be
controlled through the use of e.g. linked lists or dynamic memory allocation when adding or removing grid
points as determined through the wavelet analysis.

2.2.3. From Periodic to Finite Problems. So far we have focused almost entirely on periodic
problems, in which case the connection between wavelets and finite difference schemes is clear and well
founded. The jump to problems defined on finite intervals, however, is straightforward once we have realized
that the proper use of the wavelets is for error control while derivatives are computed using a finite difference
stencil on an arbitrary grid.

Since the wavelet analysis yields purely local information about the function, we simply apply the analysis
throughout the domain with some type of extrapolation at the boundaries. Since we in this work is using
only D4 for the analysis this does not cause any significant problems.

The intervals are closed using one-sided stencils on the actual grid, keeping in mind that for higher than
4’th order methods, care has to be exercised at the boundary to maintain stability. As described in detail in
[11] we use Chebyshev distributed grids when considering very high order methods. Although the associated
grids cease to be uniform the wavelet analysis remains efficient by considering the grid of a transformed
variable [11].

3. A Wavelet Based Multi-Domain Scheme. As we have discussed in some depth in the first part of
this paper, there are several advantages in exploiting the close connection between finite-difference methods
and wavelets such that wavelets are used for selecting grids adaptively while a finite difference methodology
is applied when computing derivatives. Indeed, non-linear terms and finite computational domains pose no
significant problems as the computation is performed in physical space rather than in the transformed space.
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However, so far we have dealt only with equidistant grids or grids that are related to such in a simple
manner, e.g. Chebyshev grids. The natural multi-dimensional extension of this approach is through the use
of tensor products, which, nevertheless, require that the computational domain is diffeomorphic to the unit
square/cube, thereby severely limiting the type of problems for which this approach can be applied.

There are several ways by which to circumvent this restriction, e.g., one may simply embed the gen-
eral computational domain into a simple rectangular domain, approximating the boundaries of the domain
through a stair-casing. While this approach works well in connection with low order finite difference meth-
ods, it is well known to cause severe problems in association with high-order methods. This, and other
reasons that we shall return to shortly, have prompted us to attempt to combine the high spatial accuracy
and adaptivity in simple domains with the geometric flexibility provided by a multi-domain formulation.

In such a scenario, the geometrically complex computational domain is split into a number of simple
geometric building blocks, e.g. quadrilaterals/hexahedrals, in which a tensor product formulation can be
straightforwardly applied. The advantages of such an approach are many, in particular in connection with
the use of high-order/spectral methods. Among others, we might mention the very substantial geometric
flexibility, the body conforming grid topology and the intrinsic parallel nature of such an algorithm. A more
detailed discussion on the advantages, problems, and general methodology of multi-domain schemes can be
found in e.g. [15, 16, 17].

Once we have taken the step of introducing a multi-domain formulation, the ideas of the previous sections
carries directly over domain by domain, i.e., we may now apply the wavelet analysis and adaptivity within
each computational building block in exactly the same manner as discussed previously and successfully
applied for various test cases in [10].

To illustrate the general idea and address in detail a few properties associated with the wavelet-optimized
multi-domain method, let us consider the solution of the linear two-dimensional wave equation

∂u

∂t
+
∂u

∂x
+
∂u

∂y
= 0 , (x, y) ∈ [0, 2]2 ,(14)

where u = u(x, y, t) and the initial conditions are taken to be a Gaussian pulse of the form

u(x, y, 0) = exp
[
− (x− x0)2

δ2x
− (y − y0)2

δ2y

]
,

where (x0, y0) signifies the center of the pulse and (δx, δy) the variance along x and y, respectively. The
exact solution is given by convecting the initial condition with the velocity (1, 1).

Rather than solving Eq.(14) in one computational domain, we shall employ 16 equally sized squares
to construct the complete computational domain and in each domain we shall solve the equation on an
adaptive grid, however, at this point, maintaining a 4th order scheme in each subdomains. One can envision
grid adaptation within the present framework in several ways, e.g. full adaptation within each block where
the grids within each block can be completely unstructured or block wise grid adaptation where the grids
within each block remains regular but may vary between adjacent subdomains. While the first option
certainly appears to be most general it remains a nontrivial task to implement such a scheme efficiently
in terms of memory and computational resources. Refining only on a block wise level, a scenario in which
the multi-domain decomposition supplies a coarse-grain skeleton, retains the structure within each domain
while allowing for a very significant degree of adaptation and maintaining an easy and straightforward
implementation.
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Wavelets are used to detect regions of the computational domain which contain small scale structure.
The scale of the information in the computational domain is detected by the magnitude of the wavelet
coefficients and the grid density and order are adjusted accordingly. One should think of wavelets as a
tool which is used to keep the L∞ error roughly uniform throughout the computational domain. Instead of
adjusting the grid density and numerical order at each point, it is done block by block with wavelets playing
a guiding role by setting the appropriate computational parameters, grid density and order, block by block.

The challenge of multi-domain methods is naturally to ensure that the correct global solution is arrived
at by solving a number of smaller local problems and the construction of proper patching conditions remains
an area of active research. However, it is really beyond the scope of this work to discuss this issue in detail
for several reasons. This topic is, on one hand, highly problem specific. One the other hand, and more
importantly, the adaptive framework that we have set up here is independent on the specifics of patching
schemes and problems being solved, as the wavelet analysis essentially is applied in a signal analysis approach.

Patching of the scalar wave equation, Eq.(14), is performed simply by passing information across bound-
aries along the direction of propagation, i.e. out-flowing information from one domain enters the adjacent
domain as inflow/boundary conditions.

Let us now illustrate the performance of the complete scheme by using a 4th Runge-Kutta scheme for
advancing the solution in time. The initial conditions are given as (x0, y0) = (0, 0) and δx = δy = 0.5 with
N = M = 32 as the resolution in each subdomain. The wavelet analysis and adaptation is applied at every
50-100 time steps and usually requires as much time as for the advancement of 1-2 time steps, i.e. there is
a potential for a substantial saving in computational time.

In Fig. 1 we illustrate the adapting grid as time progresses, confirming the ability to use the wavelet
analysis within a multi-domain framework, and with considerable savings in computing time. Indeed, for the
very simple problem considered here, comparing the non-adaptive version with the adaptive computation
shows that the latter is close to 3 times faster while yielding an similar global error. The treshhold of the
wavelet analysis for refinement was set to 10−2 and for coarsening to 10−4, yielding an approximate global
error of 10−3.

A few comments concerning Fig. 1 is in place. We note that, as expected, the high grid density closely
follows the pulse while only coarse grids are employed in very smooth regions of the solution. We have also
found it beneficiary to ensure that the grid density, which in this case is allowed to take values of 8,16 and
32 along each direction independently, jumps by a factor of two only across subdomain boundaries. This
provides a mechanism for signaling between domains that a high gradient entity is approaching from the
adjacent domain, a mechanism necessary to maintain accuracy. Interpolation between subdomains and when
adapting is performed using local Lagrange interpolation of the same order as the scheme, i.e. 4th order.

As has been noted by several authors [10, 6], it is surprising difficult to coarsen behind of a propagating
pulse when using one-domain wavelet optimized grid generation. Indeed, if the order of the scheme, wavelet
or not, is of 4th order or higher, numerical dissipation is so low that numerical noise rear of the propagating
pulse makes coarsening difficult. However, in Fig. 1, and in many similar experiments, we observe no such
problems due to the domain by domain adaptivity rather than the very fine scale adaptivity used in previous
work.

The observant reader may at this point begin to wonder why the subdomain grids in Fig. 1 are non-
uniform. Indeed, when using a 4th order scheme in each domain there is no reason a uniform grid could
not be used provided it is terminated in a stable manner using a 3rd order one sided stencil. However, as
discussed in [11] there is no reason why one cannot also adapt the order of the scheme used in each domain,
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Fig. 1. Wavelet optimized multi-domain solution of the scalar wave-equation using 16 domains and a 4’th order scheme

in each domain. a) t=0.5. b) t=1.0. c) t=1.5. d) t=2.0.

employing high order schemes in regions with course grids, reflecting smooth solutions, and low order schemes
in regions with great variation and very fine grids. In order to do so, i.e. to use schemes of order higher
than 4, we must however cluster the grids to maintain stability. The error estimator is found to yield reliable
estimates provided L is set to scale with the order of the scheme, reflecting the higher regularity assumed to
exist when using high order schemes.

Adapting in order as well as grid density, yielding results very similar to the test case discussed above,
has, besides from the numerical advantages of high-order methods in connection with long-time integration,
the potential of offering a better load-balancing in a parallel setting as the number of grid points times the
order of the scheme, providing an approximate measure for the overall work, can be kept close to constant.
Implementations of this approach confirms the stability and overall accuracy while a test of the parallel
performance remains a challenge.
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4. Concluding Remarks. The purpose of this work has been twofold. In the first part we set out
to show the close connection between differentiation based on the use of Daubechies wavelets and that of
traditional centered finite difference schemes. Indeed, the capability for data compression, being the main
argument for the use of wavelet methods, manifests itself in finite difference methods as the possibility for
the use of variable grid schemes. Hence, we concluded, based on the above connection as well as a careful
discussion of the problems associated with pure wavelet methods, that the proper way of using the wavelets is
for identifying exactly where to refine and coarsen the computational grids to maintain a given accuracy, while
the well known finite difference framework should be chosen for actually computing derivatives. Besides from
the intuitive ease of the grid based approach, it also offers advantages when the need to deal with boundary
conditions or nonlinear terms arises.

Extending the wavelet optimized finite difference methods to multi-dimensional problems involves the
introduction of tensor product grids with the resulting loss of geometric flexibility. To overcome this, we
showed how to use a multi-domain formulation in which each geometrically simple subdomain is being
dealt with in a straightforward extension of the one-dimensional framework, while the multi-domain setting
provides a global skeleton that makes the implementation less troublesome. As we saw through implementa-
tions, the block adaptivity proposed here yields significant savings even for a problem as simple as the linear
wave equation while eliminating several problems hitherto associated with wavelet optimized finite difference
schemes. Moreover, an order and grid adaptive scheme provides advantages in terms of load balancing with
a parallel setting.

The generalization of the present framework to problems of more complicated character, i.e. problems
of electromagnetics and acoustics, poses no significant algorithmic problems and we hope to report on such
development in the near future.
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