
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

NASA/CR-97-206274
ICASE Report No. 97-66

Complexity of Kronecker Operations on Sparse
Matrices with Applications to Solution
of Markov Models

Peter Buchholz (Universitat Dortmund, Germany)
Gianfranco Ciardo (College of William and Mary)
Susanna Donatelli (Universita di Torino, Italy)
Peter Kemper (Universitat Dortmund, Germany)

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA

Operated by Universities Space Research Association

December 1997

Prepared for Langley Research Center
under Contracts NAS1-97046 & NAS1-19480

COMPLEXITY OF KRONECKER OPERATIONS ON SPARSE MATRICES WITH

APPLICATIONS TO THE SOLUTION OF MARKOV MODELS

PETER BUCHHOLZ∗, GIANFRANCO CIARDO† , SUSANNA DONATELLI‡ , AND PETER KEMPER§

Abstract. We present a systematic discussion of algorithms to multiply a vector by a matrix expressed as
the Kronecker product of sparse matrices, extending previous work in a unified notational framework. Then,
we use our results to define new algorithms for the solution of large structured Markov models. In addition
to a comprehensive overview of existing approaches, we give new results with respect to: (1) managing
certain types of state-dependent behavior without incurring extra cost; (2) supporting both Jacobi-style
and Gauss-Seidel-style methods by appropriate multiplication algorithms; (3) speeding up algorithms that
consider probability vectors of size equal to the “actual” state space instead of the “potential” state space.

Key words. Kronecker algebra, Markov chains, vector-matrix multiplication

Subject classification. Computer Science

1. Introduction. Continuous time Markov chains (CTMCs) are an established technique to analyze
the performance, reliability, or performability of dynamic systems from a wide range of application areas.
CTMCs are usually specified in a high-level modeling formalism, then a software tool is employed to generate
the state space and generator matrix of the underlying CTMC and compute the steady-state probability-
vector, from which most quantities of interest can be obtained as a weighted sum by using “reward rates”
as weights [17].

Although the mapping of a high-level model onto the CTMC and the computation of the steady-state
distribution are conceptually simple, practical problems arise due to the enormous size of CTMCs modeling
realistic systems. Sophisticated generation and analysis algorithms are required in practice.

In this paper, we consider the steady state solution of large ergodic CTMCs, that is, the computation
of the vector π, where πi is the steady-state probability of state i. However, our contributions can also be
used to improve the generation of the state space [8, 21] and other types of analysis such as the computation
of the expected time spent in transient states up to absorption in absorbing CTMCs and transient analysis
of arbitrary CTMCs [6].

π ∈ IR|T | is the solution of the system of linear equations

π ·Q = 0 subject to π · 1T = 1,(1.1)

where Q is the generator matrix and T is the set of states of the CTMC.

Direct solution methods such as the well-known Gaussian elimination are not applicable, since their
fill-in results in excessive memory requirements. Iterative techniques based on sparse storage schemes for Q
are more appropriate, but even they are memory-bound when applied to realistic examples. Virtual memory

∗Informatik IV, Universität Dortmund, D-44221 Dortmund, Germany (email: buchholz@ls4.informatik.uni-dortmund.de).
†Dept. of Computer Science, College of William and Mary, Williamsburg, VA 23187-8795, USA (email: ciardo@cs.wm.edu).

This research was partially supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-

19480 while this author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA

Langley Research Center, Hampton, VA 23681.
‡ Dipartimento di Informatica, Università di Torino, Corso Svizzera 185, 10149 Torino, Italy (email: susi@di.unito.it).
§Informatik IV, Universität Dortmund, D-44221 Dortmund, Germany (email: kemper@ls4.informatik.uni-dortmund.de).

1

Symbol Definition or properties Meaning

Mk k-th submodel

nk nk ≥ 2 Number of local states for Mk

nu
l

∏u

k=l
nk Number of potential states for M[l,u]

n nK
1 Number of overall potential states

n̄k n/nk = nk−1
1 · nK

k+1 Number of potential states when Mk is ignored

T̂ k, T k {0, . . . , nk − 1} Potential, actual local state space (s. s.) for Mk

T̂ k
1 T 1 × T 2 × · · · × T k Potential s. s. for M[1,k]

T̂ , T T̂ = T̂ K
1 , T ⊆ T̂ Potential and actual overall s. s.

T k
1 {i[1,k] : ∃i[k+1,K], i[1,K] ∈ T } Projection of the actual s. s. T on M[1,k]

T k(i[1,k−1]) {ik : i[1,k] ∈ T k
1 } Actual s. s. for Mk when Ml is in state il, ∀1 ≤ l < k

Ψ Ψ : T̂ → {0, . . . , |T | − 1, null} Position of a state in lexicographic order

�̂,� ∀i ∈ T �̂i = �Ψ(i) Steady state probability vector

Q̂,Q, R̂,R Q = Q̂T ,T , R = R̂T ,T Infinitesimal generator, transition rate matrix

ĥ,h ∀i ∈ T ĥi = hΨ(i) Expected holding time vector
Table 2.1

Symbols used in the paper

is of little help, since access times to virtual memory are too long to allow an efficient implementation of
iterative solution techniques (although [11] reports some encouraging results).

Recently, solution techniques for CTMCs have been developed that compute π without generating and
storing Q explicitly. The idea is to represent Q as a sum of Kronecker products of smaller matrices that
result from a high-level model structured into submodels. A general framework for this idea is described in
Sect. 4. This covers several high-level formalisms to describe models in a compositional way [13, 14, 18, 24].

Solution methods exploiting a Kronecker structure are iterative and they differ from conventional iter-
ation techniques in how they perform the required vector-matrix multiplications. Earlier approaches [24]
employed the slowly-converging Power method, used dense storage schemes for the submodel matrices, and
computed the solution using the “potential” state space, a (possibly much larger) superset of the actually
reachable states. This resulted in a limited applicability, since these approaches become inefficient for models
where submodel matrices are quite sparse, the actual state space is much smaller than the potential state
space, or the Power method requires too many iterations.

More recent publications [18, 9] began to overcome these limitations, but there is still no systematic
approach to fully exploit the potential of Kronecker-based solution techniques. In this paper, we present a
family of solution techniques using sparse storage for the submodel matrices and iteration vectors of the size
of the actual state space, and we consider both the Jacobi and the Gauss-Seidel methods. Additionally, we
compare the complexity of the Kronecker-based vector-matrix multiplication algorithms we present, both
theoretically and by means of a realistic example.

In the next section, we define the notation used. Sect. 3 contains a framework for the description of
Markov models and Sect. 4 considers composed Markov models and the corresponding Kronecker structure
of the generator matrix. Sect. 5 presents and analyzes different algorithms to multiply a vector by a matrix
represented as a Kronecker product, using a running example. Sect. 6 describes iterative solution approaches
that use these multiplication algorithms to compute the steady-state solution of a CTMC.

2

2. Notation. Table 2.1 summarizes the symbols used in this paper. Except for the set of real numbers,
IR, all sets are denoted by upper-case calligraphic letters (e.g., A); row vectors and matrices are denoted by
lower- and upper-case bold letters, respectively (e.g., x, A); their entries are indexed starting from 0 and
are denoted by subscripts (e.g., xi, Ai,j); a set of indices can be used instead of a single index, for example,
AX ,Y denotes the submatrix of A corresponding to set of rows X and the set of columns Y. We also denote
families of like-quantities with subscripts (for scalars) or superscripts (for sets, vectors and matrices) (e.g.,
xi or xi) and use a shorthand “range” notation to indicate sequences of them (e.g., x[1,n] = x1, . . . , xn)

η[A] denotes the number of nonzeros in matrix A. 0x×y and 1x×y denote matrices with x rows and
y columns, having all entries equal 0 or 1, respectively, while Ix denotes the identity matrix of size x × x;
the dimensions of these matrices are omitted if clear from the context. Given a vector x, diag(x) is a
square matrix having vector x on the diagonal and zero elsewhere. Given an n×n matrix A, rowsum(A) =
diag(A · 1n×1) is a matrix having the diagonal equal to the sums of the entries on each row of A, and zero
elsewhere.

We recall the definition of the Kronecker product A =
⊗K

k=1 Ak of K square matrices Ak ∈ IRnk×nk .
Let nu

l =
∏u

k=l nk, n = nK
1 , and n̄k = n/nk. If we assume a mixed-base numbering scheme, the tuple l[1,K]

corresponds to the number (. . . ((l1)n2+l2)n3 · · ·)nK +lK =
∑K

k=1 lknK
k+1 (letting nK

K+1 = 1), and vice versa.
If we assume that i[1,K] and j[1,K] are the mixed-based representation of i and j, respectively, the generic
element of A ∈ IRn×n is

Ai,j = Ai[1,K],j[1,K] = A1
i1,j1 ·A

2
i2,j2 · · ·A

K
iK ,jK

(2.1)

The Kronecker sum
⊕K

k=1 Ak is defined in terms of Kronecker products, as

K⊕
k=1

Ak =
K∑

k=1

In1 ⊗ · · · ⊗ Ink−1 ⊗Ak ⊗ Ink+1 ⊗ · · · ⊗ InK =
K∑

k=1

Ink−1
1
⊗Ak ⊗ InK

k+1
.

We are interested in algorithms that exploit sparsity. For the Kronecker product, the number of nonzeros
is η[

⊗K
k=1 Ak] =

∏K
k=1 η[Ak]. For the Kronecker sum, diagonal entries in the matrices Ak might result in

merged entries on the diagonal of A, thus we can only bound the number of nonzeros, η[
⊕K

k=1 Ak] ≤∑K
k=1(η[Ak] · n̄k). This bound is achieved iff at most one matrix Ak contains nonzero diagonal entries. On

the other hand, if all diagonal elements of the matrices Ak are positive (or all are negative), η[
⊕K

k=1 Ak] =∑K
k=1(η[Ak] · n̄k)− (K − 1) · n. As a consequence, the Kronecker sum of K ≥ 2 matrices (with nk > 1) can

never be a full matrix.

3. Description and solution of a Markov model. A formal high-level model having an underlying
CTMC specifies a stochastic automaton of some sort. Instead of assuming a specific high-level formalism
such as Stochastic Petri Nets [5], Queueing Networks [26], or Stochastic Process Algebra [16], we consider a
generic framework where a model is a tuple:

M = (T̂ , E , i0, active, new, rate, weight)

• T̂ is the set of potential states.
• E is the set of possible events.
• i0 ∈ T̂ is the initial state.
• active : E × T̂ → {True, False}.
• new : E × T̂ → T̂ ∪ {null}; new(e, i) = null iff active(e, i) = False.
• rate : E → IR+.

3

• weight : E × T̂ → IR+.

If an event e is active in state i (that is, if active(e, i) = True) and if new(e, i) = j, we say that state
j is reachable in one step from i. The transitive and reflexive closure of this relation is called reachability.
Using the reachability relation, we can build the set T ⊆ T̂ of states reachable from the initial state i0,
called the (actual) state space of M . An event e active in state i has an exponentially-distributed duration
with parameter rate(e) · weight(e, i). Since the duration of the events is exponentially distributed, and the
next state depends only on the current one (by definition of function new), M defines a CTMC.

T can be generated using a state-space exploration algorithm, essentially a breadth-first search of the
graph implicitly defined by the model, starting from i0; assuming that T is finite, the search terminates.
Then, we can define a function Ψ : T̂ → {0, . . . , |T | − 1, null}, with Ψ(i) = null iff i 6∈ T and such that the
restriction of Ψ to T is a bijection.

With the indirect iterative solution methods for the steady-state solution of the CTMC, it is convenient
to write the infinitesimal generator Q ∈ IR|T |×|T | as

Q = R− rowsum(R) = R− diag(h)−1,

where R ∈ IR|T |×|T | is the transition rate matrix and h is the vector of expected holding times. R differs
from Q only in its diagonal, which is zero, while h contains the inverse of the negative of the diagonal of Q.
R can be generated at the same time as T , or in a second pass, once |T | is known, since we can then use an
efficient sparse row-wise or column-wise format [23]; h is instead stored as a full vector.

In the following, we assume that R is irreducible, that is, the CTMC is ergodic.

4. Model composition and Kronecker description of Q. We consider structured models de-
scribed as the parallel composition of a set of stochastic automaton submodels. Formally, a stochastic
automaton M = (T̂ , E , i0, active, new, rate, weight) is the parallel composition of the K models Mk =
(T̂ k, Ek, i0k, activek, newk, ratek, weightk), 1 ≤ k ≤ K, iff:

• T̂ = T̂ 1 × . . .× T̂ K . A state of the composed model is the tuple describing the local state of the K

submodels: i = i[1,K].
• E =

⋃K
k=1 Ek. Let ES = {e : ∃h 6= k : e ∈ Eh ∩ Ek} be the set of “synchronizing” events common to

two or more submodels. The remaining events can be partitioned into K sets of “local events”, one
for each submodel: Ek

L = Ek \ ES .
A submodel Mk has no influence on an event e 6∈ Ek, nor is it influenced by such events. Hence, we
extend the local functions activek, weightk, newk, and ratek to the entire set of events E as follows.
For any e 6∈ Ek and for any local state ik ∈ T̂ k:

– activek(e, ik) = True (neutral element for logical conjunction).
– weightk(e, ik) = 1 (neutral element for multiplication).
– newk(e, ik) = ik (neutral operation for state changes).
– ratek(e) =∞ (neutral element for the minimum).

• i0 = i0[1,K].

• active(e, i[1,K]) =
K∧

k=1

activek(e, ik). An event local to Mk is active iff it is active in Mk; a synchro-

nizing event e is active iff it is active in all submodels where it is defined.

• new(e, i[1,K]) =

{
null if ∃k, activek(e, ik) = False

j[1,K] otherwise
, where jk = newk(e, ik).

4

• weight(e, i[1,K]) =
K∏

k=1

weightk(e, ik).

• rate(e) = min
1≤k≤K

{ratek(e)}. The choice of using the minimum is just one possibility; for the solution

algorithms we present, any function will do. For example, we could instead assign the rate on the
global model, independently of the values ratek(e).

In the presence of multiple synchronizations, T̂ can be a strict superset of T , and, in this case, some
local states in T̂ k might be unreachable. Thus, we define the “actual local” state spaces as the projection of
T on the k-th component:

T k = {ik : ∃j[1,K] ∈ T , jk = ik} ⊆ T̂ k.

We can then redefine T̂ k as T k, and assume from now on that the two are identical. This improves both
memory requirements and execution time, at the cost of exploring T once.

The compositional definition of M allows a structured description of the transition rate matrix based
on the following “local” matrices:

• Wk(e) is a nk × nk matrix defined as

Wk
ik,jk

(e) =

{
weightk(e, ik) if activek(e, ik) = True and jk = newk(e, ik)
0 otherwise

.

• Rk are the local transition rate matrices describing the effect of local events:

Rk =
∑
e∈Ek

L

rate(e) ·Wk(e).

Using related frameworks, [3, 9, 14, 24, 25] have shown that both the transition rate matrix R and
the infinitesimal generator Q underlying M can be expressed as the restrictions to the reachable states of
appropriate matrices, R = R̂T ,T and Q = Q̂T ,T , defined as Kronecker expressions on the Wk(e) and Rk

matrices. The expression for R̂ is:

R̂ =
∑
e∈ES

rate(e) ·
K⊗

k=1

Wk(e)

︸ ︷︷ ︸
synchronizing events

+
K⊕

k=1

Rk

︸ ︷︷ ︸
local events

.(4.1)

The expression for Q̂ is analogous but we omit it because, in the following, we assume that only R̂ is kept
in Kronecker form, and that h, or its “potential” version ĥ, is stored explicitly as a full vector. Alternatively,
we could save memory by using a Kronecker description for h, at the cost of additional execution time.

4.1. A small example. To illustrate the use of Kronecker operators for the description of R, we
consider first a simple example with K = 2 models M1 and M2. A more complex running example is
introduced in the next section.

The definition of M1 and M2 is given in Table 4.1, the extension of functions to the entire set E is
omitted for readability. The composed model M has a state space T̂ = {(0, 0), (0, 1), (1, 0), (1, 1)} and its
events are E = ES ∪E1

L ∪E2
L, where E1

L = {e1} is the only local event in M1, E2
L = {e2} is the only local event

in M2, and ES = {e3} is the only synchronizing event. If we define rate(e1) = 6, rate(e2) = 5, rate(e3) = 4,
we obtain the following matrices (zero entries are omitted for readability):

5

model M1: T 1 = {0, 1} E1 = {e1, e3}
active1(·, ·) = False except
active1(e1, 0) = True new1(e1, 0) = 1 weight1(e1, 0) = 0.6
active1(e3, 1) = True new1(e3, 1) = 0 weight1(e3, 1) = 0.4

model M2: T 2 = {0, 1} E2 = {e2, e3}
active2(·, ·) = False except
active2(e2, 1) = True new2(e2, 1) = 0 weight2(e2, 1) = 0.7
active2(e3, 0) = True new2(e3, 0) = 1 weight2(e3, 0) = 0.5

Table 4.1

Definition of the submodels for our small example

W1(e3)=

0 1
0
1 0.4

W2(e3)=

0 1
0 0.5
1

R1=

0 1
0 6 · 0.6
1

R2=

0 1
0
1 5 · 0.7

,

resulting in

R̂ = 4 ·
2⊗

k=1

Wk(e3) +
2⊕

k=1

Rk = 4 ·
(
W1(e3)⊗W2(e3)

)
+
(
R1 ⊗ I2 + I2 ⊗R2

)
=

4 ·

(0, 0) (0, 1) (1, 0) (1, 1)
(0, 0)
(0, 1)
(1, 0) 0.4 · 0.5
(1, 1)

+




(0, 0) (0, 1) (1, 0) (1, 1)

3.6
3.6

+

(0, 0) (0, 1) (1, 0) (1, 1)

3.5

3.5




.

4.2. A running example. We now describe the running example used throughout the rest of the
paper to obtain timing results. It models a flexible manufacturing system (FMS) with three machine centers
(c1, c2, and c3) and four types of parts being processed. Fig. 4.1 depicts it as a fork-join queuing network,
with machines as queues and parts as customer classes (chains). We assume exponentially distributed service
times for simplicity. c3 can process up to three parts in parallel, c2 up to two, and c1 only one.

A part of type A accesses c3 with high priority and, after service completion, it is either rescheduled for
processing at c3 or joined with a part of type B for processing at c2. A part of type B accesses c1 with high
priority and, after service completion, it is either rescheduled for processing at c1 or joined with a part of
type A for processing at c2. The joint processing of parts of type A and B occurs with high priority on c2

and, after service completion, it yields a product which is delivered and replaced by its original raw parts,
to keep a constant stock of material in the system.

The FMS also produces a second product with low priority, to reduce idle time on machines. The
low-priority product is processed in the same manner as the high-priority product, but from parts of type
C (instead of A) and D (instead of B). The only difference is that processing of the corresponding parts
can only take place on a machine that has no high-priority work to be performed (we assume a preemptive

6

33

2 joinfork

c3

c2
part C

part A

part D

part B

part C and D

part A and B

31
c1

Fig. 4.1. Multiclass Queueing Network for our running example

Type of matrix e k = H k = L

Wk(e) low1 1,158 584
Wk(e) low2 2,259 135
Wk(e) low3 2,214 584

Rk local 11,844 1,438
Table 4.2

Number of nonzeros using the first decomposition.

priority policy). The parameters nA, nB, nC , and nD give the number of parts of each type present in the
system.

We start with decomposing the model into two submodels according to the priority of parts. Submodel
H describes the processing that machines c1, c2, and c3 perform on the high-priority parts A and B, including
their joint processing; submodel L is analogous, for the low-priority parts C and D.

The synchronizing events are ES = {low1, low2, low3}, representing the low-priority parts using the three
machines. For nA = nB = 4, and nC = nD = 3 we obtain |T H | = 2,394, |T L| = 652, and |T̂ | = |T | =
1,560,888. Table 4.2 gives the number of nonzeros for the matrices involved in the Kronecker description of
R

If matrix entries are stored in double precision, the Kronecker description of R requires 388,800 bytes.
The explicit sparse-storage representation for R would instead require about 126 MB in single precision or
180 MB in double precision. Obviously, the Kronecker representation of R is extremely space-efficient in
this case.

5. Complexity of vector-matrix multiplication. If A is a n×n matrix stored explicitly using sparse
storage, the complexity of computing the product x · A is O (η[A]). Storing A in a full two-dimensional
data structure is inefficient for the type of problems we consider; in any case, it is equivalent to assuming
that η[A] = n2 from a complexity point of view, so we restrict ourselves to sparse storage from now on. If
A is instead stored implicitly as the Kronecker product of K matrices Ak ∈ IRnk×nk , k ∈ {1, . . . , K}, also
stored in sparse row-wise or column-wise format, as appropriate, a direct application of Eq. 2.1 requires K

operations to obtain each matrix entry. If each Ai,j is computed only once for each pair (i, j) and only
nonzero Ai,j elements are computed, the complexity of computing x ·A becomes O (K · η[A]). In the next

7

Shffl(in: n[1,K], A[1,K]; inout: x̂, ŷ);

1. nleft ← 1;

2. nright ← nK
2 ;

3. for k = 1 to K

4. base ← 0;

5. jump ← nk · nright;

6. if Ak 6= I then

7. for block = 0 to nleft − 1

8. for offset = 0 to nright − 1

9. index ← base + offset;

10. for h = 0 to nk − 1

11. zh ← x̂index;

12. index ← index + nright;

13. z′ ← z ·Ak;

14. index ← base + offset;

15. for h = 0 to nk − 1

16. ŷindex ← z′h;

17. index ← index + nright;

18. base ← base + jump;

19. x̂ ← ŷ;

20. nleft ← nleft · nk;

21. nright ← nright/nk+1;

Shffl+(in: x, nleft, nk, nright, Ak; inout: y);

1. base ← 0;

2. jump ← nk · nright;

3. for block = 0 to nleft − 1

4. for offset = 0 to nright − 1

5. index ← base + offset;

6. for h = 0 to nk − 1

7. zh ← x̂index;

8. index ← index + nright;

9. z′ ← z ·Ak;

10. index ← base + offset;

11. for h = 0 to nk − 1

12. ŷindex ← ŷindex + z′h;

13. index ← index + nright;

14. base ← base + jump;

Fig. 5.1. Vector-matrix multiplication using perfect shuffles.

section, we recall an algorithm that achieves a better complexity by exploiting the inherent structure of a
Kronecker product.

Before doing so, however, we observe that the matrices involved in the Kronecker products of Eq. 4.1
can have very few elements. In our particular application, the matrices Ak are either the K matrices Wk(e)
for a given e ∈ E , or they are all the identity except for one of them being equal Rk, for a given k. This last
case arises from rewriting the Kronecker sum appearing in Eq. (4.1) into a (regular) sum of of Kronecker
products, as explained in Sect. 2. Hence, we consider three levels of sparsity, according to the average number
α = η[Ak]/nk of nonzeros per row or column in the matrices Ak (in the following we assume the same α for
all matrices Ak), where A = ⊗Ak:

hypersparse: α� 1 ⇒ η[A]� n (only a few nonzeros, most rows and columns are empty).
ultrasparse: α ≈ 1 ⇒ η[A] ≈ n (each row or column has one nonzero, on average).
sparse: α� 1 ⇒ η[A] = n · αK � n (any other sparse matrix).

We focus on the case of sparse or ultrasparse, that is, we assume that η[Ak] ≥ nk, for all k = 1, . . . , K.
Truly hypersparse matrices can occur in our Kronecker approach, clearly extreme cases might be best man-
aged by explicitly storing a list of triplets (i, j,Ai,j), one for each nonzero in A.

5.1. The shuffle algorithm. The first algorithm for the analysis of structured Markov chains was
presented in [24]. Fig. 5.1 shows algorithms Shffl, to compute ŷ ← x̂ · ⊗K

k=1A
k, and Shffl+, to compute

ŷ ← x̂ · Ink−1
1
⊗ Ak ⊗ InK

k+1
(from now on, the suffix “+” denotes the version for the simpler case of a

product where all matrices are the identity except one).

8

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2 3 4 5 6 7 8 9 10

α

K

Shffl better

ordinary better

α = K
1

K−1

	

Fig. 5.2. Comparing Shffl with ordinary multiplication in the (K, α) plane.

Shffl considers the matrices Ak sequentially, exploiting the equality [10]:

K⊗
k=1

Ak =
K∏

k=1

ST
(nk

1 ,nK
k+1)
· (In̄k

⊗Ak) · S(nk
1 ,nK

k+1)
,(5.1)

where S(a,b) ∈ {0, 1}a·b×a·b is the matrix describing an (a, b) perfect shuffle permutation:

(S(a,b))i,j =

{
1 if j = (i mod a) · b + (i div a)
0 otherwise

.

Therefore, a vector-matrix multiplication can be performed using K vector permutations and K mul-
tiplications of the type x · (In̄k

⊗Ak). Matrix In̄k
⊗Ak has a peculiar structure: it is simply matrix Ak

repeated n̄k times over the diagonal, hence, the cost of the k-th multiplication is O(n̄k · η[Ak]), while the
permutation costs can be neglected, since they can be incorporated into the algorithm.

The computation of the shuffle permutation is encoded in steps 10–13 and 15–18. The complexity of Shffl
(derived in [4] as a generalization of the full storage case described in [26, Theorem 9.1]) can be rewritten
as:

O

(
K∑

k=1

n̄k · η[Ak]

)
= O

(
n ·

K∑
k=1

η[Ak]
nk

)
= O (n ·K · α) .

Hence, Shffl is faster than a multiplication using explicit storage iff

n ·K · α < n · αK ⇐⇒ α > K
1

K−1 .

Fig. 5.2 illustrates the regions where Shffl or ordinary multiplication perform better, according to the values
of K (which is small in practical modeling applications) and α.

Shffl+ is the specialization of Shffl when Ak 6= I is true for exactly one k, and it is called with its
parameters nleft and nright set to nk−1

1 and nK
k+1, respectively (Fig. 5.1). Its complexity is

O
(
n̄k · η[Ak]

)
= O (n · α) .

The resulting complexity of computing ŷ ← ŷ + x̂ ·
⊕K

k=1 Ak using Shffl+ is then

O

(
K∑

k=1

n̄k · η[Ak]

)
= O

(
n

K∑
k=1

η[Ak]
nk

)
= O (n ·K · α) .

9

RwEl(in: i[1,K], x, n[1,K],A
[1,K]; inout: ŷ)

1. for each j1 s.t. A1
i1,j1 > 0

2. j′1 ← j1;

3. a1 ← A1
i1,j1 ;

4. for each j2 s.t. A2
i2,j2 > 0

5. j′2 ← j′1 · n2 + j2;

6. a2 ← a1 ·A2
i2,j2 ;

. . .

7. for each jK s.t. AK
iK ,jK

> 0

8. j′K ← j′K−1 · nK + jK ;

9. aK ← aK−1 ·AK
iK ,jK

;

10. ŷj′
K
← ŷj′

K
+ x · aK ;

RwEl+(in: nk, nK
k+1, i

−
k , ik, i+k , x,Ak; inout: ŷ)

1. for each jk s.t. Ak
ik,jk

> 0

2. j′ ← (i−k · nk + jk) · nK
k+1 + i+k ;

3. ŷj′ ← ŷj′ + x ·Ak
ik,jk

;

Rw(in: x̂, n[1,K], A
[1,K]; inout: ŷ)

1. for i ≡ i[1,K] = 0 to n− 1

2. RwEl(i, x̂i, n[1,K],A
[1,K], ŷ);

Rw+(in: x̂, nk−1
1 , nk, nK

k+1,A
k; inout: ŷ)

1. for i ≡ (i−k , ik, i+k) = 0 to n− 1

2. RwEl+(nk, nK
k+1, i

−
k , ik, i+k , x̂i,A

k, ŷ);

Fig. 5.3. Vector-matrix multiplication by rows.

5.2. A straightforward algorithm using sparse storage. A direct application of Eq. (2.1) results
in the algorithm Rw in Fig. 5.3, which performs the computation ŷ← ŷ+ x̂ ·A and requires sparse row-wise
format for the matrices Ak.

Procedure RwEl computes the contribution of a single entry x̂i to all the entries of ŷ, as ŷ ← ŷ +
x̂i ·Ai,T̂ . The K nested for statements in procedure RwEl are required to compute element Ai,j according
to its definition in Eq. (2.1). Some of the computation needed to obtain Ai,j is reused for other elements
of matrix A. On a given call to RwEl, statement ak ← ak−1 ·Ak

ik,jk
is reached

∏k
h=1 η[Ah

ih,T h] = O(αk)
times. Rw calls RwEl n times, hence its complexity is

O

(
n ·

K∑
k=1

αk

)
=

{
O (n ·K) = O(K · η[A]) ultrasparse
O(n · αK) = O(η[A]) sparse

(5.2)

In other words, the multiplications needed to compute a2 through aK−1 are effectively amortized only if
α� 1.

The analogous algorithm Cl and procedure ClEl, for multiplication by columns, are omitted. Each call
to ClEl computes a single entry ŷj of ŷ as the inner product x̂ · AT̂ ,j , where j is equal to j[1,K] in our
mixed-base notation. Cl has the same complexity as Rw but requires sparse column-wise storage for the
matrices Ak. However, Rw and Cl differ in an important aspect: the multiplication performed by ClEl

requires only one scalar accumulator, while RwEl uses the vector ŷ itself as an accumulator. If we follow
the good numerical practice of using higher precision for accumulators, Rw has larger memory requirements
than Cl.

The simplified multiplication algorithm Rw+, used to compute Kronecker sums, is also shown in Fig. 5.3.
Its complexity is

O

(
n · η[Ak]

nk

)
= O (n · α) .

The resulting complexity of computing ŷ ← ŷ + x̂ ·
⊕K

k=1 Ak using Rw+ is then

O

(
n ·

K∑
k=1

η[Ak]
nk

)
= O (n ·K · α) .

10

Type of matrix e k = 1 k = 2 k = 3 k = 4

Wk(e) low3 120 — 42 —
Wk(e) low2 105 — 21 —
Wk(e) low1 — 35 — 30
Wk(e) joinAB 56 35 — —
Wk(e) forkAB 56 35 — —
Wk(e) joinCD — — 21 15
Wk(e) forkCD — — 21 15

Rk local 280 140 42 30
Table 5.1

Number of nonzeros using the second decomposition.

5.3. Considering only a subsets of states. The decomposition considered so far for our running
example satisfies T̂ = T . This is not the case in a second decomposition we now introduce, obtained by
further refining the submodels H and L. For the high-priority parts, we define submodels 1, describing the
processing of parts of type A and their joint processing with parts of type B, and 2, describing the processing
of parts of type B on machine c1. For the low-priority parts, we define analogous submodels 3 and 4.

The synchronizing events are then

ES = {low1, low2, low3, joinAB, forkAB, joinCD, forkCD}

where the “join” and “fork” events correspond to the start and end of assembling parts A with B, or C with
D, respectively.

For nA = nB = 4, and nC = nD = 3, the cardinalities of the local state spaces are |T 1| = 126, |T 2| =
70, |T 3| = 56, and |T 4| = 35. The potential state space is now much larger, |T̂ | = 17,287,200, while |T | =
1,560,888, as before, since we are modeling the same system. Table 5.1 gives the number of nonzeros for the
matrices involved in the Kronecker description of R (missing entries indicate identity matrices, which do not
need to be stored explicitly).

The matrices for the Kronecker description of R now use a truly negligible amount of memory, 29,148
bytes, but Shffl, Rw, and Cl need a large amount of space to allocate vectors of length T̂ , even if we are
really interested only in the elements corresponding to T .

This observation motivates us to consider methods that compute ŷT = ŷT + x̂T ·AT ,T , where T ⊆ T̂
is the actual state space and ŷT and x̂T are stored using arrays y and x, of size |T |. Specifically, for i ∈ T ,
x̂i is stored in position I = Ψ(i) of x: x̂i = xI . To restrict ourselves to reachable states only, we need to:

• Generate T . Efficient algorithms for the generation of T can be found in [8, 21]
• Ensure that only AT ,T contributes to the value of y. If A is one of the matrices whose sum

constitutes R̂, then Ai,j = 0 whenever i ∈ T and j 6∈ T , that is, starting from a reachable state,
only other reachable states can be reached. In matrix form, this implies that R̂T ,T̂ \T = 0 [9, 18].
The reverse is not true: if i 6∈ T and j ∈ T , Ai,j can be positive, that is, reachable states can be
reached from unreachable states.
• Find an efficient way to compute Ψ : T̂ → {0, . . . , |T | − 1, null}. We use a logarithmic search in T ,

and show how the overhead is reduced by using an appropriate data structure to store T .
Algorithm RwSb1 in Fig. 5.4 modifies Rw, by accessing only elements corresponding to reachable states.

We omit the algorithm RwSb+
1 to compute Kronecker sums, since an analogous discussion as for Rw+

11

RwElSb1(in: i[1,K], x,A[1,K]; inout: y)

1. for each j1 s.t. A1
i1,j1 > 0

2. a1 ← A1
i1,j1 ;

3. for each j2 s.t. A2
i2,j2 > 0

4. a2 ← a1 ·A2
i2,j2 ;

. . .

5. for each jK s.t. AK
iK ,jK

> 0

6. aK ← aK−1 ·AK
iK ,jK

;

7. J ← Ψ(j[1,K]);

8. yJ ← yJ + x · aK ;

RwSb1(in: x,A[1,K], T ; inout: y)

1. for each i[1,K] ∈ T
2. I ← Ψ(i[1,K]);

3. RwElSb1(i[1,K],xI ,A
[1,K],y);

Fig. 5.4. Vector-matrix multiplication by rows for a subset T of the states.

applies. Line 1 in RwSb1 selects only elements of T among those in T̂ . This requires no additional overhead
as long as the elements of T can be accessed sequentially according to the order Ψ. The assignment in line
7 of RwElSb1, however, requires finding the index J = Ψ(j[1,K]) of the element j[1,K] in the array y. If
the computation of Ψ uses a binary search, a multiplicative overhead factor O(log |T |) is encountered in the
innermost for-loop. The overall complexity of RwSb1 is then derived analogously to that of Rw. On a given
call to RwElSb1, statement ak ← ak−1 ·Ak

i,k,jk
is reached

∏k
h=1 η[Ah

ih,T h] = O(αk) times, and statement
J ← Ψ(j[1,K]) is reached η[Ai[1,K],T] = O(αK) times. RwSB1 calls RwElSb1 once for each i[1,K] ∈ T ,
hence its complexity is

O

(
|T | ·

(
K∑

k=1

αk + αK · log |T |
))

=

{
O (|T | · (K + log |T |)) ultrasparse
O
(
|T | · αK · log |T |

)
sparse

(5.3)

Since K < log |T | in practical modeling situations, we can conclude that RwSb1 has a log |T | overhead
with respect to ordinary multiplication, regardless of the matrix sparsity.

In a multiplication by columns, the situation is potentially worse. ClSb1, the version analogous to
RwSb1, must avoid the “spurious” entries in AT̂ \T ,T . In ClElSb1, the index I ← Ψ(i[1,K]) computed by
the binary search returns null if the “from” state i[1,K] is not reachable. Hence, ClElSb1 must test whether
I = null and, if so, ignore entry Ai[1,K],j[1,K] . The average cost of these binary searches is slightly longer than
for RwElSb1, since searching a state not in T represents a worst-case scenario, but, more importantly, the
complexity of ClSb1 must account for all searches performed, regardless of whether they are successful or
not. The number of such searches is equal to the number of nonzeros in the columns of A corresponding to
T , η[AT̂ ,T], while only η[AT ,T] searches are performed in RwSb1. The sparser AT̂ \T ,T is, the closer the
performance of ClSb1 is to that of RwSb1, and the two complexities coincide when AT̂ \T ,T = 0 (this can
happen even when T̂ ⊃ T).

5.4. Reducing the log |T | overhead. The multiplicative overhead log |T | in RwSb1 and ClSb1 results
from a worst-case assumption that we must search in a set of size |T | to compute each value of Ψ.

[19] discusses approaches to reduce this overhead, but the most effective solution appears to be obtained
by storing T using the multilevel data structure shown in Fig. 5.5 [8].

Before explaining this data structure, we introduce the following sets:
• T̂ k

1 = T 1 × · · · × T k = {0, . . . , n1 − 1} × · · · × {0, . . . , nk − 1}, the projection of the potential state
space over the first k components.
• T k

1 = {i[1,k] : ∃i[k+1,K], i[1,K] ∈ T }, the projection of the actual state space over the first k compo-
nents.

12

Ψ2(Ψ1(i1),i2)

Level 1 i1

i2

iK

: local state

: pointer

Level 2

Level K

Ψ1(i1)

ΨK(•••Ψ2(Ψ1(i1),i2)•••,iK) = Ψ(i[1,K])

Fig. 5.5. Storage scheme for computation of Ψ in O(log |T |).

• T k(i[1,k−1]) = {ik : i[1,k] ∈ T k
1 }, the local states for Mk that can occur when the local states for M1

through Mk−1 are i1 through ik−1, respectively.

In particular, T̂ K
1 ≡ T̂ , T K

1 ≡ T , and we can define T 1(i[1,0]) simply as T 1.

In Fig. 5.5, the elements of the array at level k contain local states for submodel Mk. When searching
for a given state i[1,K], we search first for i1 in the array at level 1, containing T 1. After finding i1, we
follow its pointer to the array at level 2. The greyed-out portion of this array contains T 2(i1). We then
search for i2 in this portion, and so on, until we find the local state iK in the greyed-out portion of the last
array, corresponding to T K(i[1,K−1]). The displacement of this local state in the entire array at level K is
Ψ(i[1,K]). If, at any level, we are unable to find ik, we can conclude that the state we are searching is not in
T , that is, Ψ(i[1,K]) = null.

Since the arrays at levels 1 through K − 1 are usually small compared to the last level, and the array at
level K, of size |T |, can be compressed into dlog2 nKe · |T | bits, T can be stored in O(|T | · log2 nK) bits [8].

The real advantage of this data structure, however, is the amortization of the logarithmic searches. For
a given i[1,K], we compute Ψ(i[1,K]) in K steps:

Ψ(i[1,K]) = ΨK(· · ·Ψ2(Ψ1(i1), i2) · · · , iK).

When searching for a second state i′[1,K] such that i[1,k] = i′[1,k], we can reuse the work in the first k of these
steps. In other words, if we saved the pointers identifying the greyed array for T k+1(i[1,k]) at level k + 1
where we found ik+1, we can now start our search for i′k+1 in that portion, instead of starting all over at
level 1.

This results in algorithms RwSb2 and ClSb2. Fig. 5.6 shows ClSb2, since it is used in the solution
algorithm A-GSD of Sect. 6. The tests for Ik 6= null for k < K are necessary because an event might be
inactive due to a submodel Mh with h > k, but there might not be a matching state for Ψk(Jk−1, jk) at
level k already. This is possible not only for ClSb2, but also for RwSb2

1. In addition, ClSb2 still is affected
by nonzeros in AT̂ ,T , as discussed in Sect. 5.3, requiring the test IK 6= null in the innermost loop. The
analogous test is instead not needed in RwSb2.

1We thank A. S. Miner for pointing out this possibility and providing an example where it occurs.

13

The complexity of ClElSb2 is now dominated by the searches at each level, since for each multiplication
at level k, a O(log nk) search is performed as well. On a given call to ClElSb2, statement Ik ← Ψk(Ik−1, ik)

is reached η

[(⊗k
h=1 Ah

]
T k−1
1 ×T k,j[1,k]

)
= O(αk) times. ClSb2 calls ClElSb2 for each j[1,K] ∈ T , hence its

complexity is

O

(
|T | ·

K∑
k=1

αk · log nk

)
=

{
O
(
|T | ·

∑K
k=1 log nk

)
= O (|T | · log n) ultrasparse

O
(
|T | · αK · log nK

)
sparse

(5.4)

(the simplification for the sparse case is correct provided that nK is at least comparable to nk, for any
k < K).

The complexity of RwSb2 is analogous, except that the amount of computation performed in ClSb2 is
still worse than for RwSb2 because searches for unreachable states are still possible. The problem is now
reduced with respect to ClSb1, though, because entries in AT̂ \T ,T are now discovered before reaching the
innermost loop, if i[1,k] 6∈ T k

1 for some k < K.
Comparing Eq. (5.4) with Eq. (5.3), we conclude that RwSb2 and ClSb2 have better complexity in the

sparse case, since they can effectively amortize the logarithmic searches at each level only when the matrices
Ak have multiple elements per row. However, in the ultrasparse case, they have an overhead of log n = log |T̂ |
instead of just log |T |. This is due to the pessimistic assumption that a logarithmic search at level k requires
O(log nk) comparisons. If, for each k, all sets T k(i[1,k−1]) were of approximately the same size, then their
complexity in the ultrasparse case would be reduced to O(|T | · log |T |), but this might not be the case in
practice. One factor not evidenced by the complexity expressions, though, is that, unlike RwSb1 and ClSb1,
RwSb2 and ClSb2 avoid reaching the innermost for-loop whenever a partial state is not reachable, so they
might actually perform better than RwSb1 and ClSb1 even in the ultrasparse case.

RwSb+
2 and ClSb+

2 are the simplified algorithms for matrices arising from a Kronecker sum. Fig. 5.6
shows ClSb+

2 . On a given call, ClElSb+
2 reaches statements Ik ← Ψk(Ik−1, ik) and Ih ← Ψh(Ih−1, jh) for

k < h ≤ K, with an overall cost of O
(∑K

h=k log nh

)
, at most η[AT k,jk

] = O(α) times. ClSb+
2 calls ClElSb+

2

once for each j[1,K] ∈ T , hence its complexity is

O

(
|T | · α ·

K∑
h=k

log nh

)
.

The resulting complexity of computing y ← y + x ·
(⊕K

k=1 Ak
)
T ,T

using ClSb+
2 is then

O

(
K∑

k=1

|T | · α ·
K∑

h=k

log nh

)
= O

(
|T | · α ·

K∑
k=1

k · log nk

)
= O (|T | · α ·K · log n) .

Thus, the logarithmic search overhead decreases from submodel M1, where no amortization occurs, to MK ,
where only an overhead log nK is encountered, but the overall overhead remains log n, since the number of
nonzeros in

⊕K
k=1 Ak is approximately |T | · α ·K.

5.5. Interleaving rows and columns. RwSb2 and ClSb2 fail to amortize the logarithmic searches
in the case of ultrasparse matrices because the K nested for-loops in RwElSb2 and ClElSb2 consider only
the entries on a given row or column of A, respectively. If A is ultrasparse, only one entry is found, and no
amortization occurs.

To further improve the complexity, we need to consider the elements of A in a different order, interleaving
the K nested for-loops in RwElSb2, or ClElSb2, with those implicitly defined by the single for-loop in RwSb2,
or ClSb2.

14

ClElSb2(in: j[1,K],x,A[1,K]; inout: y)

1. for each i1 s.t. A1
i1,j1 > 0

2. I1 ← Ψ1(i1);

3. if I1 6= null then

4. a1 ← A1
i1,j1 ;

5. for each i2 s.t. A2
i2,j2 > 0

6. I2 ← Ψ2(I1, i2);

7. if I2 6= null then

8. a2 ← a1 ·A2
i2,j2 ;

. . .

9. for each iK s.t. AK
iK ,jK

> 0

10. IK ← ΨK(IK−1, iK);

11. if IK 6= null then

12. aK ← aK−1 ·AK
iK ,jK

;

13. y ← y + xIK · aK ;

ClSb2(in: x,A[1,K], T ; inout: y)

1. for each j[1,K] ∈ T
2. J ← Ψ(j[1,K]);

3. ClElSb2(j[1,K],x,A[1,K],yJ);

RwSb3(in: x,A[1,K], T ; inout: y)

1. for each i1 ∈ T 1

2. I1 ← Ψ1(i1);

3. for each j1 s.t. A1
i1,j1 > 0

4. J1 ← Ψ1(j1);

5. if J1 6= null then

6. a1 ← A1
i1,j1 ;

7. for each i2 ∈ T 2(i1)

8. I2 ← Ψ2(I1, i2);

9. for each j2 s.t. A2
i2,j2 > 0

10. J2 ← Ψ2(J1, j2);

11. if J2 6= null then

12. a2 ← a1 ·A2
i2,j2 ;

. . .

13. for each iK ∈ T K(i[1,K−1])

14. IK ← ΨK(IK−1, iK);

15. for each jK s.t. AK
iK ,jK

> 0

16. JK ← ΨK(JK−1, jK);

17. if JK 6= null then

18. aK ← aK−1 ·AK
iK ,jK

;

19. yJK ← yJK + xIK · aK ;

ClElSb+
2 (in: j[1,K],x, k,Ak; inout: y)

1. Ik−1 ← Ψk−1(. . . Ψ2(Ψ1(j1), j2) . . . , jk−1);

2. for each ik s.t. Ak
ik,jk

> 0

3. Ik ← Ψk(Ik−1, ik);

4. if Ik 6= null then

5. Ik+1 ← Ψk+1(Ik, jk+1);

6. if Ik+1 6= null then

. . .

7. IK ← ΨK(IK−1, jK);

8. if IK 6= null then

9. y ← y + xIK ·Ak
ik,jk

;

ClSb+
2 (in: x, k, Ak, T ; inout: y)

1. for each j[1,K] ∈ T
2. J ← Ψ(j[1,K]);

3. ClElSb+
2 (j[1,K],x, k,Ak,yJ);

RwSb+
3 (in: x, k, Ak, T ; inout: y)

1. for each i[1,k−1] ∈ T k−1
1

2. Ik−1 ← Ψk−1(. . . Ψ2(Ψ1(i1), i2) . . . , ik−1);

3. for each ik ∈ T k(i[1,k−1])

4. Ik ← Ψk(Ik−1, ik);

5. for each jk s.t. Ak
ik,jk

> 0

6. Jk ← Ψk(Ik−1, jk);

7. for each ik+1 ∈ T k+1(i[1,k])

8. Ik+1 ← Ψk+1(Ik, ik+1);

9. Jk+1 ← Ψk+1(Jk, ik+1);

. . .

10. for each iK ∈ T K(i[1,K−1])

11. IK ← ΨK(IK−1, iK);

12. JK ← ΨK(JK−1, iK);

13. yJK ← yJK + xIK ·Ak
ik,jk

;

Fig. 5.6. A better vector-matrix multiplication for a subset of the states.

We employ this idea to derive algorithm RwSb3, shown in Fig. 5.6 and used in the solution algorithm A-
JCB of Sect. 6. The statements Ik ← Ψk(Ik−1, ik) do not require a search, since all states ik ∈ T k(i[1,k−1])
are enumerated sequentially in the for statement. A search is performed only to obtain Jk ← Ψk(Jk−1, jk)
and, even if this is a multiplication by rows, the tests Jk 6= null are necessary, as already discussed for RwSB2

and ClSb2.

Statement Jk ← Ψk(Jk−1, jk) is performed η

[(⊗k
h=1 Ah

)
T k
1 ,T k−1

1 ×T k

]
= O(|T k

1 | · αk) times, hence

15

Procedure (a) mult (a) CPU (a) wall (b) mult (b) CPU (b) wall

Shffl 22,638,318 54.9 178.2 — — —
Rw 18,832,668 38.6 43.4 — — —
Cl 18,832,668 54.1 54.2 243,941,600 1,488.2 3,325.2

RwSb1, RwSb+
1 18,832,668 156.5 157.5 23,199,652 219.8 220.2

ClSb1, ClSb1 18,832,668 191.4 191.9 23,199,652 259.8 260.5
RwSb2, RwSb+

2 17,987,499 56.3 57.2 20,980,675 60.3 61.8
ClSb2, ClSb2 17,987,499 91.1 91.6 20,980,675 106.7 106.9

RwSb3, RwSb+
3 15,714,589 43.0 45.2 15,960,012 24.4 24.6

Table 5.2

Computational effort for vector-matrix multiplication.

the complexity of RwSb3 is:

O

(
K∑

k=1

|T k
1 | · αk · log nk

)
= O(|T | · αK · log nK)(5.5)

(assuming that |T K−1
1 | � |T |). Thus, finally, we achieve a smaller log nK overhead with respect to ordinary

multiplication, regardless of the type of sparsity.
RwSb+

3 in Fig. 5.6 is the simplified vector-matrix multiplication algorithm for matrices arising from a
Kronecker sum. Also in this case the complexity is dominated by the innermost for-loop, where the O(log nK)
search to compute JK ← ΨK(JK−1, iK) is performed η[AT ,T] = O(|T |·α) times. The complexity of RwSb+

3

is then

O(|T | · α · log nK)

regardless of k, and the resulting complexity of computing y ← y + x ·
(⊕K

k=1 Ak
)
T ,T

using RwSb+
3 is

O (K · |T | · α · log nK) ,

only a log nK overhead with respect to ordinary multiplication.
The complexity of ClSb3 and ClSb+

3 is the same as that of RwSb3 and RwSb+
3 , although spurious

entries are still a disadvantage. Unfortunately, though, ClSb3, unlike ClSb1 and ClSb2, does not compute
the entries of y in order. This property prevents us from interleaving rows and column indices to reduce the
logarithmic overhead if we want to use a Gauss-Seidel type iteration in our solution algorithm.

5.6. Comparing the multiplication algorithms. Fig. 5.7 compares the theoretical complexities of
Shffl and Rw or Col, and of ordinary multiplication, assuming T̂ = T and K = 4. While it is clear that Shffl
is much superior for large values of α, the matrices Wk(e) in typical modeling applications are ultrasparse
or even hypersparse. In the region around α = 1, Shffl and Rw have the same performance, K times worse
than ordinary multiplication. Indeed, Rw outperforms Shffl when α < 1, since it may recognize that an
entire row of A is zero before reaching the innermost for-loop.

On the other hand, Shffl+ and Rw+ have exactly the same complexity as ordinary multiplication. In
other words, when computing x ·A where A is the Kronecker product of K matrices, all of them equal to an
identity matrix except one, exploiting the Kronecker structure of A does not result in additional overhead
(since the generic entry Ai,j of A is obtained without performing any multiplication), nor in better efficiency

16

0.001

0.01

0.1

1

10

100

1000

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

operations
n

(log scale)

α

ordinary
Shffl
Rw

Fig. 5.7. Comparing the complexity of Shffl, Rw, and ordinary multiplication (K = 4).

(since no partial result can be reused the way Shffl does). The same holds for the complexity of computing
ŷ ← ŷ + x̂ ·

⊕K
k=1 Ak, except that ordinary multiplication is faster if there are many merged diagonal

entries in
⊕K

k=1 Ak. In our application, the diagonals of the matrices Rk are zero, so this does not happen.

These observations are confirmed by our running example. Table 5.2 gives the number of floating
point multiplications performed by the algorithms we introduced and their execution times to compute
x̂ · R̂, or x̂T · R̂T ,T , where R̂ is given by Eq. (4.1). Columns labeled (a) consider the decomposition into
two components, where T̂ = T and R̂ consists of three Kronecker products and one Kronecker sum, while
columns labeled (b) refer to the second decomposition into four components, where |T̂ | � |T | and R̂ consists
of seven Kronecker products and one Kronecker sum. The Kronecker sum in (a) contains more local events
and more nonzero entries than the one in (b). We list both CPU and elapsed (wall) time in seconds, for a
Sun SPARCstation 4 under SunOS 4.1.4, with a 85 MHz CPU, 64 MB main memory, and virtual memory
limited to 398 MB.

In the first decomposition, the matrices Wk(e) are ultrasparse or hypersparse and, as predicted by
our theoretical observations for α < 1, Rw outperforms Shffl, but all Kronecker-based algorithms are less
computationally efficient than a conventional multiplication where R is stored in sparse format, which would
only require η[R] = 13,439,073 multiplications.

This suggests that, in practice, the real advantage of Kronecker-based methods lies exclusively in their
large memory savings.

In the second decomposition, η[AT̂ ,T] = η[AT ,T], hence one should expect no significant difference
between row and column algorithms. However, as discussed in the following section, we use column algorithms
only to allow a Gauss-Seidel type of iteration, where entries of the new iterate of the steady-state probability
vector must be computed sequentially. Hence, in a multiplication by columns, we consider one state at a
time, and all the events that lead to it, while, in a multiplication by row, we are free to consider one event
at a time, and all the states it can affect. The latter way avoids having to switch between events, hence the
row algorithms perform better.

However, the column variants use less memory because the operand vector is directly overwritten by
the results. This is the reason why, for the second decomposition, Cl can still execute while Shffl and Rw
fail due to excessive memory requirements. However, Cl heavily relies on virtual memory, as the difference
between CPU and elapsed times indicates. Cl considers 139,172,250 matrix entries in R̂, although only

17

η[R] = 13,439,073 are relevant.
Shffl, Rw, and Cl are obviously inadequate when |T̂ | � |T |; only algorithms based on T run acceptably

fast for the second decomposition. The results indicate that their overhead is effectively reduced from RwSb1

to RwSb2 to RwSb3, and from ClSb1 to ClSb2. Clearly, there is no reason ever to use RwSb1 or ClSb1; we
introduced them only as a stepping stone to the better algorithms.

In summary, RwSb3 is a fast and robust algorithm, almost as fast as Rw even when |T | = |T̂ |; it
uses only O(|T |) memory, and makes full use of the multilevel data structure for the storage of T . For
multiplication by columns, instead, Cl is considerably faster than ClSb2 when |T | = |T̂ |, but ClSb2 is far
superior when |T̂ | � |T |, and it uses the least amount of memory in all cases.

It should also be noted that RwSb3 is faster with the second decomposition than with the first one, even
if it performs slightly more operations. This is due to its log nK overhead: in the first decomposition, nK

is much larger than in the second one (2394 vs. 126); indeed, 43.0/24.4 = 1.76 ≈ log 2394/ log 126 = 1.61.
Clearly, the model decomposition can greatly affect the overall solution time; how to reach an optimal choice
is a topic for future research.

We conclude this section by observing that we described our algorithms using K nested loops for il-
lustration purposes only. Since K is model-dependent, a recursive implementation is required. To improve
performance, we implemented this recursion iteratively with dynamically-allocated arrays of size K [20] .

6. Model solution algorithms. We now return to the problem of solving a Markov model, that is,
Eq. (1.1). In practical modeling problems, Q is very large and indirect iterative numerical methods such as
Power, Jacobi, or Gauss-Seidel are normally employed for the solution. In all cases, starting from a guess π(0),
which does not have to be the initial probability vector if the CTMC is ergodic, successive approximations
π(m) are computed, until convergence is reached.

In terms of the actual state space, the iterations we consider are:
• Power method: π(m+1) ← π(m) · (I+Q ·h∗), where h∗ is a value slightly larger than the maximum

expected sojourn time in any state, max0≤I<|T |{hI}. Element-wise, the Power method corresponds
to:

∀J ∈ {0, 1, . . . |T | − 1}, π
(m+1)
J ← π

(m)
J +


 ∑

0≤I<|T |
π

(m)
I ·QI,J


 · h∗.(6.1)

The Power method is guaranteed to converge in theory, but it is often extremely slow.
• Jacobi method: π(m+1) ← π(m) ·R · diag(h). Element-wise, the Jacobi method corresponds to:

∀J ∈ {0, 1, . . . |T | − 1}, π
(m+1)
J ←


 ∑

0≤I<|T |,I 6=J

π
(m)
I ·RI,J


 · hJ .(6.2)

The Jacobi method does not have guaranteed convergence, but it is usually faster than the Power
method in practice. The Jacobi and Power methods coincide when all the sojourn times have the
same value and, in the Power method, h∗ is set to this value instead of a value slightly larger.
• Gauss-Seidel method: π(m+1) ← π(m)·L·(diag (h)−1−U)−1 for forward Gauss-Seidel, or π(m+1) ←

π(m) ·U · (diag(h)−1−L)−1 for backward Gauss-Seidel, where L and U are strictly lower and upper
triangular matrices satisfying L + U = R. Element-wise, (forward) Gauss-Seidel corresponds to:

∀J ∈ {0, 1, . . . |T | − 1}, π
(m+1)
J ←


 ∑

0≤I<J

π
(m+1)
I ·RI,J +

∑
J<I<|T |

π
(m)
I ·RI,J


 · hJ .(6.3)

18

Gauss-Seidel does not have guaranteed convergence either, but it is guaranteed to be faster than
the Jacobi method (if they converge), so it is considered the best among these three methods. Its
convergence rate, however, is affected by the order in which the states are considered.

Relaxation can be used to accelerate convergence [27]. We do not investigate this possibility, since it
does not affect our discussion. Other iterative solution techniques, such as projection methods, have also
been applied successfully for the analysis of Kronecker-based models. However, these techniques have higher
memory requirements and, in any case, they too perform vector-matrix multiplications, so our discussion
could be extended to them. For a detailed analysis of numerical techniques for the solution of Markov chains,
see [26].

6.1. Alternative solution approaches. The first choice in a Kronecker-based solution is whether to
use data structures of size |T̂ | or |T |. Initial efforts have adopted the former approach [13, 14, 25], using
a probability vector π̂ ∈ IR|T̂ | initialized so that only states in T have nonzero probability (e.g., the initial
state has probability one). This is required because, even if we assume that the CTMC is ergodic, that is,
T is a single recurrent class, T̂ might instead contain multiple recurrent classes. By ensuring that all the
probability mass is in the class corresponding to T at the beginning of the iterations, we guarantee that this
is true upon convergence as well. Entries π̂i = 0 correspond to unreachable states and have no effect on the
solution.

Previous approaches, however, employ only the Power or Jacobi methods because they restrict themselves
to accessing the matrix R by rows. As pointed out in Sect. 5, they compute the entries of a new iterate
π(m+1) incrementally, using the values of the previous iterate π(m), so that double-precision vectors should
be used.

The use of Gauss-Seidel requires instead computing π
(m+1)
{1,...I−1} before π

(m+1)
I . This can be accomplished

if we have access to R by columns, that is, if we can efficiently obtain all the nonzero entries R̂i,j , for a
given j ∈ T and any i ∈ T . We have shown how to do this in Sect. 5. An additional advantage is that
single-precision vectors can be used in this case.

We now examine the timing requirements of the various solution algorithms, according to whether they:

• Use the perfect shuffle approach, SH, or our multiplication procedures.
• Store vectors the size of the potential, P, or actual, A, state space.
• Perform a Jacobi (JCB) or Gauss-Seidel (GSD) iteration.

We indicate the resulting algorithms as SH-JCB [4, 15], P-JCB, A-JCB, P-GSD, and A-GSD. In the original
SAN paper [24] introducing the Kronecker-based solution approach, the Power method is used instead of
Jacobi. Thus, we present first the Jacobi method using function Shffl to realize the iteration. Fig. 6.1 and
6.2 list only the statements within the main iteration of the numerical method, that is, the computation of
a new iterate given the current one.

We also compare the space used by the various algorithms, ignoring the memory needed to store the
matrices Rk and Wk(e), which are necessary in all the algorithms we consider, and are in any case negligible
compared to the storage for the required vectors. For simplicity, we assume that rate(e) for a synchronizing
event e is equal one, and ignore it from now on; if its value were not one, we could simply incorporate it into
exactly one of the matrices Wk(e), for some k (in a practical implementation, it is best to choose a k for
which Wk(e) 6= I).

An alternative to avoid storing R explicitly is simply to generate it “on-the-fly” at every iteration,
directly from the high-model specification. While a Jacobi-style iteration is most natural, Deavours and
Sanders [12] have shown how to use a variant of Gauss-Seidel in conjunction with an on-the-fly approach

19

SH-JCB(in: �̂old, n[1,K],R
[1,K],W[1,K](E), ĥ; out: �̂new)

1. �̂
new ← 0;

2. �̂
aux2 ← 0;

3. foreach e ∈ ES

4. �̂
aux1 ← �̂

old;

5. Shffl(n[1,K],W
[1,K](e), �̂aux1, �̂aux2);

6. �̂
new ← �̂

new + �̂
aux2;

7. for k = 1 to K

8. Shffl+(�̂old, nk−1
1 , nk, nK

k+1,R
k, �̂new);

9. for i = 0 to nK
1 − 1

10. if �̂new
i > 0 then

11. �̂
new
i ← �̂

new
i · ĥi;

Fig. 6.1. Algorithm SH-JCB.

for a set of modeling formalisms including GSPNs, stochastic activity networks, and stochastic reward nets.
A similar idea is also in [22]. However, the time complexity of this approach is at least as high as that of
the algorithms we present, and events requiring no time (e.g., immediate transitions in GSPNs [1, 2]) cause
additional overhead, since entire paths, not single events, must be explored in this case to generate a single
entry, so we do not consider it further.

6.2. Algorithm SH-JCB. The algorithm SH-JCB in Fig. 6.1 implements the Jacobi method using
Shffl and Shffl+ for the vector-matrix multiplications. The time complexity of one SH-JCB iteration is
independent of the submodel ordering:

O


 K∑

k=1

n̄k ·


η[Rk] +

∑
e:Wk(e) 6=I

η[Wk(e)]




 .(6.4)

Five vectors of length n are needed: one for the expected holding times, ĥ, one each for the previous and
the new iteration vectors, π̂old and π̂new , plus two auxiliary vectors used when calling procedure Shffl, π̂aux1

and π̂aux2. Additionally, two vector z and z′ are needed in the procedures Shffl and Shffl+, but they are only
of size maxk(nk), much smaller than n. Of these, π̂new , π̂aux2, and z′ should be stored in double-precision,
because they are used as accumulators.

6.3. Algorithm P-JCB. P-JCB is the simplest iteration, it uses the Rw and Rw+ vector-matrix
multiplications presented in Fig. 5.3 and, just as algorithm SH-JCB, it uses vectors of length n. Its complexity
depends on the order of the components:

O

(
K∑

k=1

n̄k · η[Rk] +
∑
e∈ES

K∑
k=1

k∏
h=1

η
[
Wh(e)

])
.

P-JCB requires three vectors vectors of size n: π̂old, π̂new , and ĥ; only π̂new is used to accumulate
sums.

6.4. Algorithm A-JCB. A-JCB has the same convergence behavior of SH-JCB and P-JCB, but uses
data structures of size |T | by employing the RwSb3 and RwSb+

3 vector-matrix multiplications presented in
Fig. 5.6. The complexity of one A-JCB iteration is

O




η


(K⊕

k=1

Rk

)
T ,T


+

∑
e∈ES

η


(K⊗

k=1

Wk(e)

)
T ,T




 · log nK


 .

20

P-JCB(in: �̂old, n[1,K],R
[1,K],W[1,K](E), ĥ; out: �̂new)

1. �̂
new ← 0;

2. foreach e ∈ ES

3. Rw(�̂old, n[1,K],W
[1,K](e), �̂new);

4. for k = 1 to K

5. Rw+(�̂old, nk−1
1 , nk, nK

k+1, R
k, �̂new);

6. for i ≡ i[1,K] = 0 to nK
1 − 1

7. if �̂new
i > 0 then

8. �̂
new
i ← �̂

new
i · ĥi;

A-JCB(in: �old,R[1,K],W[1,K](E),T ,h; out: �new)

1. �
new ← 0;

2. foreach e ∈ ES

3. RwSb3(�
old,W[1,K](e), T ,�new);

4. for k = 1 to K

5. RwSb+
3 (�old, k,Rk, T ,�new);

6. for I = 0 to |T | − 1

7. �
new
I ← �

new
I · hI ;

P-GSD(in: n[1,K],R
[1,K],W[1,K](E), ĥ; inout: �̂)

1. for j ≡ j[1,K] = 0 to nK
1 − 1

2. �̂j ← 0;

3. foreach e ∈ ES

4. ClEl(j[1,K], �̂, n[1,K],W
[1,K](e), �̂j);

5. for k = 1 to K

6. ClEl+(nk, nK
k+1,

∑k−1

m=1
jm · nk−1

m+1, jk,
∑K

m=k+1
jm · nK

m+1, �̂,Rk, �̂j);

7. if �̂j > 0 then

8. �̂j ← �̂j · ĥj ;

A-GSD(in: R[1,K],W[1,K](E),T ,h; inout: �)

1. for each j[1,K] ∈ T
2. J ← Ψ(j[1,K]);

3. �J ← 0;

4. foreach e ∈ ES

5. ClElSb2(j[1,K],�,W[1,K](e),�J);

6. for k = 1 to K

7. ClElSb+
2 (j[1,K],�, k,Rk,�J);

8. �J ← �J · hJ ;

Fig. 6.2. Algorithms P-JCB, A-JCB, P-GSD, and A-GSD.

If the number of merged entries in the above expression is negligible, this simplifies to

O(η[R] · log nK),

that is, just a log nK factor over the complexity of a traditional Jacobi iteration where R is stored explicitly.
The memory requirements of A-JCB are the same as for P-JCB, except that vectors are now of size |T |, not
n.

6.5. Algorithm P-GSD. With the Gauss-Seidel method, the old and the new iterate can be stored into
a single vector. If R were described by a single Kronecker product

⊗K
k=1 Ak, P-GSD would be achieved by

the simple call Cl(π̂, n[1,K],A[1,K],l, π̂), followed by the same elementwise multiplication of π̂ by the expected

21

Procedure iteration holding time auxiliary search data
vectors vector vectors structure

SH-JCB n· (S+D) n· S n· (S+D) —
P-JCB n· (S+D) n· S — —
A-JCB |T |· (S+D) |T |· S — ≈ |T |· L
P-GSD n· S n· S — —
A-GSD |T |· S |T |· S — ≈ |T |· L

Table 6.1

Memory requirements for model solution algorithms.

holding times, as performed by P-JCB. However, R consists of the sum of several Kronecker products, which
can be processed sequentially in a Jacobi iteration, but not in a Gauss-Seidel iteration, since we must now
complete the computation of the new π̂i before starting that of π̂i+1. Hence, P-GSD must call the functions
ClEl and ClEl+ directly, not through Cl or Cl+.

The complexity of P-GSD is then the same as that of P-JCB. This makes it a better choice, since Gauss-
Seidel has better convergence than Jacobi, and only one vector, π̂, is required in addition to the expected
holding times ĥ. Furthermore, we can store π̂ in single-precision.

6.6. Algorithm A-GSD. The comments made for P-GSD apply to A-GSD as well. As observed at
the end of Sect. 5, the interleaving or rows and columns of ClSb3 and ClSb+

3 cannot be used, so ClSb2

and ClSb+
2 must be used instead, whose amortization of the logarithmic search is less effective. This points

out a surprising tradeoff between A-JCB, which has slower convergence but a smaller overhead, log nK , and
A-GSD, which has better numerical convergence but higher overhead, possibly as high as logn.

The complexity of A-GSD is

O


|T | ·

K∑
k=1




η

[(
Ink−1

1
⊗Rk

)
T k−1
1 ×T k,T k

1

]
·

K∑
h=k

log nh +
∑
e∈ES

η


(k⊗

h=1

Wh(e)

)
T k−1
1 ×T k,T k

1


 · log nk

|T k
1 |





 .

6.7. Comparing the model solution algorithms. Table 6.1 summarizes the memory requirements
for the solution algorithms we considered, expressed in the units S and D, for a single- or double-precision
floating point number (usually 4 and 8 bytes, respectively), and L, for a local state of MK (usually 1 or 2
bytes). The actual memory usage for our running example is instead in Table 6.2, for decompositions (a)
and (b). Column “vectors” lists the memory (in bytes) for the iteration vectors and h; column “extra” for
auxiliary vectors or search data structures.

The timing results are in Table 6.3. We performed iterations using the absolute convergence criterion
||πold − πnew||∞ < 10−8, and a relaxation factor of 0.95.

As already anticipated in Table 5.2, algorithms SH-JCB and P-JCB fail due to insufficient memory with
the second decomposition, while P-GSD could be run, but with an unacceptable amount of overhead (we
estimate it would require about six days of CPU time).

We observe that the two decompositions result in different state orderings, which in turn affect the
convergence of A-GSD. Hence, 200 iterations are required for the first decomposition, but only 150 for the
second one (convergence is tested every 10 iterations).

22

Procedure (a) vectors (a) extra (b) vectors (b) extra

SH-JCB 24,974,208 18,730,656 276,595,200 207,446,400
P-JCB 24,974,208 — 276,595,200 —
A-JCB 24,974,208 3,127,000 24,974,208 3,804,700
P-GSD 12,487,104 — 138,297,600 —
A-GSD 12,487,104 3,127,000 12,487,104 3,804,700

Table 6.2

Memory requirements (in bytes) for our example.

Procedure (a) CPU (a) wall (a) iter (b) CPU (b) wall (b) iter

SH-JCB 20,327 65,940 370 — — —
P-JCB 14,292 16,067 370 — — —
A-JCB 15,928 16,725 370 10,022 10,054 370
P-GSD 10,822 10,841 200 — — —
A-GSD 18,236 18,337 200 20,464 21,218 150

Table 6.3

Execution times (seconds) and number of iterations for our example.

7. Conclusion. We have presented a comprehensive set of Kronecker-based matrix-vector multipli-
cation and solution algorithms for structured Markov models in a unified framework, which ignores the
peculiarities of specific modeling formalisms. Time and space complexities are given, with special attention
to the sparsity of involved matrices.

We have shown how the Kronecker-based solution of structured Markov models can be carried on with
smaller memory and execution complexity than previously proposed. This is achieved by exploiting the
sparsity of the matrices involved in the Kronecker operations, by considering the actual state space instead
of the potential state space (which can contain many unreachable states), by adopting a sophisticated data
structure to determine whether a state is reachable or not, and by performing vector-matrix multiplications
by rows or by columns, thus allowing the use of both Jacobi- and Gauss-Seidel-style methods.

Our results are not limited to steady-state solution of ergodic models. Indeed, the computation of the
cumulative sojourn time in the transient states up to absorption in an absorbing CTMC also requires the
solution of (nonhomogeneous) linear system, while the iteration performed by the Uniformization method
for the transient solution of a CTMC is essentially the same as that of the Power method.

The proposed algorithms have been implemented in SupGSPN [20] for the Petri net formalism; imple-
mentation of a more general software package fully supporting the state-dependent behavior we described
is under way [7]. The reduced memory requirements allows us to solve very large Markov models (over 107

states) on a modern workstation in a matter of hours.

REFERENCES

[1] M. Ajmone Marsan, G. Balbo, and G. Conte, A class of Generalized Stochastic Petri Nets for the
performance evaluation of multiprocessor systems, ACM Trans. Comp. Syst., 2 (1984), pp. 93–122.

[2] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis, Modelling
with generalized stochastic Petri nets, John Wiley & Sons, 1995.

23

[3] P. Buchholz, Numerical solution methods based on structured descriptions of Markovian models, in
Computer performance evaluation, G. Balbo and G. Serazzi, eds., Elsevier Science Publishers B.V.
(North-Holland), 1991, pp. 251–267.

[4] , A class of hierarchical queueing networks and their analysis, Queueing Systems., 15 (1994),
pp. 59–80.

[5] G. Chiola, On the structural and behavioral characterization of P/T nets, in Proc. 5th Int. Workshop
on Petri Nets and Performance Models (PNPM’93), Toulouse, France, Oct. 1993, IEEE Comp. Soc.
Press.

[6] G. Ciardo, A. Blakemore, P. F. J. Chimento, J. K. Muppala, and K. S. Trivedi, Automated
generation and analysis of Markov reward models using Stochastic Reward Nets, in Linear Algebra,
Markov Chains, and Queueing Models, C. Meyer and R. J. Plemmons, eds., vol. 48 of IMA Volumes
in Mathematics and its Applications, Springer-Verlag, 1993, pp. 145–191.

[7] G. Ciardo and A. S. Miner, SMART: Simulation and Markovian Analyzer for Reliability and Tim-
ing, in Proc. IEEE International Computer Performance and Dependability Symposium (IPDS’96),
Urbana-Champaign, IL, USA, Sept. 1996, IEEE Comp. Soc. Press, p. 60.

[8] , Storage alternatives for large structured state spaces, in Proc. 9th Int. Conf. on Modelling Tech-
niques and Tools for Computer Performance Evaluation, R. Marie, B. Plateau, M. Calzarossa, and
G. Rubino, eds., LNCS 1245, Saint Malo, France, June 1997, Springer-Verlag, pp. 44–57.

[9] G. Ciardo and M. Tilgner, On the use of Kronecker operators for the solution of generalized stochas-
tic Petri nets, ICASE Report 96-35, Institute for Computer Applications in Science and Engineering,
Hampton, VA, May 1996.

[10] M. Davio, Kronecker products and shuffle algebra, IEEE Trans. Comp., C-30 (1981), pp. 116–125.
[11] D. D. Deavours and W. H. Sanders, An efficient disk-based tool for solving very large Markov

models, in Proc. 9th Int. Conf. on Modelling Techniques and Tools for Computer Performance
Evaluation, R. Marie, B. Plateau, M. Calzarossa, and G. Rubino, eds., LNCS 1245, Saint Malo,
France, June 1997, Springer-Verlag, pp. 58–71.

[12] , “On-the-fly” solution techniques for stochastic Petri nets and extensions, in Proc. 7th Int. Work-
shop on Petri Nets and Performance Models (PNPM’97), Saint Malo, France, June 1997, IEEE
Comp. Soc. Press, pp. 132–141.

[13] S. Donatelli, Superposed Stochastic Automata: a class of stochastic Petri nets with parallel solution
and distributed state space, Perf. Eval., 18 (1993), pp. 21–26.

[14] , Superposed generalized stochastic Petri nets: definition and efficient solution, in Application
and Theory of Petri Nets 1994, Lecture Notes in Computer Science 815 (Proc. 15th Int. Conf. on
Applications and Theory of Petri Nets), R. Valette, ed., Zaragoza, Spain, June 1994, Springer-Verlag,
pp. 258–277.

[15] P. Fernandes, B. Plateau, and W. J. Stewart, Efficient descriptor-vector multiplication in
stochastic automata networks, Rapport Apache (LGI, LMC) 12, 1994.

[16] U. Herzog and M. Rettelbach, eds., Proc. of the 2nd Workshop on Process Algebra and Perfor-
mance Modelling (PAPM), Arbeitsberichte des IMMD 27 (4), 1994, IMMD, Universität Erlangen.

[17] R. A. Howard, Dynamic Probabilistic Systems, Volume II: Semi-Markov and Decision Processes, John
Wiley and Sons, 1971.

[18] P. Kemper, Numerical analysis of superposed GSPNs, IEEE Trans. Softw. Eng., 22 (1996), pp. 615–628.
[19] , Superposition of generalized stochastic Petri nets and its impact on performance analysis, PhD

24

thesis, Universität Dortmund, 1996.
[20] , SupGSPN Version 1.0 - an analysis engine for superposed GSPNs, tech. rep., Universität Dort-

mund, 1997.
[21] , Reachability analysis based on structured representations, in Application and Theory of Petri

Nets 1996, Lecture Notes in Computer Science 1091 (Proc. 17th Int. Conf. on Applications and
Theory of Petri Nets, Osaka, Japan), J. Billington and W. Reisig, eds., Springer-Verlag, June 1999,
pp. 269–288.

[22] B. Lubachevsky and D. Mitra, A chaotic asynchronous algorithm for computing the fixed point of
nonnegative matrices with unit spectral radius, J. ACM, 33 (1986), pp. 130–150.

[23] S. Pissanetzky, Sparse Matrix Technology, Academic Press, 1984.
[24] B. Plateau, On the stochastic structure of parallelism and synchronisation models for distributed

algorithms, in Proc. 1985 ACM SIGMETRICS Conf. on Measurement and Modeling of Computer
Systems, Austin, TX, USA, May 1985, pp. 147–153.

[25] B. Plateau and K. Atif, Stochastic Automata Network for modeling parallel systems, IEEE Trans.
Softw. Eng., 17 (1991), pp. 1093–1108.

[26] W. J. Stewart, Introduction to the Numerical Solution of Markov Chains, Princeton University Press,
1994.

[27] W. J. Stewart and A. Goyal, Matrix methods in large dependability models, Tech. Rep. RC-11485,
IBM T.J. Watson Res. Center, Yorktown Heights, NY, Nov. 1985.

25

