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A STABLE AND CONSERVATIVE INTERFACE TREATMENT OF ARBITRARY

SPATIAL ACCURACY∗

MARK H. CARPENTER† , JAN NORDSTRÖM‡, AND DAVID GOTTLIEB§

Abstract. Stable and accurate interface conditions are derived for the linear advection-diffusion equa-
tion. The conditions are functionally independent of the spatial order of accuracy and rely only on the form of
the discrete operator. We focus on high-order finite-difference operators that satisfy the summation-by-parts
(SBP) property. We prove that stability is a natural consequence of the SBP operators used in conjunction
with the new boundary conditions. In addition, we show that the interface treatments are conservative.

New finite-difference operators of spatial accuracy up to sixth order are constructed: these operators
satisfy the SBP property. Finite-difference operators are shown to admit design accuracy (pth-order global
accuracy) when (p− 1)th-order stencil closures are used near the boundaries if the physical boundary con-
ditions are implemented to at least pth-order accuracy. Stability and accuracy are demonstrated on the
nonlinear Burgers’ equation for an twelve-subdomain problem with randomly distributed interfaces.

Key words. high-order finite-difference, numerical stability, interface conditions, summation-by-parts
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1. Introduction. Higher order and spectral schemes are ideally suited for resolving problems for which
high resolution is essential. Computational aeroacoustics (CAA) and computational electromagnetics (CEM)
are two such fields that require high accuracy to resolve the vastly disparate length and time scales involved.
High-order (spectral) schemes easily outperform low-order schemes on simple problems in which the physical
domain is smoothly mapped onto the computational space. The spatial convergence rates of these schemes
allow satisfactory results on relatively coarse grids.

At least two fundamental obstacles presently limit the use of high-order schemes. The first one is the
lack of nonlinear robustness exhibited by high-order formulations. Under resolved features in the solution
and inappropriate numerical and physical boundary conditions are the primary causes. A second limitation
is the difficulty in applying high-order formulations to complex geometries. Often, the generation of a grid
around a complex configuration is the most difficult aspect of the solution procedure. Further constraint
of the grids so that they are smooth to higher order (necessary to attain design accuracy for high-order
methods) severely complicates grid generation around complex configurations.

Many high-order practitioners advocate a fully unstructured approach to grid generation. This approach
simplifies the grid-generation procedure considerably for complex configurations. Finite-element techniques
are an example of the fully unstructured schemes that are routinely used on complex geometries. An
alternative to fully unstructured methods is the semistructured approach, in which the solution domain
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is broken into the union of piecewise smooth subdomains. Each subdomain is discretized with a stable
formulation, and the resulting multiple domains are patched together globally. This technique has been
successfully used by Kopriva [1], and more recently by Hesthaven and Gottlieb [2].

The approach for designing interface conditions developed in this work is equally valid for the unstruc-
tured and semi-structured approaches in multiple spatial dimensions. The interface conditions are determined
entirely by accurate left and right state data along the interface, and do not depend on the source of the
data. For simplicity, however, we focus on the interface matching conditions necessary to maintain stability
and accuracy in one spatial dimension. We demonstrate the technique for both spectral and high-order
formulations.

In section 2, we define and describe semidiscrete operators that satisfy the SBP convention. In section
3, we introduce new interface boundary conditions for multiple domains. In section 4, we show that the new
conditions are conservative across interfaces. In section 5, we consider specific examples of the stability and
accuracy of finite-difference schemes. In section 6, we present the conclusions. Finally, in the appendix we
present the stencils used for fourth- and sixth-order finite-difference schemes.

2. Spatial Discretizations. The stable interface conditions presented in this work are valid for spa-
tial discretizations of arbitrary accuracy. To achieve this generality, the spatial discretizations must be of
a specific form. Fortunately, most numerical schemes can be put into the required form with only mi-
nor modifications. To be more precise we consider discrete spatial derivative operators with the following
properties:

2.1. First-derivative properties.

1. The first derivative operator defining the numerical derivative ux = [(∂u
∂x )0, ..., (∂u

∂x )N ]T is

Pux −Qu = 0

Pvx −Qv = PTe,(2.1)

where u = [u0(t), u1(t), ..., uN (t)]T , v = [v(x0, t), ..., v(xN , t)]T and vx = [( ∂v
∂x )0, ..., ( ∂v

∂x)N ]T . (The
vector v is the exact solution.) The truncation error Te satisfies |Te| = O(∆x)m where the quantity
∆x is defined as the maximum distance between any two neighboring grid points.

2. The matrix P is symmetric and positive definite (∆x)p I ≤ P ≤ (∆x)q I where p and q are
independent of N with p > 0 and q > 0.

3. The matrix Q is nearly skew symmetric and satisfies the property Q + QT = D, where the diagonal
matrix D has the form di,i = [−1, 0, ..., 0, 1] for i = 0, 1, ...N . Furthermore, Q0,0 = − 1

2 and
QN,N = 1

2 .
A spatial operator in the form of equation (2.1), which satisfies properties 1 through 3, is referred to as

an SBP operator [3]. All SBP operators automatically lead to an energy estimate for periodic solutions to
the linear advection-diffusion equation. In the finite-domain case, an energy estimate exists when an SBP
operator is combined with specific boundary treatments.

Discretization operators that satisfy the SBP framework are remarkably general. Kreiss and Scherer [3]
first suggested the use of SBP spatial operators in the context of second-order central-difference schemes.
In Olsson [4][5][6] and Strand [7], high order finite difference operators are constructed based on spatial
operators of SBP type. These resulting schemes are strictly stable which means that the growth rate of the
analytic and semi-discrete solution is identical.

The precise properties of the matrices P and Q provide a constructive means of formulating boundary
closures. A discretization begins with a parameterization of several points near the boundary of the required
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accuracy. The parameters are then adjusted so that they match the precise requirements of the P and Q

matrices. Strand [8] used the SBP approach to construct stable fourth- and sixth-order central-differencing
schemes with boundary closures of the appropriate order. Carpenter, Gottlieb, and Abarbanel [9] extended
the SBP formalism to compact implicit operators (fourth-order Pade’ operators); Carpenter and Gottlieb [10]
showed that spectral formulations (Galerkin and collocation) can be cased in the SBP framework. Finally,
Carpenter and Otto [11] showed that the SBP schemes have a natural interface property, and they used this
property to derive a class of multiple-domain schemes referred to as “cyclo-difference” schemes. (The earlier
work [11] required strong imposition of interface data, whereas the present formulation requires only weak
imposition).

The SBP schemes naturally arise with centered approximations, for which the spatial operator is skew
symmetric. A more general class of schemes could be formulated in the form

du
dx

= P−1 (Q + T ) u(2.2)

where the matrix T is symmetric negative definite. The general formulation includes the entire class of
central and upwind schemes. The upwind schemes are automatically stable and accurate because they are
obtained by adding a symmetric high-order diffusion operator to a stable and accurate SBP formulation. We
focus, therefore, on the original SBP definition which includes central, compact, and spectral formulations.

An approach similar to that used on the first-derivative operator can be used for the second-derivative
operator. For example, one can seek two positive-definite matrices L and R such that

vxx − L−1Rv = O(∆x)m

An obvious choice is to take L = P and R = QP−1Q so that the second-derivative operator is obtained by
repeated differentiation with the first-derivative operator. For spectral discretizations, this process of differ-
entiation is a natural consequence of the polynomial-based discretization technique. This same assumption
for finite-difference techniques is acceptable but less desirable than other, more compact formulations. A
second derivative formed from two first-derivative operators is unnecessarily wide and inaccurate and can
lead to odd-even mode decoupling. For this reason, we seek a second-derivative operator with the following
properties:

2.2. Second-derivative properties.

1. The second-derivative operator that defines uxx is

Puxx − (−ST M + D)Su = 0

Pvxx − (−ST M + D)Sv = PTe2.(2.3)

where the diagonal matrix D has the form di,i = [−1, 0, ..., 0, 1], i = 0, 1, ...N

2. The matrix M is positive definite: (∆x) m I ≤ M ≤ (∆x) n I , where m and n are independent of
N with m > 0 and n > 0.

3. The matrix S is of the form

S =
1

(∆x)




s0,0 s0,1 s0,2 s0,3 ...

0 1 0
0 1 0

.

0 1 0
0 1 0

... sN,N−3 sN,N−2 sN,N−1 sN,N




(2.4)
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where

Su|0 = vx(x0) + O(∆x)r

Su|N = vx(xN ) + O(∆x)r(2.5)

The matrix S is the identity matrix (scaled by the grid spacing) where a discrete representation of
the first derivative replaces the first and last rows.

4. The matrix P is that used in the first-derivative operator.
Explicit forms of the matrices S and M are given in the appendix for a second-order explicit discretiza-

tion. In addition, the matrix S is presented up to sixth order.

3. Interface Boundary Conditions for Multiple Domains. Consider the linear advection-diffusion
equation

∂U

∂t
+ a

∂U

∂x
= ε

∂2U

∂x2
, |x| ≤ 1, t > 0.(3.1)

Suppose that the equation is discretized by a multi-domain technique such that the interval is divided
arbitrarily into two subintervals −1 ≤ x ≤ xi and xi ≤ x ≤ 1. On each subinterval, a discretization is used
that satisfies the SBP properties 1 through 3. We propose implementing the interface boundary conditions
by using a penalty treatment of the form

Plut + aQlu = εRlu + σ1eli(u|x=xi − v|x=xi) + σ2εeli[(Dlu)|x=xi − (Drv)|x=xi ]

Prvt + aQrv = εRrv + σ3eri(v|x=xi − u|x=xi) + σ4εeri[(Drv)|x=xi − (Dlu)|x=xi ](3.2)

where u is a vector of length M u = [u0(t), u1(t), ..., uM (t)]T defined in the left domain at the points
xL = [x0 = −1, x1, ..., xM = xi)]

T and eli = [0, ..., 0, 1]T is of dimension M . In the right domain, v =
[v0(t), v1(t), ..., vN (t)]T is defined at the points xR = [x0 = xi, x1, ..., xN = 1]T and eri = [1, 0, ..., 0]T is of
dimension N .

The second-derivative matrices P−1
l RL and P−1

r Rr, as well as the first-derivative matrices P−1
l Ql and

P−1
r Qr, are defined as in section 2. The matrices Dl and Dr are any operators that approximate the first

derivative to O(∆x)m. The obvious first choice would be to use P−1
l Ql and P−1

r Qr, but this choice is not
essential for accuracy or stability. (In equation (3.2) we have ignored the physical boundary conditions at
x = 1 and x = −1 for the sake of simplicity. )

THEOREM 3.1. Consider the scheme (3.2) for the advection-diffusion equation (3.1). If the matrices
Pl, Ql,Pr, Qr, RL and Rr satisfy the first and second derivative properties of section 2 and

σ3 = σ1 − a, σ4 = σ2 + 1, σ1 ≤ a

2
− ε[

σ2
2

4αr
+

σ2
4

4αL
],(3.3)

then (3.2) is stable.
In the proof which follows, we have without loss of generality considered only the interface terms, and

ignored the terms that arise at the physical boundaries. We assume that the physical boundary conditions
are implemented by stable and accurate numerical procedures. (See Hesthaven and Gottlieb [2] for a possible
implementation).

PROOF: The proof is based on a simple energy estimate. By premultiplying the equations by the vectors
uT and vT , respectively, and adding we obtain

d

dt
[||u||2Pl

+ ||v||2Pr
] = 2uT (εRl − aQl)u + 2vT (εRr − aQr)v
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+ 2σ1ui(ui − vi) + 2εσ2ui[(Dlu)i − (Drv)i]

+ 2σ3vi(vi − ui) + 2εσ4vi[(Drv)i − (Dlu)i]

where ||u||2Pl
= uT Plu, and we have defined ui, vi, (Dlu)i, and (Dlv)i as u|x=xi, v|x=xi , (Dlu)|x=xi , and

(Drv)|x=xi , respectively. The second-derivative properties of section 2 lead to

uT Rlu ≤ −αl(Dlu)2i + ui(Dlu)i(3.4)

vT Rrv ≤ −αr(Drv)2i − vi(Drv)i(3.5)

where the constants αl and αr are positive.
By using the first-derivative properties of section 2 and equations (3.4) and (3.5) and neglecting the

physical boundary terms leads to

d

dt
[||u||2Pl

+ ||v||2Pr
] ≤ wT

i Bwi(3.6)

where wi = [ui, vi, (Dlu)i, (Drv)i], and the boundary matrix B defined by

B=




(−a + 2σ1) −(σ1 + σ3) ε(1 + σ2) −εσ2

−(σ1 + σ3) a + 2σ3 −εσ4 ε(−1 + σ4)
ε(1 + σ2) −εσ4 −2εαl 0
−εσ2 ε(−1 + σ4) 0 −2εαr


(3.7)

Straightforward (though tedious) algebra shows that conditions (3.3) yield a non-positive definite matrix B,
thus proving stability. Details are presented in Appendix I.

In practice, the values of σ1 through σ4 are determined as follows. The parameters αr and αl are
functions from the numerical method and the chosen grid. The viscous contribution in the constraint
equation σ1 ≤ a

2 − ε[ σ2
2

4αr
+ σ2

4
4αL

] is minimized for σ2 = −αr

αr+αl
, yielding the expression σ1 ≤ a

2 − ε[ 1
4(αr+αl)

].
The value σ1 determines the dissipation at the interface, and also influences the effective CFL of the numerical
scheme. Values of σ1 in the range −1 ≤ σ1 ≤ 0 provide a compromise between adequate levels of dissipation,
and acceptable numerical efficiency.

We have shown that the linking of two domains at an interface with the interface conditions prescribed
in Theorem 3.1 is stable in a semidiscrete sense for specific values of the penalty parameters σ1 through σ4.
The basic methodology can be extended to an arbitrary number of subdomains without complication. The
only constraint is that the numerical method must satisfy the SBP framework. The methodology does not
rely on subdomain size and does not require the same SBP operator to be used in each domain. In principle,
a finite-difference operator of any order, as well as spectral operators on subdomains of arbitrary size, can
be linked together in a stable manner. Practical details on how to chose σ1 through σ4 are included in the
results section (Section 6).

In section 2, we presented the general form of second-derivative operators appropriate for this work. We
then noted two specific derivative operators that satisfy this form. We now show that both choices for the
matrices Rl (and Rr) suggested in section 2 satisfy conditions (3.4) and (3.5) of Theorem 3.1. We start with
the first option (i.e. Rl = QlP

−1
l Ql). In this case, the first derivative matrix in (3.2) is Dl = P−1

l Ql. Thus,
the quantity uT Rlu becomes

uT QlP
−1
l Qlu = uT QlP

−1
l PlP

−1
l Qlu

= −(P−1
l Qlu)T Pl(P−1

l Qlu) + ui(P−1
l Qlu)i
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where we have used the SBP property Q + QT = D, and have ignored the physical boundary contribution.
We recall now that Pl ≥ (∆x)pl so that

uT Rlu = uT QlP
−1
l Qlu

≤ −(∆x)pl|(Dlu)|2 + ui(Dlu)i

Thus, (3.4) is satisfied with αl = (∆x)pl. A similar result holds for Rr with αr = (∆x)pr.
The second choice presented in section 2 for the second-derivative operator P−1Rl is of the form of

equation (2.3):

P−1Rl = P−1(−ST M + D)S

For the purpose of proving stability, we relate the two matrices Dl = S. (In actuality, only the first and last
rows satisfy Dl = S. They are, however, the only portions of the matrices that enter the proof.)

uT Rlu = −(Su)T MSu + Ui(Su)i

≤ −(∆x) m|Su|2 + Ui(Su)i.

Thus, (3.4) is satisfied with αl = (∆x) m.

4. Conservation at the Interface. The Lax-Wendroff theorem [12] addresses the complexities en-
countered in solving nonlinear conservation laws. The theorem states that a convergent numerical approxi-
mation Ul(x, t), computed with a consistent and conservative method, converges to a weak solution of the
conservation law. Note that discrete conservation is necessary to satisfy the conditions of the theorem.

A heuristic definition of conservation (commonly encountered by practitioners) describes how the numer-
ical flux function “telescopes” across a domain to the boundaries. The total quantity of a conserved variable
in any region changes only as a result of the flux through the boundaries of the region. We, however, rely on a
broader definition of conservation motivated by the original proof of the Lax-Wendroff theorem. We demand
that the numerical flux telescope across the domain, and that all moments of the flux against an arbitrary
test function telescope across the domain. This additional constraint demands an equivalence between the
weak forms of the continuous and discrete operators.

We begin by discussing conservation in a single domain. Consider the nonlinear equation Ut + Fx = 0
on −1 ≤ x ≤ 1 and t ≥ 0. Note that in the linear case F = aU and we obtain (3.1) with ε = 0. To
obtain the weak form of this equation we multiply by an arbitrary test function φ(x, t) that vanishes on the
boundaries. By integrating with respect to space and time we obtain an integral statement of the original
differential equation:

∫ 1

−1

φUdx|t0 −
∫ t

0

∫ 1

−1

(Uφt + Fφx)dxdτ = 0

Now consider the semidiscrete equation given by PUt + QF = 0. Here, we have replaced the spatial
derivative Fx in the continuous case with an SBP derivative operator of order (∆x)r. By multiplying by
the discrete vector φ(xj) = φT (the discrete analog of integration) and integrating with respect to time, we
obtain

φT PU |t0 −
∫ t

0

(UT Pφt + FT Qφ)dτ = 0

Thus, the semi-discrete operator satisfies a weak form similar to that of the continuous operator, and asymp-
totically approaches the continuous operator in the limit of infinite spatial resolution. The special form of the
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P and Q matrices present in the SBP operators enables the semidiscrete operator to mimic the conservation
property of the continuous operator.

The equivalence between the continuous and semi-discrete operators is more more complicated for mul-
tiple domains. The conservation property of the SBP operator does not necessarily apply at an interface
boundary. Under very mild restrictions, however, the SBP interface operators telescope out to the physical
boundaries, as does the continuous operator. Because conservation is only necessary for the advection terms
in the advection-diffusion equation, we set ε = 0 (see equation (3.1)) and prove conservation for a two-domain
discretization. We prove conservation for a general nonlinear flux. Note that the penalty parameters for this
nonlinear case are designated σ̂1 and σ̂3. The resulting conservation condition obtained in the nonlinear case
is slightly different from that obtained in the linear analysis. This difference results from different scalings
of the penalty parameters.

THEOREM 4.1. Assume the nonlinear equation ∂U
∂t + ∂F (U)

∂x = 0 is valid on the interval −1 ≤ x ≤
1 , t > 0, divided arbitrarily into two subintervals −1 ≤ x ≤ xi and xi ≤ x ≤ 1. On each subinterval,
a discretization is used that satisfies the SBP framework, and boundary conditions are imposed via penalties
in the form

ut + P−1
l QlF(u) = σ̂1P

−1
l eli[F (u(xi))− F (v(xi))]

vt + P−1
r QrF(v) = σ̂3P

−1
r eri[F (v(xi))− F (u(xi))](4.1)

where u = [u0(t), u1(t), ..., uM (t)]T is defined in the left domain at the points xL = [x0 = −1, x1, ..., xM = xi]
T ,

and eli = [0, ..., 0, 1]T is of dimension M , with similar definitions on the right domain. The discretization
is conservative provided that the stability condition σ̂3 = σ̂1 − 1 is satisfied.

PROOF: For multiple domains, we proceed as shown previously in the single-domain case. Multiplying
equations (4.1) by the vectors φT Pl and φT Pr, respectively, yields the set of equations

φT Plut + φT QlF(u) = σ̂1φ(xi)(F (u(xi))− F (v(xi)))

φT Prvt + φT QrF(v) = σ̂3φ(xi)(F (v(xi))− F (u(xi)))

Using the properties of Ql and Qr we get

φT Plut − FT Qlφ + φ(xi)F (u(xi)) = σ̂1φ(xi)(F (u(xi))− F (v(xi)))

φT Prvt − FT Qrφ− φ(xi)F (v(xi)) = σ̂3φ(xi)(F (v(xi))− F (u(xi)))

By integrating with respect to time and making use of the fact that φ is continuous at the interface, we get

φT Plu|t0 + φT Prv|t0 =
∫ t

0

(uT Plφt + FT Qlφ)dτ

+
∫ t

0

(vT Prφt + FT Qrφ)dτ

+
∫ t

0

φiF (u(xi))(σ̂1 − σ̂3 − 1)dτ

+
∫ t

0

φiF (v(xi))(σ̂3 − σ̂1 + 1)dτ

Obviously, the condition σ̂3 = σ̂1 − 1 eliminates the interface terms from the expression and leaves the
desired weak form of the semidiscrete equation. Thus, the theorem is proved.
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5. Accuracy of Boundary Conditions. A significant obstacle in dealing with high-order finite-
difference schemes is the formulation of stable stencils near the boundaries. A uniformly high-order ap-
proximation should be maintained if possible up to the boundary. In most high-order formulations, ensuring
uniform accuracy up to the boundaries is difficult when numerical stability must be maintained. Fortunately,
Gustafsson [13] showed that difference approximations to mixed hyperbolic parabolic equations admit global
design accuracy when a finite number of points (independent of N) are closed with stencils that are less accu-
rate by 1 order. For example, a fourth-order interior discretization will asymptotically recover fourth-order
L2 accuracy with third-order closures near the boundaries.

In this section, we confirm that the physical boundary conditions must be imposed with at least the
design accuracy in the context of interface boundary conditions. We begin by inspecting equation (3.2) and
by defining the truncation error as that error committed by substituting the exact solution into the scheme.
Denote by Vl and Vr the projection of the exact solution in the two domains. Substituting the exact solution
into the first equation in (3.2) yields

PlTle = Pl
∂Vl

∂t
+ aQlVl − εRlVl + σ1eli(Vlx=xi

−Vrx=xi
) + σ2eli((DlVl)|x=xi − (DrVr)|x=xi)

with a similar expression in the right domain. The differentiation matrices are accurate to the design order
of the method. Thus, the first three terms to the right of the equality, reduce to the truncation error of the
spatial approximation. (Except for a finite number of points that are lower by 1 order near the interfaces
and the physical boundary). Examining the truncation error from the penalty terms, we observe that V

is smooth across the interface, and Vli − Vri = 0. Thus, we only need that DlVlx=xi
and DrVrx=xi

approximate the first derivative to the design order of accuracy. The exact nature of the solution error near
the boundaries is extremely complicated due to the points treated less accurately in that vicinity. More
details will be presented in a future work on this subject. We show by numerical example, however, that
order reduction occurs when the interface derivative is treated with less than design accuracy. (See Table 5).

5.1. Uniform Grid.. Now we demonstrate that the physical boundary conditions must be imposed
with accuracy of at least design order to maintain global design accuracy. This condition is a natural
consequence of the overall dependence of the solution on the boundary conditions. The test problem we use
is the Burgers’ equation

∂U

∂t
+ U

∂U

∂x
= ε

∂2U

∂x2
− 1 ≤ x ≤ 1 , t > 0,(5.1)

with the exact solution

U(x, t) = −a tanh(a
x− ct

2ε
) + c,−∞ < x < ∞, t < 0.(5.2)

The solution of (5.1) requires imposition of boundary conditions at each end of the physical domain. We
choose Robin boundary conditions of the form

αu(−1, t)− β
∂u

∂x
|−1 = g−1(t); γu(1, t)− δ

∂u

∂x
|1 = g1(t)

such that the problem is mathematically well-posed. (See Hesthaven and Gottlieb [2] for the constraints
on α, β, γ, and δ). The physical boundary conditions were imposed in penalty form, as described in the
work of Hesthaven and Gottlieb [2]. The time-advancement scheme is the five-stage fourth-order low-storage
Runge-Kutta scheme. The time step was chosen to ensure that the temporal error in the formulation was
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small relative to the spatial error. The simulation is run to a physical time of T = 1, and the viscosity is
determined by the value ε = 5 10−1.

Tables 1 to 4 show the results of a grid-refinement study on a single domain with a fourth-order explicit
interior scheme. The accuracy of the boundary closure and of the physical boundary condition are parameters
in the study. Table 2 shows the results of the refinement study with a uniformly fourth-order-accurate scheme
(4,4-4-4,4) with the derivative term in the Robins’ boundary conditions approximated to O(∆x4). We note

Table 5.1

L2 Solution Errors: Convergence rate of uniformly fourth-order sch eme

N LOG10error Rate

33 -3.847
65 -4.082 2.31
129 -5.239 3.84
257 -6.486 4.14
513 -7.731 4.14
1025 -8.960 4.87

that the convergence rate in Table 1 is fourth order and that the design accuracy is achieved.

Table 2 shows the second study in which boundary closure accuracy is relaxed by one order. The
resulting scheme (3,3-4-3,3) is third order locally at each boundary and fourth order in the interior. (Both
the inviscid and viscous stencils are reduced by one order of accuracy near the boundaries.) The physical
boundary condition is still approximated to O(∆x4).

Table 5.2

L2 Solution Errors: Convergence rate of fourth-order scheme with third-order closure at boundaries.

N LOG10error Rate

33 -3.694
65 -4.797 3.66
129 -5.971 3.90
257 -6.117 3.81
513 -7.276 3.85
1025 -9.455 3.92

We note that the convergence rate in Table 2 asymptotes to fourth order and that the absolute levels of
error are comparable to those obtained using the (4,4-4-4,4) scheme. Again, design accuracy is achieved.

Table 3 shows the third study, in which boundary closure accuracy is relaxed by two orders. The resulting
scheme (2,2-4-2,2) is second order locally at each boundary and fourth order in the interior. (Only the viscous
terms are reduced by two orders of accuracy near the boundaries.) The physical boundary condition is still
approximated to O(∆x4).

We note that the convergence rate in Table 3 asymptotes to third order, which is a reduction in global
accuracy of one order. This behavior is consistent with Gustafsson’s [13] theory, specifically, that global
solution accuracy allows a finite number of stencils to be reduced by one order of accuracy.

Table 4 shows the final study, in which boundary closure accuracy is uniformly fourth-order accurate
(4,4-4-4,4). The physical boundary condition is approximated to O(∆x3), however. The convergence rate in
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Table 5.3

L2 Solution Errors: Convergence rate of fourth-order scheme with second-order closure at boundaries.

N LOG10error Rate

33 -2.974
65 -4.074 3.65
129 -5.519 4.80
257 -6.284 2.54
513 -7.048 2.54
1025 -7.898 2.82

Table 4 asymptotes to third order, which is a reduction in global accuracy by one order.

Table 5.4

L2 Solution Errors: Convergence rate of uniformly fourth-order scheme, using third-order accurate boundary conditions.

N LOG10error Rate

33 -3.004
65 -4.002 3.32
129 -4.764 2.53
257 -5.636 2.90
513 -6.531 2.97
1025 -7.898 2.82

This series of tests on the single domain indicates the need to impose the physical boundary condition
with design accuracy. However, closing the near boundary stencils with an accuracy that is one order
less than the design interior accuracy appears to be sufficient. A similar conclusion was reached with a
second-order-accurate scheme (1-2-1) and second-order physical boundary conditions.

We now demonstrate by numerical example that these results generalize to the case of multiple domains.
Table 5 shows a grid-refinement study that compares one and eight spatial domains. The numerical test
problem is the previously described Burgers’ equation using a value of ε = 10−2. The numerical scheme used
in both cases is the (3,3,3,3-4-3,3,3,3) scheme with physical boundary conditions imposed to an accuracy of
O(∆x4).

Table 5.5

L2 Solution Errors: Convergence rate of fourth-order scheme with third-order closure at interfaces, on multiple domain

problem.

1 domains 8 domains

N LOG10error Rate LOG10error Rate

97 -2.148 -2.125
193 -3.016 2.88 -3.143 3.38
385 -4.214 3.98 -4.485 4.45
769 -5.372 3.85 -5.656 3.38

1537 -6.505 3.76 -6.866 4.02
3063 -7.664 3.85 -8.055 3.95
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We note that the convergence rate in Table 5 asymptotes to fourth order, for both the one- and eight-
domain cases. This example demonstrates that design accuracy is achieved with multiple domains so long
as the physical boundary conditions are imposed with design accuracy and the numerical closures near the
interfaces are at most one order of accuracy less than the design accuracy of the interior scheme.

Fig. 5.1. The Burgers equation solved using a sixth-order scheme with randomly generated interface points.

5.2. Nonuniform Domain. The final problem we solve is the nonlinear Burgers’ equation with un-
equally spaced subdomains and a sixth-order scheme. Details of the numerical discretization are included in
the appendix. The Burgers’ equation in the form of equation (5.1) is solved throughout the domain with a
viscosity parameter of ε = 10−2. The domain is divided into 12 subdomains, each with the same number
of points and a uniform local discretization. The domain interfaces are placed randomly throughout the
domain. The ratio of maximum to minimum subdomain size is about 15:1. Figure 1 shows the solution at
four different times. The “symbols” at the top of the figure show the positions of the 11 interface points.
The profiles are smooth and monotone for this discretization. Figure 2 shows the logarithm of the solution
error plotted as a function of space on the sequence of five grids.

This problem demonstrates the stability and accuracy of the new interface treatments. The discretiza-
tions asymptote to a convergence rate of sixth order on the sequence of grids. Table 6 shows the convergence
rate of the calculations, for two different values of the parameter ε. The steep gradients are resolved to
high-order on all grids for ε = 10−2. For ε = 210−3, the two coarsest grids are not yet achieving high-order
accuracy, and two-point grid oscillations exist in the solution. Further reduction of ε causes numerical insta-
bility, emanating from the interface location, as the gradients pass the interface. Increasing the robustness
of the interface conditions for marginally resolved/discontinuous cases is the focus of current research.

6. Conclusions. We focus on high-order finite difference schemes, which satisfy the summation-by-
parts (SBP) discretization framework. We show stable and conservative interface treatments of arbitrary
spatial accuracy for the linear advection-diffusion equation. Problems with multiple domains and abruptly
changing mesh sizes are considered.
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Fig. 5.2. Errors obtained from Burgers equation solved on a sequence of grids with a sixth-order scheme.

Table 5.6

L2 Solution Errors: Convergence of sixth-order scheme with twelve subdomains and interfaces distributed randomly.

ε = 10−2 ε = 2 10−3

N LOG10error Rate LOG10error Rate

145 -3.090 -1.376
289 -4.641 5.15 -1.865 1.62
577 -5.915 4.22 -3.053 3.95

1153 -7.520 5.33 -4.574 5.05
2305 -9.370 6.15 -5.834 4.18

Finite-difference operators are shown to admit design accuracy (pth-order global accuracy) when p− 1th-
order stencil closures are used near boundaries if the physical boundary conditions are imposed with pth-order
accuracy. Finite-difference operators of up to sixth order are constructed which satisfy the constraints of the
new interface procedures.

Accurate sixth order calculations are achieved for the nonlinear Burgers equation on a twelve subdomain
problem having randomly distributed interfaces.
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Appendix I. Stability. Here we show the algebra involved in proving THEOREM 3.1. We begin by
restating of the stability condition presented in equation (3.6), governing the total energy of the system:

d

dt
[||u||2Pl

+ ||v||2Pr
] ≤ wT

i Bwi(.1)

where wi = [ui, vi, (Dlu)i, (Drv)i], and the boundary matrix defined in equation (3.7) is defined by

B=




(−a + 2σ1) −(σ1 + σ3) ε(1 + σ2) −εσ2

−(σ1 + σ3) a + 2σ3 −εσ4 ε(−1 + σ4)
ε(1 + σ2) −εσ4 −2εαl 0
−εσ2 ε(−1 + σ4) 0 −2εαr


(.2)

The stability of this matrix is easier to analyze if it is rotated with a similarity transformation. Define
the new vector ŵ = Sw such that:

ŵ=
1√
2




ui − vi

ui + vi

(Dlu)i − (Drv)i

(Dlu)i + (Drv)i


=

1√
2




1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1







ui

vi

(Dlu)i

(Drv)i


(.3)

The similarity rotation matrix has the property ST = S−1 as can easily be verified. The rotation matrix
S can be used to transform the stability condition defined by equation (3.6) into the following equivalent
condition:

wT
i M iwi = wT

i ST SM iST Swi = ŵT M̂ iŵ ≤ 0;(.4)
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where

M̂ i =




2(σ1 + σ3) −(−σ1 + σ3 + a) ε(σ2 + σ4) ε

−(−σ1 + σ3 + a) 0 −ε(−σ2 + σ4 − 1) 0
ε(σ2 + σ4) −ε(−σ2 + σ4 − 1) −ε(αr + αl) ε(αr − αl)

ε 0 ε(αr − αl) −ε(αr + αl)


(.5)

To ensure negative definiteness, every sub-matrix in the matrix M̂ i must be negative definite. We
observe by inspection that (σ1 +σ3) ≤ 0 is a necessary condition. Analyzing the 2x2 sub-matrices along the
diagonal, we obtain the necessary conditions (−σ1 + σ3 + a) = 0, and ε(−σ2 + σ4 − 1) = 0. Substituting
the equalities (−σ1 + σ3 + a) = 0 and (−σ2 + σ4 − 1) = 0 into the matrix M̂ i yields:

M̂ i =




2(2σ1 − a) 0 ε(2σ2 + 1) ε

0 0 0 0
ε(2σ2 + 1) 0 −ε(αr + αl) ε(αr − αl)

ε 0 ε(αr − αl) −ε(αr + αl)


(.6)

A symmetric matrix can be rotated into diagonal form by an orthogonal matrix, making the condition
of negative semi-definiteness

ŵT ÛT DiÛŵ ≤ 0;

where Û is the orthogonal matrix that satisfies ÛT DiÛ = M̂ i. Pre- and post- multiplication of M̂ i by
suitable rotation matrices Mλ = R1

T M̂ iR1, yield the equivalent condition

ŵT R1
T ÛT DiÛR1ŵ ≤ 0;

The matrix R1, chosen to yield a diagonal expression for the matrix Mλ is

L1 =




1 0 0 0
0 1 0 0

L3,1 0 1 0
L4,1 0 L4,3 1


(.7)

with

L3,1 =
−ε(2σ2 + 1)
2(2σ1 − a)

L4,1 =
−2ε(αrσ2 − αlσ2 + αr)

ε(4σ2
2 + 4σ2 + 1) + (4σ1 − 2a)(αr + αl)

L4,3 =
−(ε(2σ2 + 1) + (−4σ1 + 2a)(αr − αl))
ε(4σ2

2 + 4σ2 + 1) + (4σ1 − 2a)(αr + αl)

The diagonal elements of Mλ are

λ1 = 2(2σ1 − a)
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λ2 = 0

λ3 =
−ε(ε(4σ2

2 + 4σ2 + 1) + (4σ1 − 2a)(αr + αl))
2(2σ1 − a)

λ4 =
−4ε(αrε(σ2 + 1)2 + αlεσ

2
2 + (4σ1 − 2a)αlαr)

ε(4σ2
2 + 4σ2 + 1) + (4σ1 − 2a)(αr + αl)

These eigenvalues must be less than or equal to zero to ensure stability of the interface condition. The
resulting condition of stability is

σ1 ≤ a

2
− ε[

σ2
2

4αr
+

σ2
4

4αL
]

Combining this expression with the constraints σ3 = σ1−a and σ4 = σ2+1 yield the conditions of THEOREM
3.1.

Appendix II. Stencils. We now present the specific form of the stencils that satisfy the SBP stability
requirements, and the accuracy requirements shown necessary in the previous numerical study. At second
order, the discretization matrix for the advection terms that satisfy the constraint A1 = P−1Q is

A=
1

2∆x




−2 2
−1 0 1

. . .

. . .

. . .

−1 0 1
−2 2




(.8)

where

P =∆x




1
2

1
.

.

.

1
1
2




; Q= 1
2




−1 1
−1 0 1

. . .

. . .

. . .

−1 0 1
−1 1




(.9)

The discretization matrix for the diffusion terms that satisfies the constraint A2 = P−1(−ST R + D)S
is

A=
1

(∆x)2




1 −2 1
1 −2 1

. . .

. . .

. . .

1 −2 1
1 −2 1




(.10)
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where

S = 1
∆x




− 3
2 2 − 1

2

1
.

.

.

1
1
2 −2 3

2




; D=




−1
0

.

.

.

0
1




(.11)

and

R=
1

(∆x)




4
9 − 2

9
2
9

− 2
9

10
9 − 10

9
2
9 − 10

9
19
9 −1
−1 2 −1

. . .

. . .

. . .

−1 2 −1
−1 19

9 − 10
9 − 2

9

− 10
9 − 10

9
2
9

− 2
9 − 2

9
4
9




(.12)

The matrix R can be shown to be positive definite (and symmetric).

The fourth-order discretization that satisfies the SBP constraints was originally derived in the work of
Strand [8]. The coefficients r1 and r2 below are different from those proposed by Strand and are chosen so
that the resulting discretization A1 = P−1Q has the standard four-point third-order stencil at the first grid
point. The values of r1 and r2 are

r1 =
−(2177

√
295369− 1166427)

25488
(.13)

r2 =
(66195

√
53
√

5573− 35909375)
101952

and the matrices P and Q are

P =∆x




−(216 r2+2160 r1−2125)
12960

(81 r2+675 r1+415)
540

−(72 r2+720 r1+445)
1440

−(108 r2+756 r1+421)
1296

(81 r2+675 r1+415)
540

−(4104 r2+32400 r1+11225)
4320

(1836 r2+14580 r1+7295)
2160

−(216 r2+2160 r1+655)
4320

−(72 r2+720 r1+445)
1440

(1836 r2+14580 r1+7295)
2160

−(4104 r2+32400 r1+12785)
4320

(81 r2+675 r1+335)
540

−(108 r2+756 r1+421)
1296

−(216 r2+2160 r1+655)
4320

(81 r2+675 r1+335)
540

−(216 r2+2160 r1−12085)
12960

1
.




(.14)
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and

Q=




(−1)
2

−(864 r2+6480 r1+305)
4320

(216 r2+1620 r1+725)
540

−(864 r2+6480 r1+3335)
4320

(864 r2+6480 r1+305)
4320 0 −(864 r2+6480 r1+2315)

1440
(108 r2+810 r1+415)

270
−(216 r2+1620 r1+725)

540
(864 r2+6480 r1+2315)

1440 0 −(864 r2+6480 r1+785)
4320

−1
12

(864 r2+6480 r1+3335)
4320

−(108 r2+810 r1+415)
270

(864 r2+6480 r1+785)
4320 0 8

12
−1
12

1
12

−8
12 0 8

12
−1
12

. . . . .




(.15)
Only the inflow boundary portion of the matrices P and Q is shown. The outflow coefficients are the negative
transpose of the inflow coefficients. The matrix P is symmetric and positive definite.

The discretization matrix for the diffusion terms that satisfies the constraint A2 = P−1(−ST R + D)S
is:

A=
1

(∆x)2




35
12

−26
3

19
2

−14
3

11
12

11
12

−5
3

1
2

1
3

−1
12

−1
12

16
12

−30
12

16
12

−1
12

. . . . .

. . . . .

. . . . .
−1
12

16
12

−30
12

16
12

−1
12

−1
12

1
3

1
2

−5
3

11
12

11
12

−14
3

19
2

−26
3

35
12




(.16)

where

S = 1
∆x




− 25
12 4 −3 4

3 − 1
4

1
.

.

.

1
− 1

2 − 4
3 −3 −4 25

12




; D=




−1
0

.

.

.

0
1




(.17)

The matrix R is too complicated to report here but can be shown to be positive definite. This numerical
scheme is referred to as (3,3,3,3-4-3,3,3,3), which denotes the fact that the four points nearest to the boundary
are closed with third-order formulas.

The sixth-order discretization that satisfies the SBP constraints was originally derived in the work of
Strand [8]. The coefficients r1, r2, and r3 below are different from those proposed by Strand and are chosen
so that the resulting discretization A1 = P−1Q has the standard six-point fifth-order stencil at the first grid
point. This choice produces remarkably good stability characteristics at the boundary. The coefficients are

r1 = −3.6224891259957(.18)

r2 = 96.301901955532

r3 = −609.5813881563
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The symmetric P and nearly skew-symmetric Q matrices have the entries A1 = P−1Q, where

p(1, 1) =
−(14400 r2 + 302400 r1 − 7420003)

36288000
(.19)

p(1, 2) =
−(75600 r3 + 1497600 r2 + 11944800 r1 − 59330023)

21722800

p(1, 3) =
−(9450 r3 + 202050 r2 + 1776600 r1− 7225847)

340200

p(1, 4) =
(900 r2 + 18900 r1 − 649)

226800

p(1, 5) =
(86400 r3 + 1828800 r2 + 15854400 r1 − 66150023)

3110400

p(1, 6) =
(378000 r3 + 7747200 r2 + 65167200 r1 − 279318239)

188640000

p(2, 2) =
(302400 r3 + 6091200 r2 + 49896000 r1 − 210294289)

7257600

p(2, 3) =
(3780 r3 + 82575 r2 + 741825 r1 − 2991977)

34020

p(2, 4) =
(5400 r3 + 104400 r2 + 810000 r1 − 3756643)

129600

p(2, 5) =
−(529200 r3 + 11107200 r2 + 95508000 r1 − 400851749)

2419200

p(2, 6) =
(86400 r3 + 1828800 r2 + 15854400 r1 − 65966279)

3110400

p(3, 3) =
−(51300 r3 + 1094400 r2 + 9585000 r1− 39593423)

64800

p(3, 4) =
(120960 r3 + 2584800 r2 + 22680000 r1 − 93310367)

181440

p(3, 5) =
(5400 r3 + 104400 r2 + 810000 r1 − 3766003)

129600

p(3, 6) =
(900 r2 + 18900 r1 − 37217)

226800

p(4, 4) =
−(17100 r3 + 364800 r2 + 3195000 r1 − 13184701)

21600

p(4, 5) =
(3780 r3 + 82575 r2 + 741825 r1 − 2976857)

34020

p(4, 6) =
−(1890 r3 + 40410 r2 + 355320 r1− 1458223)

68040

p(5, 5) =
(302400 r3 + 6091200 r2 + 49896000 r1 − 213056209)

7257600

p(5, 6) =
−(75600 r3 + 1497600 r2 + 11944800 r1 − 54185191)

21722800

p(6, 6) =
−(14400 r2 + 302400 r1 − 36797603)

36288000

q(1, 1) =
(−1)

2

q(1, 2) =
(415800 r3 + 8604000 r2 + 72954000 r1 − 283104553)

32659200

q(1, 3) =
(120960 r3 + 2672640 r2 + 24192000 r1 − 100358119)

6531840

q(1, 4) =
−(25200 r3 + 542400 r2 + 4788000 r1 − 19717139)

403200
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q(1, 5) =
(604800 r3 + 13363200 r2 + 120960000 r1 − 485628701)

32659200

q(1, 6) =
(41580 r3 + 860400 r2 + 7295400 r1 − 31023481)

3265920
q(2, 2) = 0

q(2, 3) =
−(9450000 r3 + 200635200 r2 + 1747116000 r1 − 7286801279)

32659200

q(2, 4) =
(21168000 r3 + 449049600 r2 + 3907008000 r1 − 16231108387)

32659200

q(2, 5) =
−(165375 r3 + 3516300 r2 + 30665250 r1− 126996371)

453600

q(2, 6) =
(604800 r3 + 13363200 r2 + 120960000 r1 − 482536157)

32659200
q(3, 3) = 0

q(3, 4) =
−(6993000 r3 + 148096800 r2 + 1286334000 r1 − 5353075351)

8164800

q(3, 5) =
(21168000 r3 + 449049600 r2 + 3907008000 r1 − 16212561187)

32659200

q(3, 6) =
−(75600 r3 + 1627200 r2 + 14364000 r1 − 58713721)

1209600
q(4, 4) = 0

q(4, 5) =
−(9450000 r3 + 200635200 r2 + 1747116000 r1 − 7263657599)

32659200

q(4, 6) =
(604800 r3 + 13363200 r2 + 120960000 r1 − 485920643)

32659200
q(5, 5) = 0

q(5, 6) =
(415800 r3 + 8604000 r2 + 72954000 r1 − 286439017)

32659200
q(6, 6) = 0

The matrix P is symmetric and positive definite for this choice of parameters.
The discretization matrix for the diffusion terms that satisfies the constraint A2 = P−1(−ST R + D)S

is

A=
1

180 (∆x)2




+812 −3132 +5265 −5080 +2970 −972 +137
+137 −147 −255 +470 −285 +93 −13
−13 +228 −420 +200 +15 −12 +2
2 −27 270 −490 270 −27 2

. . . . . . .




(.20)

where

S = 1
∆x




(−49)
20 6 (−15)

2
20
3

(−15)
4

6
5

(−1)
6

1
.


 , D=



−1

0
.


(.21)

The matrix R is too complicated to report here but can be shown to be positive definite.
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