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DETECTION OF NON-SYMMETRICAL DAMAGE IN SMART PLATE-LIKE
STRUCTURES

H.T. BANKS AND P.R. EMERIC ∗

Abstract. A two-dimensional model for in-plane vibrations of a cantilever plate with a non-symmetrical
damage is used in the context of defect identification in materials with piezoelectric ceramic patches bonded
to their surface. These patches can act both as actuators and sensors in a self-analyzing fashion, which is
a characteristic of smart materials. A Galerkin method is used to approximate the dynamic response of
these structures. The natural frequency shifts due to the damage are estimated numerically and compared
to experimental data obtained from tests on cantilever aluminum plate-like structures damaged at different
locations with defects of different depths. The damage location and extent are determined by an enhanced
least square identification method. Efficacy of the frequency shift based algorithms is demonstrated using
experimental data.

Key words. damage detection, smart materials, modal methods, finite element methods, least square
optimization
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1. Introduction. The focus of this report is the detection and characterization of non-symmetrical
damage in smart cantilever plate-like structures. Smart materials are used in a growing number of commercial
applications such as the aerospace, automotive and machine-tool industries. In particular, smart structures
with self actuating and sensing capabilities have potential applications in non-destructive evaluation of
damage [2, 14]. Such capabilities can be achieved by bonding piezoelectric ceramic patches to the surface
of a structure to be characterized. When an electric field is applied, piezoceramic patches induce strains in
the material to which they are bonded and, conversely, they produce a voltage when a deformation occurs
in the material [3, 4, 5]. As a consequence, these patches can act both as actuators and sensors, providing
the host structure with smart material capabilities.

The premise of the detection method is that damage to a structure will induce changes in the natural
frequencies which can be obtained by measurement of the vibration response. A damage corresponds to a
local loss of stiffness, which lowers the natural frequencies of the structure. Modal methods are typically
easy to implement and are already widely used in civil engineering applications [6, 7, 8]. In the context of
damage detection in beam-like structures, the damaged beams are often modeled by a 1-dimensional (1-D)
equation with a massless rotational spring introduced at the location of the damage [9, 10, 11, 12, 13]. The
damage identification is achieved by comparison of simulated natural frequencies of the damaged structure
to the measured ones obtained from dynamic testing.

Damage detection methods based on 1-D models are popular but have known shortcomings. For instance,
the position of the defects with respect to the maximum curvature of the mode shapes is a determining factor.
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Krawczuk and Ostachowicz [11] found that the influence of a crack located at a point of minimum curvature
with a dimension ratio of less than 0.3 of the total height had practically no effect on the first three natural
frequencies. Banks et al [14] have shown in detail the lack of sensitivity for 1-D systems to mass and
frequency changes. As an alternate method to modal analysis for the characterization of damage, they
proposed a direct time domain estimation method of spatially varying physical parameters of the structures.
However, it should be noted that, for civil engineering applications, the lack of sensitivity of modal methods
to small defects is not a severe limitation since most structures are redundant and small defects are not
critical.

Another important limitation when using 1-D models is that the shape of the defect cannot be recov-
ered [22]. The case of cracks is particularly challenging since the compliance introduced at the location of
the damage really represents two symmetrically located cracks. Christides and Barr [16] developed a theory
with a symmetrically cracked Euler-Bernoulli beam. They assumed that the cracks remained open at all
times. Fu and Mimovich [15] presented an experimentally validated modal frequency method to diagnose
fracture in beams. They successfully located damage to within 3% of the length but report significant errors
in the determination of the crack intensity. They attributed the errors to the differences in the effects of
a theoretical crack and that of a slit. Cawley and Ray [17] studied the importance of defect width on the
natural frequencies of a structure. They concluded, like Fu and Mimovich, that cracks and slits cannot be
investigated in the same manner. Brandon and Abraham [18, 19] proposed a method to predict the vibration
properties of a beam with a breathing transverse crack by using a bilinear model for the open and closed
cases. Gudmundson [20] solved the problem of the crack closure by statically preloading the specimens. Qian
et al [21] developed their model by assuming that the structure was undamaged when the crack was closed.
In their investigation, they only considered the first three natural frequencies and pointed out that, in most
cases, higher order modal information was needed to determine the crack location. In a numerical study of
structural damage assessment from natural frequency measurement, Hassiotis and Jeong [22] used the first
five natural frequencies for a cantilever beam and the first ten for a frame. Their method proved successful
in identifying both location and severity by using exact or noise-polluted simulated natural frequency data.
This suggests that lower frequencies are suited for damage detection and that higher ones can improve the
identification.

In the present work, we are only interested in the characterization of non-symmetrical defects with finite
width. To overcome the shortcomings of methods based on Euler-Bernoulli and Timoshenko theories, we
propose a 2-D model [1] to predict the vibration response of beam-like structures. For the identification of
damage, we propose to use both lower and higher order modal information. Such information can be easily
obtained with a dynamic testing procedure taking advantage of the self actuating and sensing capabilities
of piezo-electric patches. In the first part of this work, a 2-D model for the in-plane vibrations of a damped
linear elastic hookean cantilever plate with a non-symmetrical damage is summarized. Unfortunately, for
most geometries and boundary conditions, including the case of interest, explicit solutions for the motion are
not readily available. Approximation methods must be used. In the second part of this report, the model is
discretized by using a Galerkin method with linear splines. The resulting finite dimensional matrix system
is detailed. Then, in the third part, an experimental setup to measure the dynamic response of aluminum
cantilever structures damaged at different locations with defects of different depths is presented. Finally, in
the fourth section, the damage identification problem is formulated as a least square optimization problem.
Numerical simulations and comparison with experimental data are discussed.
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2. Model.

2.1. Physical Model. Fig. 2.1 depicts a cross section Ω of the clamped plate-like structure with a
non-symmetrical damage. Γ is the boundary with no displacement. Motion is assumed to be longitudinal
(in the x direction) and transverse (in the y direction). A groove in the z direction represents the defect.
Piezoelectric patches, denoted Ωpe, are symmetrically bonded to the upper and lower surfaces. The region
ΩB = Ω ∪Ωpe is the complete structure. The motion of the structure in the (x, y) plane cannot be modeled
accurately by classical thin beam or thin plate models. Such models assume a shell coordinate system with
an unperturbed middle surface as the reference surface. The presence of non-symmetrical damage introduces
a coupling of the motions in the (x, y) plane which is not taken into account by these models. We model
this coupled motion assuming a state of plane strain in the structure; that is, away from the edges, no
displacement takes place in the z direction.

Fig. 2.1. Cross section of damaged cantilever structure with piezoceramic patches

y

x

0

ΩΓ

Ωpe

2.2. Mathematical Model.

2.2.1. Equations of Motion. We combine force balancing with constitutive hypotheses to obtain the
equations of motion for the displacements U and V in the x and y directions, respectively [1]. We obtain




ρ̂Ü =
Ê

1 + ν̂

(
1− ν̂

1− 2ν̂
U,xx +

1
2
U,yy +

1
2(1− 2ν̂)

V,xy

)

+
ĈD

1 + ν̂

(
1− ν̂

1− 2ν̂
U̇,xx +

1
2
U̇,yy +

1
2(1− 2ν̂)

V̇,xy

)
+
qx
b

ρ̂V̈ =
Ê

1 + ν̂

(
1− ν̂

1− 2ν̂
V,yy +

1
2
V,xx +

1
2(1− 2ν̂)

U,xy

)

+
ĈD

1 + ν̂

(
1− ν̂

1− 2ν̂
V̇,yy +

1
2
V̇,xx +

1
2(1− 2ν̂)

U̇,xy

)
+
qy
b

(2.1)

where b is the width in the z direction, qx and qy are the horizontal and vertical components 1 of an external
force/unit area acting on the structure and U̇ , V̇ and Ü , V̈ are the first and second time derivatives of the
displacements U and V . Here, ρ̂ > 0 is the mass per unit volume, ĈD > 0 is a damping coefficient, Ê > 0
is Young’s modulus and 0 ≤ ν̂ < 1/2 is Poisson’s ratio. These are locally constant material properties with

1Throughout, subscripts such as those above do not represent derivatives; for partial derivatives, we shall use either ∂U
∂x

or

U,x whereas qx will denote the x component of the force q.
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definitions:

ρ̂ = ρχΩ + ρpeχΩpe , ν̂ = νχΩ + νpeχΩpe ,

ĈD = CDχΩ + CDpeχΩpe , Ê = EχΩ + EpeχΩpe ,
(2.2)

where the subscript pe indicates the value for the piezoelectric patches. The functions χΩ and χΩpe are
characteristic functions with definition

χΩ =

{
1 in Ω
0 otherwise

and χΩpe =

{
1 inΩpe

0 otherwise
.(2.3)

2.2.2. External Forces. The forces induced in the structure when a voltage is applied to the piezo-
electric patches generally lack regularity (i.e. they contain terms involving δ and δ′ where δ is the Dirac
delta function). The corresponding model and a mathematical formulation of the problem as a second order
equation in time, detailed in [1], allow the discussion of existence and uniqueness of the solutions and their
continuity with respect to the data. The general input forces due to the patches allow well-posedness for the
weak form of the equations in the case of strong damping.

3. Approximation Scheme.

3.1. Weak Form of the Equation of Motion. The weak form of the equations of motion can be
found by integration by parts of the strong form. For a complete derivation, see the technical report version
of [1]. The weak formulation is:




∫
ΩB

ρ̂Üφ1 =
∫

ΩB

qx
b
φ1

−
∫

ΩB
Ê(2 − 2ν̂)U,xφ1,x −

∫
ΩB
Ê(1− 2ν̂)(U,y + V,x)φ1,y − 2

∫
ΩB
Êν̂V,yφ1,x

−
∫

ΩB
ĈD(2− 2ν̂)U̇,xφ1,x −

∫
ΩB
ĈD(1− 2ν̂)(U̇,y + V̇,x)φ1,y − 2

∫
ΩB
ĈD ν̂V̇,yφ1,x

∫
ΩB

ρ̂V̈ φ2 =
∫

ΩB

qy
b
φ2

−
∫

ΩB
Ê(2 − 2ν̂)V,yφ2,y −

∫
ΩB
Ê(1− 2ν̂)(U,y + V,x)φ2,x − 2

∫
ΩB
Êν̂U,xφ2,y

−
∫

ΩB
ĈD(2− 2ν̂)V̇,yφ2,y −

∫
ΩB
ĈD(1− 2ν̂)(U̇,y + V̇,x)φ2,x − 2

∫
ΩB
ĈD ν̂U̇,xφ2,y

(3.1)

for all φ1, φ2 in V = H1
L(ΩB)×H1

L(ΩB) where we define H1
L(ΩB) = {ψ ∈ H1(ΩB) | ψ = 0 on Γ}.

To approximate the solutions (U, V ) to Eq. (3.1), we choose basis functions Buk
(x, y) and Bvk

(x, y) in V and
form

UN (t, x, y) =
Nu∑
k=1

Uk(t)Buk
(x, y)

V N (t, x, y) =
Nv∑
k=1

Vk(t)Bvk
(x, y)

(3.2)
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where Buk
(x, y) and Bvk

(x, y) can be of the form

Buk
(x, y) = guk

(x)huk
(y)

Bvk
(x, y) = gvk

(x)hvk
(y).

(3.3)

3.2. Basis Functions. Linear splines are used to approximate both horizontal and vertical displace-
ments. We consider a uniform partition along both x-axis and y-axis with Nx and Ny grid points in the
respective directions. We designate the length of the structure l and its height h. The grid points are defined
by Xn = nxhx and Yn = nyhy where hx = l/Nx, hy = h/(Ny − 1), nx = 1, · · · , Nx and ny = 1, · · ·Ny.

The linear splines are

gnx =
1
hx




(x− xnx−1), x ∈ [xnx−1, xnx ]

(xnx+1 − x), x ∈ [xnx , xnx+1]

0, otherwise

(3.4)

and

hny =
1
hy




(y − yny−1), y ∈ [yny−1, yny ]

(yny+1 − y), y ∈ [yny , yny+1]

0, otherwise

.(3.5)

In general, the standard splines are modified to satisfy the essential boundary conditions. In the present
case, the fixed displacements and slope condition for (x = 0) is satisfied by setting the appropriate spline
contributions to zero. For the computations, the corresponding grid points are not included in the discretized
system. They are, however, included in the definition of hx.

3.3. Finite Dimensional System. With bases defined in Eq. (3.2), the approximating subspaces are
taken to be HN

u = span {Buk
}Nu

k=1 and HN
v = span {Bvk

}Nv

k=1. We note that HN = HN
u × HN

v ⊂ V .
The approximating system is then determined by restricting the weak form in Eq. (3.1) to HN with basis
functions used as test functions. We obtain
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


∫
ΩB

Nu∑
k=1

Ê(2− 2ν̂)Uk(t)Buk,xBuj ,x +
∫

ΩB

Nu∑
k=1

Ê(1− 2ν̂)Uk(t)Buk,yBuj ,y

+
∫

ΩB

Nu∑
k=1

Ê(1 − 2ν̂)Vk(t)Bvk,xBuj ,y + 2
∫

ΩB

Nu∑
k=1

Êν̂Vk(t)Bvk,yBuj ,x

+
∫

ΩB

Nu∑
k=1

ĈD(2− 2ν̂)U̇k(t)Buk,xBuj ,x +
∫

ΩB

Nu∑
k=1

ĈD(1 − 2ν̂)U̇k(t)Buk,yBuj,y

+
∫

ΩB

Nu∑
k=1

ĈD(1− 2ν̂)V̇k(t)Bvk,xBuj,y + 2
∫

ΩB

Nu∑
k=1

ĈD ν̂V̇k(t)Bvk,yBuj ,x

+
∫

ΩB

Nu∑
k=1

ρ̂Ük(t)Buk
Buj =

∫
ΩB

qx
b
Buj

∫
ΩB

Nv∑
k=1

Ê(2 − 2ν̂)Vk(t)Bvk,yBvj ,y +
∫

ΩB

Nv∑
k=1

Ê(1− 2ν̂)Vk(t)Bvk,xBvj ,x

+
∫

ΩB

Nv∑
k=1

Ê(1− 2ν̂)Uk(t)Buk,yBvj ,x + 2
∫

ΩB

Nv∑
k=1

Êν̂Uk(t)Buk,xBvj ,y

+
∫

ΩB

Nv∑
k=1

ĈD(2 − 2ν̂)V̇k(t)Bvk,yBvj ,y +
∫

ΩB

Nv∑
k=1

ĈD(1− 2ν̂)V̇k(t)Bvk,xBvj ,x

+
∫

ΩB

Nv∑
k=1

ĈD(1 − 2ν̂)U̇k(t)Buk,yBvj ,x + 2
∫

ΩB

Nv∑
k=1

ĈDν̂U̇k(t)Buk,xBvj ,y

+
∫

ΩB

Nv∑
k=1

ρ̂V̈k(t)Bvk
Bvj =

∫
ΩB

qy
b
Bvj

(3.6)

3.4. Matrix System. To form the matrix system corresponding to Eq. (3.6), we define the displace-
ment vectors

UNu(t) =




u1(t)
...

uNu(t)


 , VNv (t) =




v1(t)
...

vNv (t)


 .(3.7)

The generalized displacements are WN (t) = [UNu(t),VNv (t)]T , where N = Nu +Nv.
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We define the submatrices

[UM ]k,j =
∫

ΩB
ρ̂Buk

Buj [VM ]k,j =
∫

ΩB
ρ̂Bvk

Bvj

[U11]k,j =
∫

ΩB
Ê(2− 2ν̂)Buk,xBuj ,x [V21]k,j =

∫
ΩB
Ê(2− 2ν̂)Bvk,yBvj ,y

[V11]k,j =
∫

ΩB
2Êν̂Bvk,yBuj ,x [U21]k,j =

∫
ΩB

2Êν̂Buk,xBvj,y

[U12]k,j =
∫

ΩB
Ê(1− 2ν̂)Buk,yBuj ,y [V22]k,j =

∫
ΩB
Ê(1− 2ν̂)Bvk,xBvj ,x

[V12]k,j =
∫

ΩB
Ê(1− 2ν̂)Bvk,xBuj ,y [U22]k,j =

∫
ΩB
Ê(1 − 2ν̂)Buk,yBvj ,x

[Fu]j =
∫

ΩB

qx
b
Buj [Fv]j =

∫
ΩB

qy
b
Bvj

(3.8)

Similar expressions define
[
Ũrs

]
and

[
Ṽrs

]
for r, s = 1, 2 with ĈD replacing Ê.

With the definitions in Eq. (3.8), the complete matrix system can be formed. The mass, stiffness and
damping matrices and the forcing vector have the form

MN =

[
UM 0
0 VM

]
,

KN
E =


 U11 + U12 V11 + V12

U21 + U22 V21 + V22


 ,

KN
CD

=


 Ũ11 + Ũ12 Ṽ11 + Ṽ12

Ũ21 + Ũ22 Ṽ21 + Ṽ22




(3.9)

and

FN (t) =

[
Fu(t)
Fv(t)

]
.(3.10)

Writing the system in the first order form, we obtain[
KN

E 0
0 MN

][
Ẇ(t)
Ẅ(t)

]
=

[
0 KN

E

−KN
E −KN

CD

][
W(t)
Ẇ(t)

]
+

[
0

FN (t)

]
.(3.11)

In order to numerically solve the system in Eq. (3.11), it is necessary to evaluate the submatrices in Eq. (3.8).
For simplicity, the number of elements is chosen identical for UN and V N in Eq. (3.2); that is Nu = Nv .

3.5. Approximation of Natural Frequencies and Modes. Both mathematical formulations for
the equations of motion in Eq. (2.1) and (3.1) include Kelvin-Voigt damping. It is well known [23] that, for
a periodic excitation with a frequency at or near a natural frequency, damping is of primary importance and
must be taken into account. However, the influence of a small amount of damping upon the response of a
system during an excitation of short duration is not likely to be significant.
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The damage detection method we propose in this report uses the fact that a small local damage to a
structure will induce changes in the natural frequencies even if the global physical properties remain un-
changed. Only the frequency shifts due to damage obtained from the vibration response after an excitation
of short duration are actually used for the characterization, not the values of the natural frequencies them-
selves. We tacitly assume that, in the event of a small localized damage, the natural frequency shifts are
identical whether strong damping is included in the physical model or not. The main advantage of an iden-
tification method that does not take into account damping is its computational simplicity. For instance,
the approximate natural frequencies and modes of the structures depicted in Fig. 2.1 can be obtained by
considering the undamped, unforced approximate system in Eq. (3.11)

MN Ẅ(t) +KN
E W(t) = 0,(3.12)

which yields the generalized eigenvalue problem

KN
E W(t) = ω2MNW(t).(3.13)

The system in Eq. (3.13) has N eigenvalues ωi. The natural frequencies are obtained by

fi = ωi/(2π).(3.14)

In the matlab computing environment that we used, the eigenvalue problem can be readily solved.

4. Experimental Results.

4.1. Specimens, Procedure and Experimental Setup.

4.1.1. Specimens: Description and Preparation. A series of experiments were conducted to de-
termine the time resolved vibration response of cantilever structures described in Fig. 2.1. As depicted in
Fig. 4.1, piezoelectric ceramic patches were symmetrically bonded to each side of aluminum plates. This
arrangement, shown in Fig. 4.2, allowed us to excite the specimens in a pure bending mode by actuating the
patches out-of-phase. Longitudinal modes can also be excited by actuating both patches in-phase. However,
in the experiments described in this report, only the pure bending modes were used.

The specimens consisted of 304.8×25.4×1.016 (mm) 2024-T3 aluminum slabs. The patches were 25.4×
25.4×0.0508 (mm) lead zirconate titanates, appropriate for large displacement applications. Both aluminum
and ceramic surfaces were lightly sanded to roughen their surfaces and cleaned with trichloroethane. They
were bonded with a low viscosity, room temperature cure epoxy adhesive. Electrical leads were soldered on
the outside surface of the patches.

4.1.2. Experimental Setup. Fig. 4.3 depicts a diagram of the experimental setup used to determine
the time resolved vibration response of plate-like structures. The specimens were clamped in a vise. A
function generator provided the excitation to the patches. The piezoelectric patches were excited with a 2
ms square pulse signal. An oscilloscope was used to digitize the electrical signal generated by the deformation
of the structure. A set of diodes, acting as a switch, was used to allow the input signal to the patches and
their electrical response to the oscilloscope without interference. A personal computer allowed the storage
of the data for further processing.
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Damage Piezoelectric ceramic patches
Electrical leads

Epoxy adhesiveAluminum 2024-T3

Fig. 4.1. Beam with bonded piezoelectric ceramic patches

In-phase longitudinal mode Out-of-phase transverse mode

Fig. 4.2. In- and out-of-phase excitation modes

4.1.3. Production of Damage. As depicted in Fig. 4.1, the damage was produced by machining a
rectangular groove at different locations. Table 4.1 summarizes the damage locations and depths for every
damaged specimen. The measurements of locations were made from the cantilever end. Specimens 14, 8, 7
and 9 featured an identical damage located at increasing distance from the cantilever end. Specimens 13, 11
and 14 featured damage of increasing severity at the same location. The two sets were designed to test the
ability of the identification method to estimate correctly a damage location and severity.

Specimen Location of defect (mm) Depth (mm) Width (mm)

7 176.3 0.42 1.64

8 138.7 0.44 1.65

9 214.4 0.42 1.64

11 101.3 0.33 1.63

13 101.1 0.25 1.64

14 101.6 0.43 1.64

Table 4.1

Location and depth of damage

4.1.4. Experimental Procedures and Measurement Method. For each undamaged specimen, a
baseline measurement of the dynamic response to a 2 ms square pulse input was collected five consecutive
times. The specimens were then damaged and the measurements repeated again five times. To illustrate the
flexibility of the detection method, the specimens were typically unclamped and reclamped between each
data acquisition. Once stored in computer memory, each time resolved vibration response was processed
by using a Fast Fourier Transform algorithm to obtain a frequency spectrum. The natural frequencies were
determined from the peak locations. For every specimen, two sets (undamaged structure responses and
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Fig. 4.3. Experimental setup
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Fig. 4.4. Natural frequency peaks for specimen 14 before (solid lines) and after damage (dotted lines).

damaged structure responses) of five measurements of the natural frequencies were obtained. Fig. 4.4 shows,
as an example, the frequency spectra for specimen 14. The graph also displays in detail the sixth harmonic
before and after damage was applied to the specimen.

For every specimen, the five measured values corresponding to the same harmonic were averaged for
both undamaged and damaged cases. The standard deviations of the measurements were also computed to
characterize their distribution.
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Fig. 4.5. Normalized frequency spectra of dynamic responses of specimen 5 to piezo-excitation (solid lines) and hammer

hit (dotted lines)

4.2. Discussions.

4.2.1. Validation of Smart Actuation/Sensing Capabilities. To validate the results obtained in
the smart actuation/sensing mode, the results obtained by using the patches in self actuator/sensor mode
were compared to results from experiments conducted in the passive sensing mode with excitations provided
by hammer hits. An undamaged specimen was excited by hammer hits and allowed to vibrate freely. The
data was collected after each hit. Vibration data was also collected when the excitation was provided by
the piezoelectric patches. Fig. 4.5 shows the frequency spectrum of typical data sets for piezo-actuation
and hammer hit. The peaks indicate the natural frequencies of the structure. The data for both types of
excitation, external and self actuating/sensing, is similar in spite of relative peak intensity differences.

4.2.2. Measurements on Undamaged Specimens, Influence of Clamping Strength. To eval-
uate the influence of changes in clamping strength and position, five dynamic tests were conducted with
specimen 8 left clamped at all times. The same tests were repeated with specimen 8 released and reclamped
between each data acquisition. The results are displayed in Table 4.2. The standard deviations of the nat-
ural frequency measurements for the reclamped case are larger. This is expected since natural frequencies
depend on the total length of the specimens. Every reclamping introduces an uncertainty which is reflected
by the increase of the standard deviation. However, the average values for both experiments are in very
good agreement. These results suggest that the clamping device used for the experiments allows reliable
measurements. This is particularly important since the specimens had to be unclamped to machine the
damage and reclamped in position for dynamic testing.

This experiment also illustrates the flexibility of self-analyzing frequency measurement methods with
piezo-electric patches, which we find suitable for industrial applications where parts can be frequently dis-
assembled.

5. Identification Results.

5.1. Formulation of the optimization problem. The identification problem is formulated as the
problem of determining estimates of parameters such as the location and size of the damage given data
measurements z. In this work, we assume that a finite dimensional N approximation based on a grid with
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Harmonic Frequency in Hz (clamped) Frequency in Hz (reclamped)

1 11.0 ± 0.0 10.6 ± 0.5

2 55.0 ± 0.0 55.0 ± 0.0

3 143.0 ± 0.0 142.6 ± 0.5

4 285.0 ± 0.0 284.6 ± 0.5

5 490.4 ± 0.5 489.6 ± 0.5

6 746.0 ± 0.0 745.2 ± 1.1

7 1033.0 ± 0.0 1031.4 ± 1.3

Table 4.2

Average values and standard deviations of natural frequency measurements for undamaged specimen 8

points (Nx, Ny) as described in Section 3 has been made. We then assume that the defect is represented by
removing Ndepth elements in a single column located between the grid point Npos and Npos + 1. The width
of the simulated defect is therefore given by the size of the elements. Fig. 5.1 depicts an example of the finite
element grid in the damaged case with Ndepth = 2.

In the experimental results reported here, the data consisted of the natural frequency shifts obtained
from the dynamic tests described in Section 4.

Npos Npos + 1

Ndepth = 2

Fig. 5.1. Finite Element Grid around a Damage for a Plate-Like Structure

We let q = (Npos, Ndepth) and assume that q ∈ Q where Q is an admissible parameter space. We seek q ∈ Q
which minimizes

JN (q) =
Nhar∑
j=1

Cj

∣∣fNj (q)− zj

∣∣2(5.1)

where Nhar is the number of harmonics used to solve the identification problem. In the experiments presented
in this report, the first seven harmonics where measured (Nhar = 7). The value fNj (q) of the natural
frequency shifts for the jth harmonic is given by solving the generalized eigenvalue problem in Eq. (3.13)
with given discretization N . Here, zj is the natural frequency shift observed for the jth harmonic. A weight
coefficient Cj is associated with each harmonic. A cost function using only higher order natural frequency
shifts is not adequate to obtain a unique solution to the damage detection problem. The non-uniqueness of
the solutions to the damage location problem is a difficulty also encountered in methods based on 1-D models
of the structures [14]. Higher natural frequencies can provide better accuracy since they are sensitive to local
phenomena. However, they can lead to multiple solutions. That is, there exists more than one set of damage
parameters q which leads to the same value of the cost function. Lower order frequencies are sensitive to
global changes in a structure and do not lead to multiple solutions. However, because the frequency shifts
due to damage are smaller for lower natural frequencies, a precise fit is difficult and the estimated positions
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are not accurate.
To alleviate these difficulties, we propose a two step damage detection method:

• A first optimization with a cost function based on lower order frequency shifts to obtain a first
estimate of the damage location. That is, we use the cost function (5.1) with

Cj =

{
1 j = 1, 2, 3
0 j = 4, 5, 6, 7

.(5.2)

• A second optimization taking into account all the frequency shifts experimentally available (Cj = 1
with j = 1, · · · , 7), to improve the accuracy of the location within the constraints of the first search.

To illustrate the method, Fig. 5.2 allows one to compare both cost functions computed for specimen 14. For
these computations, the defects were assumed to have a rectangular shape 1.52 mm wide and 0.51 mm deep.
The material properties for aluminum used in the simulations were E = 7.3 1010 Pa, ρ = 2770 kg/m3 and
ν = 0.3. The cost function depending on the first three natural frequency shifts indicates a minimum in the
vicinity of the actual damage location. The cost function depending on all the frequency shifts experimentally
available indicates the damage position with a better accuracy but also displays a local minimum at another
location.

In the identification results that follow, minimization of the cost functional (5.1) was accomplished via
a Nelder-Mead optimizer.
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Fig. 5.2. Cost functions for specimen 14 for estimated damage positions between 75 and 225 mm (actual damage located

at 101.6 mm)

5.2. Location of Damage. A series of experiments were conducted with specimens 14, 8, 7 and 9
to test the ability of the method to estimate correctly a damage location. Fig. 5.3 allows one to compare
experimental results with simulated data using the best estimate of damage location from the identification
problem for each specimen. For the computations, the finite element grid was chosen (based on test calcu-
lations) with (Nx, Ny) = (200, 3). The corresponding simulated defects had a rectangular shape 1.52 mm
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wide and 0.51 mm deep. The real defect sizes are summarized in Table 4.1. Each graph in Fig. 5.3 depicts
the natural frequency shifts due to damage for each harmonic. The first seven harmonics are presented and
numbered from 1 to 7. The experimental data is plotted in solid lines with error bars representing the stan-
dard deviations. The dotted lines represent the simulated data that optimizes the cost function. Although
only the numerical value of a frequency shift for a given harmonic is meaningful, the data is displayed as a
continuous line. This allows one to easily compare the data obtained from different specimens. The profiles
indicate that higher order natural frequencies have very different shift patterns depending on the damage
location. Both actual and estimated locations are indicated at the top of each graph. An excellent agreement
is obtained for all locations.

Fig. 5.4 depicts graphically the estimated and actual locations of damage for specimens 14, 8, 7 and
9. The vertical dimensions are exaggerated for viewing purposes. The horizontal dimensions maintain the
specimens proportions. The actual defect locations are marked inside the structures. The estimated positions
are indicated by the arrows. The errors in location are summarized in Table 5.1. For all specimens, the
detection method estimates correctly the damage location.
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Fig. 5.3. Comparison of experimentally measured (with error bars) and estimated natural frequency shifts (dotted lines)
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Specimen Actual location (mm) Estimated location (mm) Error (%)

14 101.6 103.6 1.97

8 138.7 143.2 3.24

7 176.3 179.8 1.98

9 214.4 216.4 0.93

Table 5.1

Estimation errors for the location of damage
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216.4 mm (est.)

214.4 mm

Specimen 14

Specimen 8

Specimen 7

Specimen 9

Fig. 5.4. Comparison of actual and estimated location of damage

5.3. Characterization of Damage. A series of dynamic tests were conducted on specimens 13, 11
and 14 to characterize our ability to determine the severity of the damage. The specimens had damage of
increasing depths at an identical location. Fig. 5.5 allows one to compare the experimentally determined
natural frequency shifts with the estimated ones for each harmonic. The finite element grid used for these
simulations was chosen with (Nx, Ny) = (200, 5). The corresponding defect had a rectangular shape 1.52
mm wide with a variable depth depending on the number of elements removed from the undamaged grid.
The position of the defect was fixed at 103.6 mm from the cantilever end, the estimated damage location
found for specimen 14. Fig. 5.5 shows the first seven harmonics. The experimental data is plotted in solid
lines (note that the figures have different scales). The dotted lines represent the simulated data.

Table 5.2 summarizes the results. The extent of the damage is correctly estimated for specimens 11 and
13. For specimen 14, the depth of the damage is overestimated. A decrease in accuracy for the estimation of
damage severity when the depth increases is also reported by Hassiotis and Jeong [22]. However, when we
consider the extent of damage in terms of cross-sectional area removed, the damage is characterized correctly
for all specimens.

6. Conclusion. We have presented a nondestructive evaluation technique for damage in beam-like
structures based on the experimental determination of both lower and higher modal information. An impor-
tant feature of the method is the use of piezo-electric ceramic patches to both excite and sense vibrations
in a self-analysis fashion. Another key feature is the use of a 2-D model to predict the dynamic response of
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Fig. 5.5. Comparison of experimentally measured (with error bars) and estimated natural frequency shifts (dotted lines)

Specimen Actual depth Estimated depth Error in depth Error in area
(mm) (mm) (%) (%)

13 0.25 0.25 0.0 7.3

11 0.33 0.34 3.0 3.7

14 0.43 0.51 18.6 6.9

Table 5.2

Estimation errors for the severity of damage

the structures. Most current methods are based on 1-D models, which have known shortcomings.
Using data from dynamic tests performed on aluminum specimens, we demonstrated the feasibility of

this approach in successfully detecting and characterizing non-symmetrical damage. The flexibility of the
method was further illustrated as the specimens were reclamped between each dynamic test.

Although results were only obtained on aluminum specimens, the framework proposed in this report can
be applied to other metallic and composite plate-like or shell structures.
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