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THE WAVELET ELEMENT METHOD

PART II: REALIZATION AND ADDITIONAL FEATURES IN 2D AND 3D ∗

CLAUDIO CANUTO† , ANITA TABACCO‡ , AND KARSTEN URBAN§

Abstract. The Wavelet Element Method (WEM) provides a construction of multiresolution systems and
biorthogonal wavelets on fairly general domains. These are split into subdomains that are mapped to a single
reference hypercube. Tensor products of scaling functions and wavelets defined on the unit interval are used
on the reference domain. By introducing appropriate matching conditions across the interelement boundaries,
a globally continuous biorthogonal wavelet basis on the general domain is obtained. This construction does
not uniquely define the basis functions but rather leaves some freedom for fulfilling additional features.

In this paper we detail the general construction principle of the WEM to the 1D, 2D and 3D cases.
We address additional features such as symmetry, vanishing moments and minimal support of the wavelet
functions in each particular dimension. The construction is illustrated by using biorthogonal spline wavelets
on the interval.
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Subject classification. Applied and Numerical Mathematics

1. Introduction. The construction of multiresolution systems and wavelets on general domains and
manifolds in IRn is a crucial issue for applying wavelet methods to the numerical solution of operator
equations such as partial differential and integral equations. This problem has been recently addressed by
many authors [15, 7, 13, 4, 14, 10, 16].

In [4], the Wavelet Element Method (WEM) was introduced borrowing ideas from analogous constructions
in spectral methods. Tensor products of scaling functions and wavelets on the unit interval are mapped to
the subdomains in which the original domain is split. By matching these functions across the interelement
boundaries, globally continuous biorthogonal wavelet systems are obtained, which allow the characterization
of certain function spaces and their duals. These spaces contain functions which are piecewise regular with
respect to a Sobolev or Besov scale in each subdomain, and satisfy suitable matching conditions at the
interfaces.

The construction of [4] does not uniquely determine one particular wavelet basis. It rather indicates
the algebraic conditions to be satisfied in order to obtain a globally matched basis, leaving the freedom of
enforcing additional features for the basis. The purpose of the present paper is to exploit this freedom,
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indicating how to construct wavelet bases that have properties such as, e.g., minimal local support, moment
conditions or symmetry.

While [4] deals with the general spatial dimension n, here we detail our construction in the univari-
ate, bivariate and trivariate cases separately, showing additional properties in each particular dimension.
Following the guidelines given in this paper, one can concretely build scaling functions and wavelets (as
well as the related transforms) on fairly general domains starting from a given multiresolution analysis on
the unit interval. As an example, we illustrate the results of our construction when a biorthogonal spline
wavelet system on the interval is used. The filter coefficients for this example are given in the Appendix. An
application to the numerical solution of 2D elliptic boundary value problems is presented in [5].

The outline of the paper is as follows. In Section 2 we recall the main properties of biorthogonal systems
on cubes, which may fulfil homogeneous boundary conditions. Section 3 is devoted to the description of the
multiresolution analyses on general domains. The construction of the corresponding wavelets in 1D, 2D and
3D is described in Sections 4, 5 and 6, respectively.

2. Biorthogonal systems on reference domains. In this section, we use tensor products to con-
struct scaling functions and biorthogonal wavelets on hypercubes starting from suitable multiresolution
analyses on the unit interval (eventually fulfilling homogeneous boundary conditions).

We will frequently use the following notation: by A <∼ B we denote the fact that A can be bounded
by a multiple constant times B, where the constant is independent of the various parameters A and B may
depend on. Furthermore, A <∼ B <∼ A (with different constants, of course) will be abbreviated by A ∼ B.

2.1. General setting on the interval [0, 1]. There are many examples of biorthogonal wavelets on
the interval available in the literature, see [2, 9, 18, 6, 11, 17] for example. In this subsection we collect
the main properties of those biorthogonal wavelet systems on the interval constructed in [11, 17]. We first
describe the general approach and then the modifications for fulfilling boundary conditions as introduced in
[4, 13].

The starting point are two families of scaling functions

Ξj := {ξj,k : k ∈ ∆j}, Ξ̃j := {ξ̃j,k : k ∈ ∆j} ⊂ L2(0, 1),

where ∆j denotes an appropriate set of indices and j ≥ j0 can be understood as the scale parameter (with
some j0 denoting the coarsest scale). For subsequent convenience, these functions will not be labeled by
integers as usual, but rather by a set of real indices

∆j := {τj,1, . . . , τj,Kj}, 0 = τj,1 < τj,2 < · · · < τj,Kj = 1.(2.1)

In other words, each basis function is associated with a node, or grid point, in the interval [0, 1]; the actual
position of the internal nodes τj,2, . . . , τj,Kj−1 will be irrelevant in the sequel, except that it is required that
∆j ⊂ ∆j+1 (see (2.3-h)). It will be also convenient to consider Ξj as the column vector (ξj,k)k∈∆j , and
analogously for other sets of functions.

The families Ξj , Ξ̃j can be constructed to be dual generator systems of a multiresolution analysis in
L2(0, 1)

Sj := span Ξj , S̃j := span Ξ̃j ,(2.2)

in the sense that the following conditions in (2.3) are fulfilled:
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(2.3-a) The systems Ξj and Ξ̃j are refinable, i.e., there exist matrices Mj, M̃j, such that

Ξj = Mj Ξj+1, Ξ̃j = M̃j Ξ̃j+1.

This implies, in particular, that the induced spaces Sj, S̃j are nested, i.e., Sj ⊂ Sj+1, S̃j ⊂ S̃j+1.
(2.3-b) The functions have local support: diam(supp ξj,k) ∼ diam (supp ξ̃j,k) ∼ 2−j.
(2.3-c) The systems are biorthogonal, i.e., (ξj,k, ξ̃j,k′ )L2(0,1) = δk,k′ , for all k, k′ ∈ ∆j.
(2.3-d) The systems Ξj, Ξ̃j are uniformly stable, i.e.,∥∥∥∥ ∑

k∈∆j

ck ξj,k

∥∥∥∥
L2(0,1)

∼ ‖c‖`2(∆j) ∼
∥∥∥∥ ∑

k∈∆j

ck ξ̃j,k

∥∥∥∥
L2(0,1)

,

where c := (ck)k∈∆j .
(2.3-e) The functions are regular, i.e., ξj,k ∈ Hγ(0, 1), ξ̃j,k ∈ H γ̃(0, 1), for some γ, γ̃ > 1, where Hs(0, 1),

s ≥ 0, denotes the usual Sobolev space on the interval as defined, e.g., in [1].
(2.3-f) The systems are exact of order L, L̃ ≥ 1, respectively, i.e., polynomials up to the degree L−1, L̃−1

are reproduced exactly: IPL−1(0, 1) ⊂ Sj, IPL̃−1(0, 1) ⊂ S̃j, where IPr(0, 1) denotes the set of the algebraic
polynomials of degree r at most, restricted to [0, 1].

(2.3-g) There exist biorthogonal complement spaces Tj and T̃j such that

Sj+1 = Sj ⊕ Tj, Tj ⊥ S̃j , S̃j+1 = S̃j ⊕ T̃j, T̃j ⊥ Sj .

(2.3-h) The spaces Tj and T̃j have bases

Υj = {ηj,h : h ∈ ∇j}, Υ̃j = {η̃j,h : h ∈ ∇j},

(with ∇j := ∆j+1 \ ∆j = {νj,1, . . . , νj,Mj}, 0 < νj,1 < · · · < νj,Mj < 1) which are biorthogonal (in the
sense of (2.3-c)) and uniformly stable (in the sense of (2.3-d)). These basis functions are called biorthogonal
wavelets.

(2.3-i) The systems Ξj and Υj are boundary adapted, i.e., at each boundary point:
(i) only one basis function in each system is not vanishing; precisely,

ξj,k(0) 6= 0 ⇐⇒ k = 0, ξj,k(1) 6= 0 ⇐⇒ k = 1,(2.3-i.1)

ηj,h(0) 6= 0 ⇐⇒ h = νj,1, ηj,h(1) 6= 0 ⇐⇒ h = νj,Mj ;(2.3-i.2)

(ii) the nonvanishing scaling and wavelet functions take the same value; precisely, there exist constants
c0 and c1 independent of j such that

ξj,0(0) = ηj,νj,1(0) = c02j/2, ξj,1(1) = ηj,νj,Mj
(1) = c12j/2.(2.3-i.3)

The same holds for the dual systems Ξ̃j and Υ̃j.
(2.3-j) The system Ξj is boundary symmetric, i.e., ξj,0(0) = ξj,1(1) =: λj and also for Ξ̃j.

In addition, thanks to Jackson and Bernstein–type inequalities, these systems yield norm equivalences
for a whole range in the Sobolev scale:∥∥∥∥ ∑

k∈∆j0

cj0,k ξj0,k +
∞∑

j=j0

∑
h∈∇j

dj,hηj,h

∥∥∥∥2

Xs

∼
∑

k∈∆j0

22sj0 |cj0,k|2 +
∞∑

j=j0

∑
h∈∇j

22sj |dj,h|2,(2.4)
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Fig. 2.1. Primal scaling functions.

where s ∈ (−min(L̃, γ̃),min(L, γ)
)

and Xs = Hs(0, 1) if s ≥ 0 or Xs = (H−s(0, 1))′ if s < 0. In particular,
for s = 0 we have a Riesz basis of L2(0, 1).

The following concept will be important in the sequel. The system Ξj is said to be reflection invariant,
if ∆j is invariant under the mapping x 7→ 1− x and

ξj,k(1− x) = ξj,1−k(x), for all x ∈ [0, 1] and k ∈ ∆j .(2.5)

A similar definition can be given for the system Υj, as well as for the dual systems. If Ξj is reflection
invariant, then Υj can be built to have the same property. This will be always implicitly assumed.

Example . Throughout the paper, we shall illustrate our construction of matched scaling functions and
wavelets starting from biorthogonal spline wavelets on the real line, as introduced in [8]. The corresponding
multiresolutions on the interval are built as in [11, 12] with the choice of parameters L = 2 and L̃ = 4, using
SVD for the biorthogonalization. The particular implementation used to produce the pictures of the present
paper is described in [3]. Figures 2.1 and 2.2 show the primal and dual scaling functions which are boundary
adapted, whereas Figures 2.3 and 2.4 refer to primal and dual wavelets. These, and all the subsequent Figures
of the paper, correspond to the level j = 4.

2.2. Homogeneous boundary conditions on the interval. Boundary adapted generator and wa-
velet systems can be easily modified to fulfill homogeneous Dirichlet boundary conditions. To this end, let
us first introduce the following sets of the internal grid points:

∆int
j := ∆j \ {0, 1}, ∇int

j := ∇j \ {νj,1, νj,Mj}.(2.6)

Let us collect in the vector β = (β0, β1) ∈ {0, 1}2 the information about where homogeneous boundary
conditions are enforced, i.e., βd = 1 means no boundary condition, whereas βd = 0 denotes boundary
condition at the point d ∈ {0, 1}. Correspondingly, let us set

∆β
j :=


∆int

j , if β = (0, 0),
∆j \ {0}, if β = (0, 1),
∆j \ {1}, if β = (1, 0),
∆j , if β = (1, 1).

(2.7)

Let the generator systems be defined as

Ξβ
j := {ξj,k : k ∈ ∆β

j }, Ξ̃β
j := {ξ̃j,k : k ∈ ∆β

j },
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Fig. 2.2. Dual scaling functions.
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Fig. 2.3. Primal wavelets.

and let us define the multiresolution analyses

Sβ
j := spanΞβ

j , S̃β
j := span Ξ̃β

j .(2.8)

Note that we have simply omitted the scaling functions which do not vanish at those end points of the
interval where boundary conditions are enforced.

The associated biorthogonal wavelet systems Υβ
j , Υ̃β

j are the same as the previously defined ones, except
that we possibly change the first and/or the last wavelet depending on β. More precisely, the wavelets can be
chosen to vanish at each boundary point in which the corresponding component of β is zero. If the boundary
condition is prescribed at 0, the first wavelets ηj,νj,1 and η̃j,νj,1 are replaced by

ηD
j,νj,1

:=
1√
2

(ηj,νj,1 − ξj,0), η̃D
j,νj,1

:=
1√
2

(η̃j,νj,1 − ξ̃j,0),(2.9)

respectively. The wavelets ηD
j,νj,Mj

and η̃D
j,νj,Mj

vanishing at 1 are defined similarly. Observe that the set of

grid points ∇β
j which labels the wavelets does not change, i.e., ∇β

j = ∇j for all choices of β.
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Fig. 2.5. Primal and dual wavelet corresponding to the first wavelet grid point having homogeneous boundary conditions.

The new systems Ξβ
j , Υβ

j and Ξ̃β
j , Υ̃β

j fulfill the conditions in (2.3) stated above, provided the index
β is appended to all symbols. In addition, if the systems Ξj and Ξ̃j are reflection invariant, see (2.5), the
systems with boundary conditions can be built to be reflection invariant as well, in an obvious sense (i.e.,
the mapping x 7→ 1 − x induces a mapping of Ξβ

j into itself if β = (0, 0) or β = (1, 1), while it produces an
exchange of Ξ(0,1)

j with Ξ(1,0)
j in the other cases).

Example (continued). Figure 2.5 shows the modified wavelets defined in (2.9) for the B–spline mul-
tiresolution chosen to illustrate our construction.

2.3. Tensor products. Multivariate generators and wavelets can be easily built from univariate ones
using tensor products. Hereafter, we describe the construction in the domain Ω̂ = (0, 1)n, which will serve
as a reference domain later on.

Let the vector b = (β1, . . . , βn) (where βl ∈ {0, 1}2 for 1 ≤ l ≤ n) contain the information on the
boundary conditions to be enforced. Let us set, for all j ≥ j0,

V b
j (Ω̂) := Sβ1

j ⊗ · · · ⊗ Sβn

j ,

and similarly for Ṽ b
j (Ω̂). These spaces are trivially nested. In order to construct a basis for them, we define

for x̂ = (x̂1, . . . , x̂n) ∈ Ω̂ and k̂ = (k̂1, . . . , k̂n) ∈ ∆b
j := ∆β1

j × · · · ×∆βn

j

ϕ̂j,k̂(x̂) := (ξj,k̂1
⊗ · · · ⊗ ξj,k̂n

)(x̂) =
n∏

l=1

ξj,k̂l
(x̂l);

we set

Φ̂j := {ϕ̂j,k̂ : k̂ ∈ ∆b
j},
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so that

V b
j (Ω̂) = span (Φ̂j), Ṽ b

j (Ω̂) = span (ˆ̃Φj).

Biorthogonal complement spaces W b
j (Ω̂), i.e., spaces satisfying

V b
j+1(Ω̂) = V b

j (Ω̂)⊕W b
j (Ω̂), W b

j (Ω̂) ⊥ Ṽ b
j (Ω̂),

are defined as follows. Set ∇b
j := ∆b

j+1 \∆b
j and for any ĥ = (ĥ1, . . . , ĥn) ∈ ∇b

j , define the corresponding
wavelet

ψ̂j,ĥ(x̂) := (ϑ̂ĥ1
⊗ · · · ⊗ ϑ̂ĥn

)(x̂) =
n∏

l=1

ϑ̂ĥl
(x̂l),

where

ϑ̂ĥl
:=

{
ξj,ĥl

, if ĥl ∈ ∆βl

j ,
ηj,ĥl

, if ĥl ∈ ∇j .

Then, set

Ψ̂j := {ψ̂j,ĥ : ĥ ∈ ∇b
j}, and Wj(Ω̂) := span Ψ̂j.

The definition of ˆ̃Ψj and W̃ b
j (Ω̂) is similar. The wavelet systems Ψ̂j and ˆ̃Ψj are biorthogonal and form Riesz

bases in L2(Ω̂): the norm equivalences (2.4) extend to the multivariate case as well.
Finally, considering the boundary values, we note that, given any l ∈ {1, . . . , n} and d ∈ {0, 1}, we have

(ϕ̂j,k̂)|x̂l=d ≡ 0 iff k̂l 6= d or (k̂l = d and βl
d = 0)

and

(ψ̂j,ĥ)|x̂l=d ≡ 0 iff ĥl 6= νd or (ĥl = νd and βl
d = 0),

with νd = νj,1 if d = 0, and νd = νj,Mj if d = 1.

3. Multiresolution on general domains. In this section, we describe the construction of a mul-
tiresolution analysis on our domain of interest Ω ⊂ IRn. As already mentioned, Ω is split into subdomains
Ωi, which are images of the reference element Ω̂ = (0, 1)n under appropriate parametric mappings . The
multiresolution analysis on Ω is then obtained by transformations of properly matched systems on Ω̂.

We will first describe our technical assumptions on Ω and the parametric mappings from the reference
domain to the subdomains. In Subsection 3.2, we detail the construction of scaling functions and wavelets
on a subdomain. The matching for the scaling functions will be described in Subsection 3.3. Most of
the wavelets in Ω simply arise by a mapping from the reference element without any matching; these
functions will be described in Subsection 3.4. The more complex matching for the wavelets will be detailed
in the subsequent sections for the 1D, 2D and 3D cases, separately. Finally, in Subsection 3.5, certain
characterization properties of Sobolev spaces are summarized.

3.1. Domain decomposition and parametric mappings. Let us consider our domain of interest
Ω ⊂ IRn, with Lipschitz boundary ∂Ω1.The boundary ∂Ω is subdivided in two relatively open parts (with
respect to ∂Ω), the Dirichlet part ΓDir and the Neumann part ΓNeu, in such a way that

∂Ω = Γ̄Dir ∪ Γ̄Neu, ΓDir ∩ ΓNeu = ∅.
1Note that also certain domains that do not have Lipschitz boundary can be treated by this approach. Indeed, we have to

assume that Ω can be split into subdomains in such a way, that the assumptions on the parametric mappings are fulfilled.
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We assume that there exist N open disjoint subdomains Ωi ⊆ Ω (i = 1, . . . , N) such that

Ω̄ =
N⋃

i=1

Ω̄i

and such that, for some r ≥ γ (see (2.3-e)), there exist r–time continuously differentiable mappings Fi : ¯̂Ω →
Ω̄i (i = 1, . . . , N) satisfying

Ωi = Fi(Ω̂), |JFi| := det(JFi) > 0 in ¯̂Ω,(3.1)

where JFi denotes the Jacobian of Fi; in the sequel, it will be useful to set Gi := F−1
i .

Let us first set some notation, starting with the reference domain Ω̂. For 0 ≤ p ≤ n− 1, a p–face of Ω̂ is
a subset σ̂ ⊂ ∂Ω̂ defined by the choice of a set Lσ̂ of different indices l1, . . . , ln−p ∈ {1, . . . , n} and a set of
integers d1, . . . , dn−p ∈ {0, 1} in the following way

σ̂ = {(x̂1, . . . , x̂n) : x̂l1 = d1, . . . , x̂ln−p = dn−p, and 0 ≤ x̂l ≤ 1 if l 6∈ Lσ̂}(3.2)

(thus, e.g., in 3D, a 0–face is a vertex, a 1–face is a side and a 2–face is a usual face of the reference cube).
The coordinates x̂l with l ∈ Lσ̂ will be termed the frozen coordinates of σ̂, whereas the remaining coordinates
will be termed the free coordinates of σ̂.

Next, we set up the technical assumptions for the mappings Fi. To formulate these, we need some
notations. Let σ̂ and σ̂′ be two p–faces of Ω̂, and let H : σ̂ → σ̂′ be a bijective mapping. We shall say that
H is order–preserving if it is a composition of elementary permutations (s, t) 7→ (t, s) of the free coordinates
of σ̂. An order–preserving mapping is a particular case of an affine mapping (see [4], Lemma 4.1).

The image of a p–face of Ω̂ under the mapping Fi will be termed a p–face of Ωi; if Γi,i′ := ∂Ωi ∩ ∂Ωi′ is
nonempty for some i 6= i′, then we assume that Γi,i′ is a p–face of both Ωi and Ωi′ for some 0 ≤ p ≤ n− 1.
In addition, setting Γi,i′ = Fi(σ̂) = Fi′(σ̂′), with two p–faces σ̂ and σ̂′ of Ω̂, we require that the bijection
Hi,i′ := Gi′ ◦ Fi : σ̂ → σ̂′ fulfills the following Hypothesis (3.3):

a) Hi,i′ is affine;
b) in addition, if the systems of scaling functions and wavelets on [0, 1] are not reflection invariant (see

(2.5)), then Hi,i′ is order–preserving.

Finally, the decomposition is assumed to be conformal in the following sense: the intersection Ω̄i ∩ Ω̄i′

for i 6= i′ is either empty or a p–face, 0 ≤ p ≤ n− 1; moreover, for i = 1, . . . , N we suppose that ∂Ωi ∩ Γ̄Dir

and ∂Ωi ∩ Γ̄Neu are (possibly empty) unions of p–faces of Ωi.

To summarize, we need the following assumptions:
(a) The mappings Fi : ¯̂Ω → Ω̄i are r–times continuously differentiable, with r ≥ γ, and satisfy |JFi| > 0

in ¯̂Ω;
(b) The mappings Fi fulfill Hypothesis 3.3 above;
(c) The domain decomposition is conformal.

3.2. Multiresolution and wavelets on the subdomains. Let us now introduce multiresolution
analyses on each Ωi, i = 1, . . . , N , by “mapping” appropriate multiresolution analyses on Ω̂. To this end, let
us define the vector b(Ωi) = (β1, . . . , βn) ∈ {0, 1}2n as follows

βl
d =

{
0, if Fi({x̂l = d}) ⊂ ΓDir,

1, otherwise,
l = 1, . . . , n, d = 0, 1.
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Moreover, let us introduce the one-to-one transformation v 7→ v̂ := v ◦ Fi, which maps functions defined in
Ω̄ into functions defined in ¯̂Ω. Next, for all j ≥ j0, let us set

Vj(Ωi) := {v : v̂ ∈ V b(Ωi)
j (Ω̂)}.

A basis in this space is obtained as follows. For any k̂ ∈ ∆b(Ωi)
j , set k(i) := Fi(k̂); then, define the set of grid

points

Ki
j := {k(i) : k̂ ∈ ∆b(Ωi)

j }

in Ω̄i. The grid point k, whose image under Gi is k̂, is associated with the function in Vj(Ωi)

ϕ
(i)
j,k := ϕ̂j,k̂ ◦Gi,

i.e., ϕ̂(i)
j,k = ϕ̂j,k̂. The set of all these functions will be denoted by Φi

j . This set and the dual set Φ̃i
j form

biorthogonal bases of Vj(Ωi) and Ṽj(Ωi), respectively, with respect to the inner product in L2(Ωi)

〈u, v〉Ωi :=
∫

Ωi

u(x) v(x) |JGi(x)| dx =
∫

Ω̂

û(x̂) v̂(x̂) dx̂,(3.4)

which, due to the properties of the transformation of the domains, induces an equivalent L2–type norm

‖v‖2L2(Ωi)
∼ 〈v, v〉Ωi = ‖v̂‖2

L2(Ω̂)
, ∀v ∈ L2(Ωi).

Coming to the detail spaces, a complement of Vj(Ωi) in Vj+1(Ωi) can be defined as

Wj(Ωi) := {w : ŵ ∈W b(Ωi)
j (Ω̂)}.

A basis Ψi
j in this space is associated with the grid

Hi
j := Ki

j+1 \ Ki
j = {h = Fi(ĥ) : ĥ ∈ ∇b(Ωi)

j }(3.5)

through the relation

ψ
(i)
j,h := ψ̂j,ĥ ◦Gi, ∀h ∈ Hi

j , h = Fi(ĥ).(3.6)

The space Wj(Ωi) and the similarly defined space W̃j(Ωi) form biorthogonal complements; the bases Ψi
j ,

and Ψ̃i
j are biorthogonal (with respect to 〈·, ·〉Ωi). It is easily seen that the dual multiresolution analyses on

Ωi defined in this way inherit the properties of the multiresolution analyses on Ω̂.
Finally, we introduce a concept that will be useful in the sequel. A point h ∈ Hi

j is termed internal to
Ωi if h = Fi(ĥ), with ĥ = (ĥ1, · · · , ĥn) such that each component ĥl belongs to ∆int

j ∪∇int
j (see (2.6)).

3.3. Multiresolution on the global domain. Now we describe the construction of dual multireso-
lution analyses on Ω̄. Let us define, for all j ≥ j0,

Vj(Ω) := {v ∈ C0(Ω̄) : v|Ωi
∈ Vj(Ωi), i = 1, . . . , N};(3.7)

the dual spaces Ṽj(Ω) are defined in a similar manner. In order to define a basis of Vj(Ω), let us introduce
the set

Kj :=
N⋃

i=1

Ki
j(3.8)
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containing all the grid points in Ω̄. Each point of Kj can be associated to one single scale basis function of
Vj(Ω), and conversely. To accomplish this, let us set

I(k) :=
{
i ∈ {1, . . . , N} : k ∈ Ω̄i

}
, ∀k ∈ Kj ,

as well as

k̂(i) := Gi(k), ∀i ∈ I(k), ∀k ∈ Kj .

Then, for any k ∈ Kj let us define the function ϕj,k as follows

ϕj,k |Ωi
:=

{
|I(k)|−1/2 ϕ

(i)
j,k, if i ∈ I(k),

0, otherwise.
(3.9)

This function belongs to Vj(Ω), since it is continuous across the interelement boundaries (see [4], Section
4.2). Let us now set Φj := {ϕj,k : k ∈ Kj}. The dual family Φ̃j := {ϕ̃j,k : k ∈ Kj} is defined as in (3.9),
simply by replacing each ϕ

(i)
j,k by ϕ̃(i)

j,k. (For our B–spline example, matched scaling functions are displayed
in Figures 4.1 and 5.2 in Sections 4 and 5, respectively.) Then, we have Vj(Ω) = spanΦj , Ṽj(Ω) = span Φ̃j .
By defining the L2–type inner product on Ω

〈u, v〉Ω :=
N∑

i=1

〈u, v〉Ωi ,(3.10)

it is easy to obtain the biorthogonality relations 〈ϕj,k, ϕ̃j,k′〉Ω = δk,k′ , from those in each Ωi.

3.4. Wavelets on the global domain. We now begin the construction of biorthogonal complement
spaces Wj(Ω) and W̃j(Ω) (j ≥ j0) for Vj+1(Ω) and Ṽj+1(Ω) as well as the corresponding biorthogonal bases
Ψj and Ψ̃j. Given the set of grid points

Hj := Kj+1 \ Kj =:
N⋃

i=1

Hi
j ,

we shall associate to each h ∈ Hj a function ψj,h ∈Wj(Ω) and a function ψ̃j,h ∈ W̃j(Ω). Then, we shall set
Ψj := {ψj,h : h ∈ Hj}, Ψ̃j := {ψ̃j,h : h ∈ Hj}.

At first, let us observe that if h ∈ Hi
j is such that the associated local wavelet ψ(i)

j,h (defined in (3.6))
vanishes identically on ∂Ωi \ ∂Ω, then the function

ψj,h(x) :=

{
ψ

(i)
j,h(x), if x ∈ Ωi,

0, otherwise,
(3.11)

will be the global wavelet associated to h. This situation occurs either when h is an internal point of Ωi

(recall the definition of internal point given at the end of the previous subsection), or when all non internal
coordinates of h correspond to a physical boundary (see Figure 3.1).

The remaining wavelets will be obtained by matching suitable combinations of scaling functions and
wavelets in contiguous domains. In each of the three coming sections, we shall detail the construction of the
univariate, bivariate and trivariate matched wavelets, respectively. Precisely,

– in 1D, wavelets are matched across the interface between two contiguous subdomains (i.e., subinter-
vals), see Section 4;

– in 2D, wavelets are matched around the common vertex of several subdomains (cross point), or
across the common side between two subdomains, see Section 5;

10



Fig. 3.1. Scaling function grid points (circles) and wavelet grid points (crosses) in the subdomain Ωi. The upper and right

parts of the boundary of the subdomain belong to Γ. Wavelet grid points in the shaded area are associated to global wavelets

constructed according to (3.11).

– in 3D, wavelets are matched around cross points, or around a common edge of several subdomains,
or across the common face of two subdomains, see Section 6.

Before going further on, let us make a general remark on vanishing moments. Wavelets on the reference
domain satisfy the conditions ∫

Ω̂

x̂rψ̂j,ĥ(x̂) dx̂ = 0, ∀ĥ, ∀|r| ≤ L̃− 1,

where x̂r = (x̂r1
1 , . . . , x̂

rn
n ) and |r| = maxi ri; this follows from the fact that Ṽj(Ω̂) contains the set PL̃−1(Ω̂)

of all polynomials of degree ≤ L̃ − 1 in each space variable. Unless a very special mapping is used, similar
conditions in Ω are not satisfied. However, they are replaced by analogous conditions, which still imply the
compression property of wavelets. Indeed, Ṽj(Ω) contains the subspace

PL̃−1(Ω) = {p ∈ C0(Ω̄) : (p|Ωi
)̂ ∈ PL̃−1(Ω̂), ∀i},

so that one has

〈p, ψj,h〉Ω = 0, ∀h ∈ Hj , ∀p ∈ PL̃−1(Ω).

A dual condition holds for the dual wavelets ψ̃j,h(x).

3.5. Characterization of Sobolev spaces. At the end of our construction we shall obtain a system
of biorthogonal wavelets on Ω which allows the characterization of certain smoothness spaces. For instance,
let us set

Hs
b (Ω) := {v ∈ Hs(Ω) : v = 0 on ΓDir}(3.12)

for s ∈ IN \ {0}, and let us extend the definition by interpolation for s 6∈ IN, s > 0 (after setting H0
b (Ω) =

L2(Ω)). Furthermore, we introduce another scale of Sobolev spaces, depending upon the partition P :=
{Ωi : i = 1, . . . , N} of Ω; precisely, we set

Hs
b (Ω;P) := {v ∈ H1

b (Ω) : v|Ωi
∈ Hs(Ωi), i = 1, . . . , N}(3.13)

for s ∈ IN \ {0}, equipped with the norm

‖v‖Hs
b
(Ω;P) ∼

N∑
i=1

‖v|Ωi
‖Hs(Ωi), ∀v ∈ Hs

b (Ω;P),
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and we extend the definition using interpolation for s 6∈ IN, s > 0 (again we set H0
b (Ω;P) = L2(Ω)). The

following Theorem summarizes the characterization features of our wavelet systems; they can be exploited
in many different applications.

Theorem 3.1. ([4], Theorem 5.6) Assume that s ∈ [0,min(L, γ)
)
. Then

Hs
b (Ω;P) =

v ∈ L2(Ω) :
∞∑

j=j0

∑
h∈Hj

22sj |〈v, ψ̃j,h〉Ω|2 <∞
 .

In addition, if v ∈ Hs
b (Ω;P), then

v =
∑

k∈Kj0

〈v, ϕ̃j0,k〉Ω ϕj0,k +
∞∑

j=j0

∑
h∈Hj

〈v, ψ̃j,h〉Ω ψj,h,(3.14)

the series being convergent in the norm of Hs
b (Ω;P), and

‖v‖2Hs
b
(Ω;P) ∼

∑
k∈Kj0

22sj0 |〈v, ϕ̃j0,k〉Ω|2 +
∞∑

j=j0

∑
h∈Hj

22sj |〈v, ψ̃j,h〉Ω|2.(3.15)

A dual statement holds if we exchange the roles of Vj(Ω) and Ṽj(Ω).

Moreover, if s ∈ ( − min(L̃, γ̃), 0
)
, the formulas (3.14) and (3.15) hold for all v ∈ Hs

b (Ω;P) :=
(H |s|

b (Ω;P))′, provided the inner product 〈·, ·〉Ω is replaced by the duality pairing between the spaces Hs
b (Ω;P)

and H |s|
b (Ω;P).

4. Univariate matched wavelets and other functions. In this section, we describe the construction
of matched wavelets and other functions in the one–dimensional case. Since this material will be used in
the subsequent construction of higher dimensional wavelets, we restrict ourselves to the natural reference
situation of the interval I = (−1, 1) divided in the two subintervals I− = (−1, 0) and I+ = (0, 1) by the
interface point C = 0. It is straighforward to reduce any other one–dimensional matching to the present
situation, by possibly introducing a suitable parametric mapping.

The scaling function ϕ̂j,0, associated to the interface point C = 0, is defined by

ϕ̂j,0(x̂) :=
1√
2

{
ξj,1(x̂+ 1), x̂ ∈ I−,
ξj,0(x̂), x̂ ∈ I+.

(4.1)

Example (continued). For our B–spline example, the function (4.1) and its dual are displayed in
Figure 4.1.

4.1. Wavelets. Let us consider the local basis functions on each subdomain

ψ̂−e (x̂) :=

{
ξj,1(x̂ + 1), e = 0,
ηj,νj,Mj

(x̂+ 1), e = 1,
x̂ ∈ I−,

ψ̂+
e (x̂) :=

{
ξj,0(x̂), e = 0,
ηj,νj,1(x̂), e = 1,

x̂ ∈ I+,

and let us set (see [4], (5.6))

V 0
j+1(I±) := span{ψ̂±e : e ∈ {0, 1}}.
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Fig. 4.1. Matched primal and dual scaling functions at the cross point.

Any function v± ∈ V 0
j+1(I±) can be written as v± =

∑
e∈{0,1} α

±
e ψ̂

±
e ; let us denote by α± := (α±0 , α

±
1 ) the

vectors of the local degrees of freedom. We want to build the local space

V 0
j+1(I) := {v ∈ C0(Ī) : v|I± ∈ V 0

j+1(I±)}

by matching functions in V 0
j+1(I−) and V 0

j+1(I+), and we want to find a basis for the subspace W 0
j (I) :=

{v ∈ V 0
j+1(I) : (v, ˆ̃ϕj,0)L2(I) = 0}. The matching condition between two functions v± ∈ V 0

j+1(I±) reads:

α−0 ξj,1(1) + α−1 ηj,νj,Mj
(1) = α+

0 ξj,0(0) + α+
1 ηj,νj,1(0),

which, in view of the boundary values of the univariate scaling functions and wavelets (see (2.3-i.3)), is
equivalent to

α−0 + α−1 = α+
0 + α+

1 .(4.2)

Next, we enforce the additional condition of orthogonality to ˆ̃ϕj,0 which is expressed as

0 =
(
α−0 ξj,1(·+ 1) + α−1 ηj,νj,Mj

(·+ 1), ˆ̃ϕj,C|[−1,0]

)
L2(−1,0)

+
(
α+

0 ξj,0(·) + α+
1 ηj,νj,1(·), ˆ̃ϕj,C|[0,1]

)
L2(0,1)

(4.3)

=
1√
2
(α−0 + α+

0 ),

where the last equality is a consequence of the biorthogonality on the interval.
Using the matrix–vector notation of [4] (see formula (5.24) therein), condition (4.2) and condition (4.3)

multiplied by
√

2 read

D α = 0,

where

D :=

(
1 1 −1 −1
1 0 1 0

)
, α = (α−,α+)t = (α−0 , α

−
1 , α

+
0 , α

+
1 )t.

It is easily seen that DDt = diag (4, 2) is positive definite, so that D has full rank 2. This implies that
dimW 0

j (I) = 2. It is directly seen that

KerD = span {(0, 1, 0, 1)t, (1,−1,−1, 1)t}.(4.4)
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For the dual system, we have the same condition. So, it remains to find 2 particular choices of α ∈ KerD
and α̃ ∈ Ker D̃, i.e.,

αl := al,1 (0, 1, 0, 1)t + al,2 (1,−1,−1, 1)t,

α̃l := ãl,1 (0, 1, 0, 1)t + ãl,2 (1,−1,−1, 1)t,
l = 1, 2,

that will define primal and dual wavelets ψ̂l
j ,

ˆ̃ψl
j , l = 1, 2, as

ψ̂l
j(x̂) :=

{
al,2 ξj,1(x̂ + 1) + (al,1 − al,2) ηj,νj,Mj

(x̂+ 1), x̂ ∈ Ī−,
−al,2 ξj,0(x̂) + (al,1 + al,2) ηj,νj,1(x̂), x̂ ∈ Ī+.

(4.5)

The coefficients have to be chosen in order to obtain biorthogonal functions. Using the biorthogonality on
the interval, it is readily seen that

δl,m = (ψ̂l
j ,

ˆ̃ψm
j )L2(−1,1) = 2 al,1ãm,1 + 4 al,2ãm,2.

This can be rephrased by the matrix equation

Id = AX Ã
t
,(4.6)

where

A :=

(
a1,1 a1,2

a2,1 a2,2

)
, Ã :=

(
ã1,1 ã1,2

ã2,1 ã2,2

)
, X :=

(
2 0
0 4

)
.

Since we have 4 equations for 8 unknowns, one can, in principle, choose 4 coefficients and the remaining 4
are then determined by (4.6).

It is convenient to relabel the wavelets ψ̂l
j ,

ˆ̃ψl
j , l = 1, 2, obtained by any particular choice of the

coefficients as

ψ̂−j := ψ̂1
j , ψ̂+

j := ψ̂2
j ,(4.7)

(and similarly for the dual wavelets) so that they are associated in a natural way to the grid points h± ∈ Hj

located around C and defined as h+ := F+(νj,1), h− := F−(−1 + νj,Mj ).

The above mentioned freedom in the construction can be used to fulfill additional features, which will
now be described.

4.1.1. Additional features. Depending on the particular application one has in mind, one might need
the basis functions to have some additional features such as, for example, zero values at the cross point,
(skew-) symmetry and reflection invariance. We will now address these issues.

Zero values at the interface. The scaling and wavelet systems on the interval are supposed to be boundary
adapted and boundary symmetric. Then, (4.5) implies

ψ̂l
j(0) = λj a1,l,

ˆ̃
ψl

j(0) = λj ã1,l, for l = 1 or l = 2,

where λj is defined in (2.3-j). Choosing these coefficients to be zero implies zero value of the corresponding
wavelet function at the interface. Note that it is not possible to enforce the condition for l = 1 and l = 2
simultaneously, as this would contradict (4.6).
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Symmetry and skew–symmetry. Let us assume that Ξj , Ξ̃j and Υj , Υ̃j are reflection invariant. This
implies in particular

ξj,0(x̂) = ξj,1(1 − x̂), ηj,νj,1(x̂) = ηj,νj,Mj
(1 − x̂).

Then, we get, for x̂ ∈ I,

ψ̂
(a1,a2)
j (−x̂) =

{−a2 ξj,1(1 + x̂) + (a1 + a2) ηj,νj,Mj
(1 + x̂), x̂ ∈ I−,

a2 ξj,0(x̂) + (a1 − a2) ηj,νj,1(x̂), x̂ ∈ I+,

= ψ̂
(a1,−a2)
j (x̂),

where the notation ψ(a1,a2)
j abbreviates that the function is associated to the vector (a1, a2). This implies

ψ̂l
j(−x̂) =

{
−ψ̂l

j(x̂), if al,1 = 0,
ψ̂l

j(x̂), if al,2 = 0,
for l = 1 or l = 2,

so that we can choose one wavelet function to be either symmetric or skew–symmetric. The choice A =(
0 1
1 0

)
leads to one symmetric and one skew–symmetric wavelet. The dual wavelets are then defined by

the matrix Ã =
(

0 1/4
1/2 0

)
and have the same properties.

Reflection invariance. Under the same assumptions as before, the choice A =
(

1 1
1 −1

)
leads to

primal wavelets that reflect into each other under the mapping x̂ 7→ −x̂. The dual wavelets are then defined

by the matrix Ã =
(

1/4 1/8
1/4 −1/8

)
, and have the same property.

Vanishing moments. Set, for a function f and a domain D,

Mr(f ;D) =
∫

D

xr f(x) dx.

Using the fact that the scaling functions in [0, 1] reproduce the constants, and exploiting the biorthogonality
and the boundary adaptation property, it follows that

(1, ξ̃j,0)L2(I+) = λ−1
j = (1, ξ̃j,1(·+ 1))L2(I−),

where again λ−1
j is defined in (2.3-j); by similar arguments, we get

(xr , ξ̃j,0)L2(I+) = 0 = (xr , ξ̃j,1(·+ 1))L2(I−) 1 ≤ r ≤ L− 1.

It is easily seen that these relations imply that the monomials xr (0 ≤ r ≤ L − 1) restricted to the whole
interval I belong to Vj(I). Since the matched wavelets ˆ̃

ψl
j are orthogonal to Vj(I), we conclude that

Mr(
ˆ̃
ψl

j ; I) = 0, 0 ≤ r ≤ L− 1.

Dual relations hold for ψ̃l
j . We conclude that the wavelet functions that arise by the matching procedure

automatically have the same order of vanishing moments on the whole interval I as the original functions
on the interval [0, 1].
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Fig. 4.2. Matched primal and dual wavelets at the cross point.

Support located in only one subdomain. It is readily seen that (4.5) implies that the arising wavelets are
both located in both subdomains. It is not possible to localize them on only one side. However, since

diam (supp ηj,h) ∼ diam (supp η̃j,h) ∼ 2−j ,

one still has diam (suppψj,h) ∼ 2−j for h = h±; the same property holds for the dual functions.

Example (continued). For our B–spline example, matched wavelets defined in (4.5) with the choice of
matrices A and Ã which guarantee reflection invariance (see above), are shown in Figure 4.2.

4.2. Another basis of matched functions. Now we aim at defining a basis of the local space V 0
j+1(I).

Compared to Subsection 4.1, the orthogonality condition (4.3) is missing, so that we obtain the following
matching conditions in matrix–vector form

D α = 0, with D := (1, 1,−1,−1), α = (α−,α+)t = (α−0 , α
−
1 , α

+
0 , α

+
1 )t.

It is obvious that KerC = span {(1,−1, 0, 0)t, (0, 0, 1,−1)t, (0, 1, 0, 1)t} and we have to find 3 particular linear
combinations, i.e.,

αl = al,1 (1,−1, 0, 0)t + al,2 (0, 0, 1,−1)t + al,3 (0, 1, 0, 1)t,

α̃l = ãl,1 (1,−1, 0, 0)t + ãl,2 (0, 0, 1,−1)t + ãl,3 (0, 1, 0, 1)t,
l = 1, 2, 3,

which give rise to the three basis functions

ϑ̂l
j(x̂) :=

{
al,1 ξj,1(x̂) + (al,3 − al,1) ηj,νj,Mj

(x̂), x̂ ∈ I−,
al,2 ξj,0(x̂) + (al,3 − al,2) ηj,νj,1(x̂), x̂ ∈ I+,

, l = 1, 2, 3,(4.8)

In this case, the biorthogonality gives the conditions

δl,m = (ϑ̂l
j ,

ˆ̃
ϑm

j )L2(−1,1)

= 2(al,1ãm,1 + al,2ãm,2 + al,3ãm,3)− al,1ãm,3 − al,3ãm,1 − al,2ãm,3 − al,3ãm,2,
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which can be rewritten as Id = B Y B̃
t
, where

B :=

 a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 , B̃ :=

 ã1,1 ã1,2 ã1,3

ã2,1 ã2,2 ã2,3

ã3,1 ã3,2 ã3,3

 , Y :=

 2 0 −1
0 2 −1
−1 −1 2

 .

After choosing one particular solution of this algebraic system, we relabel the functions as

ϑ̂−j := ϑ̂1
j , ϑ̂0

j := ϑ̂2
j , ϑ̂+

j := ϑ̂3
j ;(4.9)

the dual functions are defined similarly.

4.2.1. Additional features. Additional features can be required to the functions ϑ̂l
j , l = 1, 2, 3 just

introduced.

Vanishing moments. In this case we have

Mr(ϑ̂l
j ; I) = (al,1 + al,2)Mr(ξj,0; I),

so that one preserves the order of vanishing moments if and only if al,1 = −al,2.

Zero values at the cross point. Similarly to the results of Subsection 4.1, we obtain ϑ̂l
j(0) = al,3 and

ˆ̃
ϑl

j(0) = ãl,3.

Symmetry of the arising functions. Using the same arguments as above, we obtain

ϑ̂
(a1,a2,a3)
j (−x̂) = ϑ̂

(a2,a1,a3)
j (x̂),

so that we have

ϑ̂l
j(−x̂) =

{
−ϑ̂l

j(x̂), if al,1 = −al,2 and al,3 = 0,
ϑ̂l

j(x̂), if al,1 = al,2.

Support located in only one subdomain. Obviously, one has

supp ϑ̂l
j ⊆

{
I−, if al,2 = al,3 = 0,
I+, if al,1 = al,3 = 0,

(4.10)

so that it is possible to construct 3 functions, such that only one of them is localized in both subdomains.

Example (continued). We give one particular example of three functions, one located in I−, one in
I+ and one in both subintervals. For the latter one, also the vanishing moment property is preserved. Let

B :=

 1 0 0
0 0 1
0 1 0

 .(4.11)

It is readily seen that B−1 = Bt, hence we obtain the coefficients for the dual functions by

B̃ = B Y −t =

 3/4 1/4 1/2
1/2 1/2 1
1/4 3/4 1/2

 .(4.12)

These particular functions are displayed in Figure 4.3.
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Fig. 4.3. Primal and dual basis functions defined by (4.11) and (4.12).

5. Bivariate matched wavelets. We shall now construct matched two–dimensional wavelets, by
firstly considering an interior cross point, next a boundary cross point and finally the common side of
two subdomains. In each case, we indicate how wavelets can be defined, which have the most localized
support.

5.1. Matched wavelets around an interior cross point. We describe the construction of wavelets
associated to grid points h ∈ Hj which are close to a cross point C, at which NC subdomains meet. We
assume that these subdomains are (re-)labeled by Ω1, . . . ,ΩNC , in a counterclockwise order. Moreover, we
set Γi,i+1 := ∂Ωi∩∂Ωi+1. We start with the situation in which C is interior to Ω. In this case, it is convenient
to set ΩNC+1 := Ω1.

At first, we deal with a particular choice of the mappings to the reference domain. Next, we shall show
that all other possibilities can be easily reduced to this choice, which – therefore – can be thought of as a
reference situation.

So, suppose that, for all i ∈ {1, . . . , NC}, one has C = Fi(0, 0) and Γi,i+1 = Fi(σ̂01) = Fi+1(σ̂10), where
σ̂01 := {(0, x̂2) : 0 ≤ x̂2 ≤ 1} and σ̂10 := {(x̂1, 0) : 0 ≤ x̂1 ≤ 1}. The grid points surrounding C, to which we
will associate the matched wavelets, are the 2NC points hC,l defined as follows:

hC,2i−1 = Fi(νj,1, νj,1), hC,2i = Fi(0, νj,1), 1 ≤ i ≤ NC .(5.1)

Note that each evenly numbered point belongs to a side meeting at C, whereas each oddly numbered point
is internal to a subdomain meeting at C (see Figure 5.1).

Dropping the index j, let us set

ψ
(i)
00 (x) = ψ̂00(x̂) = ξj,0(x̂1) ξj,0(x̂2),

ψ
(i)
01 (x) = ψ̂01(x̂) = ξj,0(x̂1) ηj,νj,1(x̂2),

18



Fig. 5.1. Grid points hC,i, i = 1, . . . , 10, around a cross point C common to 5 subdomains.

ψ
(i)
10 (x) = ψ̂10(x̂) = ηj,νj,1 (x̂1) ξj,0(x̂2),

ψ
(i)
11 (x) = ψ̂11(x̂) = ηj,νj,1 (x̂1) ηj,νj,1 (x̂2),

(see [4], formula (5.5)), as well as V C
j+1(Ωi) := span{ψ(i)

e : e ∈ E2}. A function v(i) ∈ V C
j+1(Ωi) is written as

v(i) =
∑

e∈E2

α(i)
e ψ(i)

e ;

we shall introduce the column vector α(i) := (α(i)
e )e∈E2 . In order to characterize the local space

V C
j+1(Ω) := {v ∈ C0(Ω̄) : v|Ωi

∈ V C
j+1(Ωi) if i ∈ {1, . . . , NC}, v|Ωi

≡ 0 elsewhere},

we proceed as in [4] (see Section 5.2), i.e., we enforce the continuity among the v(i) by considering the point
C firstly, and the sides Γi,i+1, secondly. Recalling (2.3-i.3), the continuity at C yields the set of linearly
independent conditions

α
(i)
00 + α

(i)
01 + α

(i)
10 + α

(i)
11 = α

(i+1)
00 + α

(i+1)
01 + α

(i+1)
10 + α

(i+1)
11 , 1 ≤ i ≤ NC − 1,(5.2)

or

c0 ·α(i) = c0 ·α(i+1), 1 ≤ i ≤ NC − 1,

with c0 = (1, 1, 1, 1). Denoting by α := (α(i))i=1,...,NC ∈ IR4NC the column vector of all degrees of freedom,
these conditions can be written in matrix–vector form as

C0 α = 0, where C0 =


c0 −c0

. . .
. . .

c0 −c0

 ∈ IR(NC−1)×4NC .

Let us now enforce continuity along the sides Γi,i+1. To this end, observe that

v
(i)
|Γi,i+1

(x) = λj

(
(α(i)

00 + α
(i)
10 )ξj,0(x̂2) + (α(i)

01 + α
(i)
11 )ηj,νj,1 (x̂2)

)
,

v
(i+1)
|Γi,i+1

(x) = λj

(
(α(i+1)

00 + α
(i+1)
01 )ξj,0(x̂1) + (α(i+1)

10 + α
(i+1)
11 )ηj,νj,1(x̂1)

)
,

(5.3)
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with λj defined in (2.3-j). Because of the linear independence of the univariate functions, the matching is
equivalent to

α
(i)
00 + α

(i)
10 = α

(i+1)
00 + α

(i+1)
01 ,

α
(i)
01 + α

(i)
11 = α

(i+1)
10 + α

(i+1)
11 .

(5.4)

Since we have already enforced the continuity at C ∈ Γi,i+1 (see (5.2)), it is enough to require that a
particular linear combination of the latter equations holds; precisely, we enforce

α
(i)
00 − α

(i)
01 + α

(i)
10 − α

(i)
11 = α

(i+1)
00 + α

(i+1)
01 − α

(i+1)
10 − α

(i+1)
11

(for details, see [4], Proposition 5.2). Introducing the vectors c′ = (1,−1, 1,−1) and c′′ = (1, 1,−1,−1),
these conditions can be rephrased as

C1 α = 0, where C1 =


c′ −c′′

. . . . . .

c′ −c′′

−c′′ c′

 ∈ IRNC×4NC .(5.5)

We are interested in finding a basis for the subspace WC
j (Ω) := {v ∈ V C

j+1(Ω) : 〈v, ϕ̃j,C〉Ω = 0}. Recalling
that, by (3.9),

ϕ̃j,C|Ωi
(x) =

1√
NC

(ξ̃j,0 ⊗ ξ̃j,0)(x̂), x̂ = Gi(x), i = 1, . . . , NC ,

we obtain the condition

NC∑
i=1

α
(i)
00 = 0.

So, introducing the vector b := (1, 0, 0, 0), all conditions enforced so far can be summarized in

D α = 0, where D =

 C0

C1

B

 ∈ IR2NC×4NC , B := (b, . . . , b) ∈ IR1×4NC .

It can easily be seen that

D Dt =



8 −4 0
−4 8 −4

. . . . . . . . .
. . . . . . −4

0 −4 8
8

. . .

8
NC



∈ IR2NC×2NC ;

the evident symmetric positive definite character of D Dt means that D has full rank. This implies the
existence of exactly 2NC linearly independent functions in WC

j (Ω), i.e., dimWC
j (Ω) = 2NC . The parallel
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construction for W̃C
j (Ω) leads to the condition D α̃ = 0 (note that the matrix D is the same as for the

primal system). Finally, we enforce biorthogonality between the primal and dual basis functions determined
in this way. To this end, we choose a basis {κ1, . . . ,κ2NC} in KerD, and we look for linear combinations of
these vectors

αl =
2NC∑
m=1

al,m κm, α̃l =
2NC∑
m=1

ãl,m κm, 1 ≤ l ≤ 2NC ,

such that, if αl is decomposed as (αl,(i))i=1,...,2NC , the corresponding wavelets

ψl
j,C(x) :=


∑

e∈E2

αl,(i)
e ψ̂e(x̂), if x ∈ Ωi, 1 ≤ i ≤ NC ,

0, elsewhere,

and the dual ones ψ̃l
j,C defined in a similar manner, form a biorthogonal system. Then, setting K :=

(κm)m=1,...,2NC , A := (al,m)l,m=1,...,2NC , Ã := (ãl,m)l,m=1,...,2NC , and A := (αl)l=1,...,2NC = KAt, Ã :=
(α̃l)l=1,...,2NC = KÃ

t
, and exploiting the biorthogonality property in each subdomain, we can express the

biorthogonality condition in the form At Ã = Id, i.e.,

AKtKÃ
t
= Id.(5.6)

Since K obviously has full rank, KtK is regular, so this matrix equation has a solution. In particular, one
can choose A = Id and consequently Ã = (KtK)−1. In Subsection 5.1.1, we shall exhibit a specific basis in
KerD, which allows to obtain primal wavelets with minimal support around C.

Once the biorthogonal wavelets ψl
j,C and ψ̃l

j,C (1 ≤ l ≤ 2NC) have been determined, they can be
associated to the 2NC grid points hC,l surrounding C, defined in (5.1).

Reduction to the reference situation. Let us now show that we can reduce any interior cross point
situation to the one described above. To this end, let us consider any subdomain Ωi having C as a vertex.
Then, we have the following 4 cases:
a) C = Fi(0, 0), b) C = Fi(1, 1),
c) C = Fi(0, 1), d) C = Fi(1, 0).

Recalling the assumption det (JFi) > 0 in (3.1), it follows that in cases a) and b) the indices of the frozen
coordinates of Γ̂i−1,i and Γ̂i,i+1 are given by LΓ̂i−1,i

= {2}, LΓ̂i,i+1
= {1}, whereas in cases c) and d) one

has LΓ̂i−1,i
= {1}, LΓ̂i,i+1

= {2}. It is straightforward to see that the matching conditions along Γi−1,i and
Γi,i+1 in cases a) and b) yield the same vectors c′ and c′′ defined above, whereas the roles of these vectors
are interchanged in the remaining cases.

If α(i) = (α(i)
00 , α

(i)
01 , α

(i)
10 , α

(i)
11 )t, let us denote by α̌(i) := (α(i)

00 , α
(i)
10 , α

(i)
01 , α

(i)
11 )t the modified vector and

by Ď the matrix obtained by modifying D according to cases c) and d). Since it is readily seen that
c0 · (c′)t = c0 · (c′′)t = 0, b · (c′)t = b · (c′′)t = 0, c′ ·α(i) = c′′ · α̌(i) as well as c′′ ·α(i) = c′ · α̌(i), we obtain,
as desired, D α = Ď α̌.

This procedure can be applied to all subdomains meeting at C, and so we are back to the reference
situation.

The biorthogonalization is performed following the same guidelines described above; obviously, the
definition of the wavelets and the associated grid points has to be adapted to the specific orientation of the
mappings to the reference domain.

21



5.1.1. Wavelets with minimal support. The perhaps most important feature, in view of numerical
applications, is a minimal support of the wavelets, since this implies minimal length of the corresponding
filters.

Let us first consider under which circumstances it is possible to construct wavelets that are supported
in only one subdomain Ωi. By the matching at the cross point and the sides, we obtain the three conditions

c0 ·α(i) = c′ ·α(i) = c′′ ·α(i) = 0.(5.7)

It is readily seen that the vectors (a,−a,−a, a), for some a ∈ IR, are the only solutions of (5.7). Thus, any
function defined as

ψ(x) :=
{
aψ̂00(x̂)− aψ̂01(x̂)− aψ̂10(x̂) + aψ̂11(x̂), x ∈ Ωi,
0, elsewhere,

(5.8)

belongs to V C
j+1(Ω) and is supported only in Ωi. However, such a function cannot be a wavelet because,

by imposing the orthogonality to ϕ̃j,C , one gets the extra condition b · α(i) = α
(i)
00 = a = 0. This implies

that it is not possible to have wavelets supported in only one subdomain. On the contrary, we are going to
show that it is possible to construct 2NC − 1 out of 2NC wavelets to be supported in only two contiguous
subdomain. To this end, let us deal with subdomains Ωi and Ωi+1. Considering the block structure of the
matrix D, the corresponding vectors of coefficients α(i), α(i+1) have to fulfill the local equation c0 −c0

c′ −c′′

b b

 [ α(i)

α(i+1)

]
= 0.

It is easily seen that the two linearly independent vectors

(α1,(i),α1,(i+1)) := (0, 0,−1, 1, 0,−1, 0, 1)t, (α2,(i),α2,(i+1)) := (−1, 1, 0, 0, 1,−2,−1, 2)t

solve this equation. Setting all the remaining coefficients in α to zero leads to the two seeked wavelet
functions.

We observe that one out of these 2NC functions is linearly dependent on all the others: since all these
functions vanish at C, there are at most (2NC − 1) linearly independent functions among them. On the
other hand, we now show that the following 2NC functions are linearly independent:

ψl
j,C(x) :=



∑
e∈E2

α1,(i)
e ψ̂e(x̂), x ∈ Ωi,∑

e∈E2

α1,(i+1)
e ψ̂e(x̂), x ∈ Ωi+1,

0, elsewhere,

(5.9)

for l = 2i− 1, i ∈ {1, . . . , NC},

ψl
j,C(x) :=



∑
e∈E2

α2,(i)
e ψ̂e(x̂), x ∈ Ωi,∑

e∈E2

α2,(i+1)
e ψ̂e(x̂), x ∈ Ωi+1,

0, elsewhere,

(5.10)

for l = 2i, i ∈ {1, . . . , NC − 1}, and

ψ2NC

j,C (x) := ψglob
j,C (x) :=

{
ψ̂11(x̂), x ∈ Ωi, 1 ≤ i ≤ NC ,
0, elsewhere.

(5.11)
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Indeed, if ψ :=
∑2NC

m=1 λm ψm
j,C ≡ 0, then ψ(C) = 0 implies λ2NC = 0 and ψ|ΓNC,1 ≡ 0 implies λ2NC−1 = 0.

Then ψ|Ω1 ≡ 0 implies λ1 ψ
1
j,C + λ2 ψ

2
j,C ≡ 0, which in turns implies λ1 = λ2 = 0. Considering in sequence

Ω2, . . . ,ΩNC−1 shows that all the coefficients must vanish.
Note that the primal basis we have just exhibited corresponds to choosing the following basis in Ker D

κm := (0, . . . ,0, (α1,(i))t, (α1,(i+1))t,0, . . . ,0)t, if m = 2i− 1, i ∈ {1, . . . , NC},
κm := (0, . . . ,0, (α2,(i))t, (α2,(i+1))t,0, . . . ,0)t, if m = 2i, i ∈ {1, . . . , NC − 1},
κ2NC := (d, · · · ,d)t with d = (0, 0, 0, 1),

and to choosing A = Id in (5.6). Then the dual matrix Ã is given by Ã = (KtK)−1, where

KtK =



4 4 1 −1 1 2
4 12 3 −3 −1 2

1 3
. . . . . . 2

−1 −3
. . . . . .

...
. . . . . . . . .

...
. . . . . . . . .

...
. . . . . . 1 −1

...
. . . . . . 3 −3 2

1 3 4 4 1 2
−1 −3 4 12 3 2

1 −1 1 3 4 2
2 2 2 · · · · · · · · · · · · 2 2 2 2 NC



.

Example (continued). We consider the situation in which four subdomains Ω1, . . . ,Ω4 meet at C (for
simplicity, we assume linear parametric mappings from each subdomain to the reference domain). For our
B–spline example, we show in Figure 5.2 the matched scaling function and the three different types of wavelets
associated to grid points around C.

5.1.2. Tensor products of matched univariate functions. A common situation for an internal
cross point is the case NC = 4, i.e., four subdomains meeting at C. In such a geometry, it is easy to
construct a basis for WC

j (Ω) by properly tensorising the univariate matched functions defined in Section 4.
First of all, let us note that, by possibly introducing appropriate parametric mappings, we can reduce

ourselves to the situation in which each subdomain is the image of one of the subdomains I± × I± (we use
here the notation set at the beginning of Section 4), and C is the image of Ĉ = (0, 0). Then, let us consider
the set of univariate functions given by the scaling function ϕ̂j,0 defined in (4.1), the wavelets ψ̂l

j defined in
(4.5)–(4.7) and the functions ϑ̂l

j defined in (4.8)–(4.9). A basis in WC
j (Ω) is obtained by taking the image

of 8 linearly independent tensor products of such functions satisfying the condition of orthogonality to the
dual scaling function ˆ̃ϕj,0 = ˆ̃ϕj,0 ⊗ ˆ̃ϕj,0. For example, a possible choice is

ψ̂−j ⊗ ϑ̂+
j , ϕ̂j,0 ⊗ ψ̂+

j , ψ̂+
j ⊗ ϑ̂+

j ,

ψ̂−j ⊗ ϑ̂0
j , ψ̂+

j ⊗ ϑ̂0
j ,

ψ̂−j ⊗ ϑ̂−j , ϕ̂j,0 ⊗ ψ̂−j , ψ̂+
j ⊗ ϑ̂−j ,

(obviously, these functions are extended by zero outside the union of the four subdomains) whose association
to the 8 wavelet grid points around C is self evident. Note that this construction does not necessarily require
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Fig. 5.2. Matched scaling function (1st row) and primal wavelets ψm
j,C . In the first row the wavelet ψ8

j,C is displayed.

The second row shows the functions ψ1
j,C and ψ2

j,C that are supported in Ω1 and Ω2. The remaining 5 wavelets are rotations

of these two functions. (Note that only a portion of each subdomain around C is shown.)

the functions ϑ̂l
j to have minimal support in the sense of (4.10), although efficiency will be enhanced by this

feature.
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Fig. 5.3. Grid points hC,i (labeled only by i) around a boundary cross point in the 3 different cases (from left to right:

pure Neumann, mixed and pure Dirichlet case).

5.2. Matched wavelets around a boundary cross point. Let us now consider the situation in
which C ∈ ∂Ω is common to NC subdomains Ω1, . . . ,ΩNC ordered counterclockwise. We assume that Ω1

(ΩNC , resp.) has a side, termed Γ1 (ΓNC , resp.), which contains C and lies on ∂Ω. Then, the following cases
may occur:
a) Γ1, ΓNC ∈ ΓNeu

b) Γ1 ∈ ΓDir, ΓNC ∈ ΓNeu c) Γ1 ∈ ΓNeu, ΓNC ∈ ΓDir

d) Γ1, ΓNC ∈ ΓDir.
Since all arguments concerning biorthogonalization carry over from the interior cross point case, in the sequel
we will only detail the matching and orthogonality conditions for each case separately.

Pure Neumann case. Let us start by considering case a). The matching at the cross point C only differs
from the interior cross point case by the absence of a matching condition between Ω1 and ΩNC . However,
in the interior case, this condition turned out to be linearly dependent on the other ones, hence, there was
no need to explicitly enforce it. This implies that the matrices describing the matching at C are the same:
CNeu

0 = C0.
The matching conditions along the sides are the same as well, with the only difference that now the last

row in (5.5) is missing:

CNeu
1 =


c′ −c′′

. . . . . .

c′ −c′′

 ∈ IR(NC−1)×4NC .

Since C ∈ ΓNeu, we observe that there exists a dual scaling function ϕ̃j,C associated to C. Consequently, we
have to enforce orthogonality to this function, so we end up with the set of conditions

DNeu α = 0, with DNeu =

 C0

CNeu
1

B

 ∈ IR(2NC−1)×4NC .

As above, it is easily seen that DNeu has full rank; this implies that dimWC
j (Ω) = 2NC +1. This is precisely

the number of grid points surrounding C to which these wavelets can be associated; in the reference situation,
they are the points (5.1) and the point hC,0 := F1(νj,1, 0) (see Figure 5.3, left).

Mixed Neumann/Dirichlet case. Obviously, the mixed Neumann/Dirichlet cases b) and c) can be viewed
as symmetric ones, so we will only detail case b) here. Since C ∈ Γ̄Dir, all functions in V C

j+1(Ω) have to
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vanish at C. This means that we have to add one more condition to those posed at C, i.e., we obtain the
matrix

CMix
0 =


−c0

c0 −c0

. . . . . .

c0 −c0

 ∈ IRNC×4NC .

Furthermore, again we assume to be in the reference situation described above, which implies that LΓ̂1
= {2}

and LΓ̂1,2
= {1} for the domain Ω1, i.e., the second coordinate of Γ̂1 is frozen. Let us consider a function

v(1) ∈ V C
j+1(Ω1), which is written as

v(1)(x) =
∑

e∈E2

α(1)
e ψ̂e(x̂), x ∈ Ω1.

Observing that

v
(1)
|Γ1

(x) = λj

(
(α(1)

00 + α
(1)
01 ) ξj,0(x̂1) + (α(1)

10 + α
(1)
11 ) ηj,νj,1(x̂1)

)
,

we enforce v(1)
|Γ1

≡ 0 if and only if the relations α(1)
00 + α

(1)
01 = 0 and α

(1)
10 + α

(1)
11 = 0 are satisfied. In other

words, v(1) has to be written as

v(1)(x) =
√

2
(
α

(1)
01 ξj,0(x̂1) + α

(1)
11 ηj,νj,1(x̂1)

)
ηD

j,νj,1
(x̂2),

where ηD
j,νj,1

is the univariate wavelet vanishing at 0, defined in (2.9). Since v(1) has already been set to 0 at
C, we now enforce the linear combination

−(α(1)
00 + α

(1)
01 ) + (α(1)

10 + α
(1)
11 ) = 0.

The matrix containing the matching and boundary conditions along the sides takes the form

CMix
1 =



−c′′

c′ −c′′

. . . . . .

c′ −c′′

c′ −c′′


∈ IRNC×4NC .

Since there is no scaling function associated to C, we end up with the system

DMix α = 0, with DMix =

[
CMix

0

CMix
1

]
∈ IR2NC×4NC .

Again, DMix is easily shown to have full rank, so that dimWC
j (Ω) = 2NC ; this is precisely the number of

grid points surrounding C, to which the wavelets are associated (see Figure 5.3, center).
Pure Dirichlet case. In case d), the matching and boundary conditions at C obviously coincide with

those of cases b) and c). As far as the conditions at the sides are concerned, working out as before we end
up with the matrix

CDir
1 =



−c′′

c′ −c′′

. . . . . .

c′ −c′′

c′


∈ IR(NC+1)×4NC
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and the whole system takes the form

DDir α = 0, with DDir =

[
CMix

0

CDir
1

]
∈ IR(2NC+1)×4NC .

Once again, DDir has full rank, so that dimWC
j (Ω) = 2NC − 1 (see Figure 5.3, right).

5.2.1. Wavelets with minimal support. Let us first remark that, as for the interior cross point case,
a wavelet supported in only one subdomain Ωi, i = 2, . . . , NC − 1 has to satisfy (5.7). In the pure Neumann
case, the extra orthogonality condition to ϕ̃j,C makes the existence of such a wavelet impossible. Conversely,
in the mixed Dirichlet/Neumann- and pure Dirichlet cases, its existence is indeed possible.

Pure Neumann case. Let us try to construct wavelets that are supported only in Ω1, ΩNC , respectively.
The corresponding conditions read

c0 ·α(1) = c′ ·α(1) = 0, c0 ·α(NC) = c′′ ·α(NC) = 0,(5.12)

which leads to α(1) = (a, b,−a,−b) and α(NC) = (a,−a, b,−b). Adding the orthogonality condition yields,
as before, a = 0. Choosing b = 1, we are led to define the following functions:

ψ0
j,C(x) :=

{
ψ̂01(x̂)− ψ̂11(x̂), x ∈ Ω1,
0, elsewhere,

ψ2NC−1
j,C (x) :=

{
ψ̂10(x̂)− ψ̂11(x̂), x ∈ ΩNC ,
0, elsewhere;

in addition, let us define ψl
j,C for l = 2i−1, i ∈ {1, . . . , NC−1} as in (5.9), ψl

j,C for l = 2i, i ∈ {1, . . . , NC−1}
as in (5.10) and ψ2NC

j,C ≡ ψglob
j,C as in (5.11). These are 2NC +1 functions (the same number as the dimension

of WC
j (Ω)); two of them are supported in exactly one subdomain, one is supported in all the subdomains

matching at C, while the remaining ones are supported across two consecutive subdomains.

Let us now show that these functions are linearly independent. Indeed, let ψ :=
∑2NC

m=0 λmψ
m
j,C be such

that ψ ≡ 0. Now, ψ(C) = 0 implies λ2NC = 0. On the other hand, ψ|Γ1 ≡ 0 implies λ1 = 0, and ψ|ΓNC
≡ 0

implies λ2NC−1 = 0. Thus, we are left with the same situation as in the interior cross point case.

Pure Dirichlet case. As mentioned above, since in this case we do not have to enforce the orthogonality
condition to ϕ̃j,C , one can construct wavelets that are supported in only one subdomain. These are defined
as follows

ψ2i−1
j,C (x) :=

{
ψ̂00(x̂)− ψ̂01(x̂)− ψ̂10(x̂) + ψ̂11(x̂), x ∈ Ωi,
0, elsewhere,

(5.13)

for i ∈ {1, . . . , NC}; they are precisely the functions introduced in (5.8) with a = 1. In addition, one has
the wavelets ψ2i

j,C , i ∈ {1, . . . , NC − 1} defined in (5.10), which are supported in Ω̄i ∪ Ω̄i+1. No function
supported in all the subdomains surrounding C is needed.

We have defined a system of 2NC − 1 functions, which is precisely the dimension of WC
j (Ω). The linear

independence of these functions is readily seen. Indeed, since the linear combination ψ :=
∑2NC−1

m=1 λm ψm
j,C ≡

0 must vanish on all sides, we obtain that the coefficients corresponding to the even indices are zero. Next,
considering all the subdomains, we get that the coefficients corresponding to the odd indices also vanish.
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Fig. 5.4. Wavelets ψ2
j,C and ψ3

j,C around a Dirichlet boundary cross point. (Note again that only a portion of each

subdomain around C is shown.)

Mixed Dirichlet/Neumann case. Again, no orthogonality condition to ϕ̃j,C is needed. So, we use the
system of functions constructed for the pure Dirichlet case, to which we add one function. Precisely, if
Γ1 ⊂ ΓNeu, we add the function

ψ0
j,C(x) :=

{
ψ̂10(x̂)− ψ̂00(x̂), x ∈ Ω1,
0, elsewhere.

If ΓNC ⊂ ΓNeu, we add the function

ψ2NC

j,C (x) :=
{
ψ̂01(x̂)− ψ̂00(x̂), x ∈ ΩNC ,
0, elsewhere.

These functions are continuous and supported in Ω1, ΩNC , resp. (note that they correspond to the solutions
α(1) = (−1, 0, 1, 0), α(NC) = (−1, 1, 0, 0), resp., of (5.12)). As a whole, we have 2NC functions, so the
dimension of WC

j (Ω) is matched. Finally, the linear independence is obvious. Indeed, assuming for instance
Γ1 ⊂ ΓNeu, the linear combination ψ :=

∑2NC−1
m=0 λm ψm

j,C ≡ 0 must vanish on Γ1; this implies λ0 = 0 and
reduces the problem to the pure Dirichlet case.

Example (continued). We consider an L–shaped domain made up by 3 square subdomains meeting at
C. We enforce homogeneous Dirichlet conditions on the whole boundary. The two different types of wavelets
produced by our construction are displayed in Figure 5.4.

5.3. Matched wavelets across a side. Let us consider two subdomains Ω+ and Ω− having a common
side σ := Ω̄+ ∩ Ω̄−. Moreover, let us denote by A and B the two endpoints of σ. As in the cross point case,
we may reduce ourselves to a reference situation. Instead of thinking each subdomain as the image of the
reference domain Ω̂, here it is natural to think Ω− (Ω+, resp.) as the image of the domain I−× I+ (I+× I+,

28



resp.), with

A = F−(0, 0) = F+(0, 0), B = F−(0, 1) = F+(0, 1).(5.14)

Since the reasoning for the reduction to the reference situation is analogous to the cross point case, we drop
these arguments here. Now, (5.14) implies that the set of grid points on σ is given by

Hσ := {h : h = F+(0, ĥ2), ĥ2 ∈ ∆j ∪∇j}
= {h : h = F−(0, ĥ2), ĥ2 ∈ ∆j ∪∇j}.

The grid points F+(0, νj,1) and F+(0, νj,Mj ) are already associated to wavelets ψj,h, since these points
correspond to the cross points A and B, respectively. Hence, we are left with the points

Hint
σ := Hσ \ {F+(0, νj,1), F+(0, νj,Mj )}.

Let us first consider the case h ∈ Hint
σ with ĥ2 ∈ ∆j . Consequently, there exists a scaling function

ϕj,h(x) :=
1√
2
ξj,ĥ2

(x̂2)


ξj,1(x̂− + 1), if x = F−(x̂−, x̂2) ∈ Ω−,
ξj,0(x̂+), if x = F+(x̂+, x̂2) ∈ Ω+,
0, elsewhere,

associated to h. The basis functions of the local spaces V h
j+1(Ω±) are then given by

ψ−e (x) := ξj,ĥ2
(x̂2)

{
ξj,1(x̂− + 1), e = 0,
ηj,νj,Mj

(x̂− + 1), e = 1,
ψ+

e (x) := ξj,ĥ2
(x̂2)

{
ξj,0(x̂+), e = 0,
ηj,νj,1(x̂+), e = 1.

This shows that the matching at h is equivalent to the matching at a univariate interface point. Considering
the wavelet functions ψ̂l

j defined in (4.7) for l = −,+, we end up with the two wavelets

ψj,h±(x) =
{

(ψ̂±j ⊗ ξj,ĥ2
)(x̂), x ∈ Ω− ∪ Ω+,

0, elsewhere,

which will be associated to the grid points h− := F−(νj,Mj , ĥ2) and h+ := F+(νj,1, ĥ2), respectively.

Finally, we have to enforce the matching conditions along points h ∈ Hint
σ , where ĥ2 ∈ ∇j . In this case

there is no scaling function associated to h. Again we are reduced to the univariate interface point case, but
now in the situation considered in Subsection 4.2. Considering the basis functions ϑ̂l

j defined in (4.9) for
l = −, 0,+, we end up with three wavelets

ψj,hl
(x) =

{
(ϑ̂l

j ⊗ ηj,ĥ2
)(x̂), x ∈ Ω− ∪ Ω+,

0, elsewhere,

which will be associated to the grid points h− := F−(νj,Mj , ĥ2), h0 =: F−(1, ĥ2) = F+(0, ĥ2) and h+ :=
F+(νj,1, ĥ2).

6. Trivariate matched wavelets. In this section, the exposition will be deliberately less detailed than
in the two previous sections, as the three dimensional construction follows the same spirit presented before.
We shall be mainly concerned with the matching around a cross point. The matching around an edge or
across a face will be easily reduced to lower dimensional situations.
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6.1. Matched wavelets around a cross point. Let us first assume that the cross point C belongs to
Ω. Let NC = NC,3 denote the number of subdomains meeting at C, and let these subdomains be (re-)labeled
by Ω1, . . . ,ΩNC . It is not restrictive to assume that for all i ∈ {1, . . . , NC}, one has C = Fi(0, 0, 0).

It will be useful to express the number NC,2 of faces and the number NC,1 of edges meeting at C as a
function of NC . This can be accomplished as follows. Consider the tetrahedron in ¯̂Ω

T̂ := {(x̂1, x̂2, x̂3) : x̂1 ≥ 0, x̂2 ≥ 0, x̂3 ≥ 0, x̂1 + x̂2 + x̂3 ≤ 1}

and, for each i ∈ {1, . . . , NC}, set Ti := Fi(T̂ ). Then, PC :=
⋃

i Ti is a (distorted) polyhedron in IR3, with
the following property: each face (or edge or vertex, resp.) of PC is in one-to-one correspondence with a
subdomain (or face or edge, resp.) meeting at C. Thus, by Euler’s polyhedron Theorem, we get

NC,3 −NC,2 +NC,1 = 2.

On the other hand, since each face of PC is a (distorted) triangle and each edge of PC is shared by exactly
two faces, one has 3NC,3 = 2NC,2. It follows that

NC,2 = 3
2NC , NC,1 = 1

2NC + 2.(6.1)

The grid points h ∈ Hj , to which we are going to associate the matched wavelets, have the form

hC,i,e = Fi(ζe1 , ζe2 , ζe3), i ∈ {1, . . . , NC}, e ∈ E3 \ {(0, 0, 0)},(6.2)

with

ζel
:=
{

0, if el = 0,
νj,1, if el = 1.

Note that there is exactly one of such points which lies inside each subdomain, each face and each edge
meeting at C. Thus, the total number of such points is

NC,3 +NC,2 +NC,1 = 3NC + 2.

This is precisely the number of wavelets to be constructed around C. Indeed, define for each e ∈ E3

ψ(i)
e (x) = ψ̂e(x̂) = θe1(x̂1)θe2(x̂2)θe3 (x̂3),

where

θel
:=
{
ξj,0, if el = 0,
ηj,νj,1 , if el = 1.

Let us consider the spaces

V C
j+1(Ωi) := span{ψ(i)

e : e ∈ E3} = {v(i) =
∑

e∈E3

α(i)
e ψ(i)

e : α(i) := (α(i)
e )e∈E3 ∈ IR3}

and let us introduce the column vector α := (α(i))i=1,...,NC ∈ IR8Nc (8 being the cardinality of E3). In order
to characterize the local space

V C
j+1(Ω) := {v ∈ C0(Ω̄) : v|Ωi

∈ V C
j+1(Ωi) if i ∈ {1, . . . , NC}, v|Ωi

≡ 0 elsewhere},

30



we enforce continuity firstly at C, secondly at the edges and finally at the faces meeting at C. This gives
NC − 1 conditions at C, which can be written as

C0α = 0, where C0 =


c0 −c0

. . . . . .

c0 −c0

 ∈ IR(NC−1)×8NC ,

with c0 = (1, 1, 1, 1, 1, 1, 1, 1). Next, we have Ned − 1 conditions at each edge, where Ned is the number of
subdomains meeting at the edge; all these conditions can be written as C1α = 0, for a suitable matrix C1

whose structure depends on the topology of the subdomains. Finally, we have 1 condition at each face; they
can be represented as C2α = 0.

In addition, we want to build functions in WC
j (Ω) := {v ∈ V C

j+1(Ω) : 〈v, ϕ̃j,C〉Ω = 0}; this adds the
condition Bα = 0, with B := (b, . . . , b) and b = (1, 0, 0, 0, 0, 0, 0, 0). Summarizing, we have

D α = 0 with D =


C0

C1

C2

B

 .

All the conditions that we have enforced are linearly independent, as shown in [4] (see Section 5.2); thus,
their number is

(NC − 1) +
∑

edges

(Ned − 1) +NC,2 + 1 = NC + 3NC −NC,1 +NC,2 = 5NC − 2.

Indeed, since each subdomain contains 3 edges meeting in C, one has∑
edges

(Ned − 1) = 3NC −NC,1.

We conclude that dimWC
j (Ω) = 3NC+2, as desired. After the dual construction is made, biorthogonalization

is accomplished as described in the previous sections; we omit the details. In conclusion, we end up with
3NC + 2 primal and dual wavelets ψl

j,C and ψ̃l
j,C , l = 1, . . . , 3NC + 2; they are associated to the grid points

(6.2), which from now on will be indicated by hC,l.

Wavelets with localized support. Let us first notice that, as in lower dimension, no function in WC
j (Ω)

exists, which is supported in only one subdomain Ωi. On the contrary, it is easily seen that for each couple of
continguous subdomains, two linearly independent functions in WC

j (Ω) can be built, which vanish identically
outside the two subdomains.

Thus, to each point hC,l which lies inside the common face of two subdomains, we associate one of such
wavelet. To all but one points hC,l lying inside the subdomains, we associate other such wavelets, choosing
them to be linearly independent from the previous ones. To each point hC,l lying inside an edge, we associate
a wavelet supported in the closure of the union of all subdomains sharing the edge: it has the local structure
of a tensor product of a two-dimensional scaling function ϕj,C times the wavelet ηj,ν1 in the direction of the
edge. Finally, to the remaining point hC,l interior to a subdomain, we associate the global wavelet, which is
the three–dimensional analog of (5.11).
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Tensor products of matched functions. According to (6.1), the number of subdomains meeting at C
is even. We consider here the particular situation in which these subdomains can be grouped in two sets
of equal cardinality NC/2, all the subdomains of each set sharing a common edge stemming from C. For
instance, this is the relevant case of 8 subdomains meeting at C, and representing the images of unit cubes
lying in the 8 octants of IR3.

By possibly introducing additional parametric mappings, we may reduce ourselves to the situation in
which NC/2 subdomains lie in the upper half space x̂3 > 0 while the remaining ones lie in the lower half
plane. Each upper subdomain Ωi can be written as Ωi = Ω′i × (0, 1), where Ω′i is a 2D subdomain in the
plane x̂3 = 0; the companion lower subdomain is Ω′i× (−1, 0). Thus, we are led to consider the case of NC/2
subdomains in the plane meeting at C′ = (0, 0). Let ϕII

j be the bivariate scaling function associated to C′,
and let ψII,l

j (l = 1, . . . , NC/2) be any system of bivariate wavelets around C, built as in Subsection 5.1.
Moreover, let ψ̂I,l

j (l = −,+) be the univariate wavelets defined in Subsection 4.1, and let ϑ̂I,l
j (l = −, 0,+)

the univariate matched functions defined in Subsection 4.2. Then, a system of wavelets around C can be
defined as follows:

The functions ψII,l
j ⊗ ϑ̂I,+

j , with l = 1, . . . , NC/2, are associated to the grid points having a strictly
positive x̂3–component and not lying on the x̂3–axis; the functions ψII,l

j ⊗ ϑ̂I,0
j and ψII,l

j ⊗ ϑ̂I,−
j are associated

to the analogous grid points having zero or negative x̂3–component. Finally, the functions ϕII
j ⊗ ψ̂I,±

j are
associated to the remaining grid points on the x̂3–axis (obviously, these functions are extended by zero
outside the union of the subdomains).

In the case of 8 subdomains meeting at C, the bivariate scaling and wavelet functions may be chosen
to be themselves tensor products of univariate matched functions, so one can obtain a fully tensorized local
wavelet basis around C.

Cross points lying on the boundary. Let us now assume that the cross point C belongs to ∂Ω. We follow
the same notation as before. The grid points h ∈ Hj around C to which wavelets will be associated are
again of the form (6.2), but now the points lying on a face or an edge contained in Γ̄Dir are missing. Let us
denote by NDir

C,2 (NDir
C,1 , resp.) the number of faces (edges, resp.) containing C and contained in Γ̄Dir. It is

easily seen that the number lC of grid points hC,l we are interested in is

lC = NC,3 + (NC,2 −NDir
C,2) + (NC,1 −NDir

C,1).

Let us count the number of conditions that define the space WC
j (Ω). We have NC,3− 1 matching conditions

at C, plus one vanishing condition if C ∈ Γ̄Dir or one orthogonality condition if C 6∈ Γ̄Dir. Next, we have
Ned − 1 matching conditions at each edge, plus one vanishing condition at each edge contained in C ∈ Γ̄Dir.
Finally, let Nf indicate the number of subdomains sharing the face f (this is 2 if the face is not contained in
∂Ω, 1 if it is); then, we have Nf − 1 matching conditions at each face, plus one vanishing condition at each
face contained in C ∈ Γ̄Dir. Observing that∑

edges

Ned =
∑

faces

Nf = 3NC,3,

the total number tC of conditions which define WC
j (Ω) is

tC = 7NC,3 − (NC,2 −NDir
C,2)− (NC,1 −NDir

C,1).

Since these conditions are linearly independent (see again [4]), we obtain, as desired,

dimWC
j (Ω) = 8NC,3 − tC = lC .
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Fig. 6.1. Example of 5 trivariate subdomains meeting at a cross point belonging to the Dirichlet part of the boundary (left).

The pictures in the right column show the wavelet grid points having positive, zero and negative z–component, respectively (from

top to bottom).

As in the interior cross point case, wavelets can be constructed with localized support. Actually, if
C ∈ Γ̄Dir, wavelets exist which are supported within one subdomain; they will be associated to the point
hC,l lying inside the corresponding subdomain.

Example . Let us consider the domain represented in Figure 6.1 which is divided into 5 subdomains.
Let us assume that the three boundary faces meeting at C are contained in ΓDir. We want to exhibit one
particular choice of wavelets around C, which can easily be constructed. To this end, let us assume that
C = (0, 0, 0) and let us divide the wavelet grid points around C into three sets, corresponding to their third
coordinate z being negative, zero or positive as indicated in Figure 6.1.

For defining the wavelets associated to the grid points having z < 0, consider the bivariate scaling function
ϕII

j and the bivariate wavelets ψII,l
j (l = 1, . . . , 6) associated to a 2D interior cross point C′ common to three

subdomains. In addition, let ϑ̂I,−
j be the matched univariate function defined in (4.9) and having support in

(−1, 0). Then, we associate to these grid points the 7 wavelets
ϕII

j ⊗ ϑ̂I,−
j (to the grid point on the z–axis)

ψII,l
j ⊗ ϑ̂I,−

j , (l = 1, . . . , 6) (to the grid points around the axis).
It remains to define wavelets associated to those wavelet grid points having zero or positive third com-

ponent. To this end, let ψ̌II,l
j (l = 1, . . . , 3) be the system of wavelets associated to a 2D Dirichlet boundary

cross point common to two subdomains. Then, the functions ψ̌II,l
j ⊗ ϑ̂I,0

j (l = 1, 2, 3) will be associated to the
three wavelet grid points with z = 0 and the analogous three grid points in the upper half space are identified
with the wavelets ψ̌II,l

j ⊗ ϑ̂I,+
j (l = 1, 2, 3).

Note that no extra orthogonality to dual scaling functions has to be enforced, since no scaling function
is associated to the 3D Dirichlet cross point C.

6.2. Matched wavelets around an edge or a face. Let σ = ed be an edge, at whichNed subdomains
meet. We can reduce ourselves to the situation in which the subdomains are (re-)labeled by Ω1, . . . ,ΩNed

and for each i ∈ {1, . . . , Ned} we have

ed = {Fi(0, 0, ζ) : 0 ≤ ζ ≤ 1 }.
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It is enough to consider points hed ∈ Kj+1 which are internal to ed. Precisely, if hed = Fi(0, 0, ĥ3) with
ĥ3 ∈ ∆int

j , then we build wavelets which, in local coordinates, can be written as ψ̂l
j,ed ⊗ ξj,ĥ3

, where ψ̂l
j,ed

are matched bivariate wavelets as defined in subsections 5.1 or 5.2. They will be associated to the points
h ∈ Hj having the form h = Fi(ζ1, ζ2, ĥ3), with ζ1, ζ2 ∈ {0, νj,1}.

On the other hand, if hed = Fi(0, 0, ĥ3) with ĥ3 ∈ ∇int
j , then the wavelets will be locally represented as

ψl
j,ed⊗ηj,ĥ3

, where now ψl
j,ed are matched bivariate wavelets, defined as in the previously quoted Subsections,

but without enforcing the biorthogonality condition Bα = 0. The association to the grid points surrounding
hed is done as above (note that now hed ∈ Hj).

At last, let σ = f be a face common to two subdomains Ω− and Ω+. The reference situation is such
that

f = {F+(0, ζ2, ζ3) : 0 ≤ ζ2, ζ3 ≤ 1 }.

Let hf ∈ Kj+1. If hf = F+(0, ĥ2, ĥ3) with ĥ2, ĥ3 ∈ ∆int
j , then we build wavelets having the local represen-

tation ψ̂l
j,f ⊗ ξj,ĥ2

⊗ ξj,ĥ3
, where ψ̂l

j,f are matched univariate wavelets as defined in Subsection 4.1. On the
other hand, if hf = F+(0, ĥ2, ĥ3) with ĥ2, ĥ3 ∈ ∆int

j ∪ ∇int
j and at least one coordinate in ∇int

j , then the
local representation of the wavelets will be one of the following ones:

ϑ̂l
j,f ⊗ ηj,ĥ2

⊗ ξj,ĥ3
, ϑ̂l

j,f ⊗ ξj,ĥ2
⊗ ηj,ĥ3

, ϑ̂l
j,f ⊗ ηj,ĥ2

⊗ ηj,ĥ3
,

where now ϑ̂l
j,f are matched univariate functions built in Subsection 4.2. The association of these wavelets

to the grid points surrounding hf is straightforward.

Appendix A. Mask coefficients. In this appendix we provide all the mask (filter) coefficients of the
univariate scaling functions and wavelets for our B–spline example L = 2 and L̃ = 4. These are the data
that are needed to reproduce the figures in this paper and to use these functions, e.g., as trial functions for
numerically solving differential and integral equations. Starting from the masks of the univariate functions,
those for multivariate and matched functions can easily be obtained by appropriate tensorization, using the
matching coefficients given in the paper at any interface among subdomains.

Refinement coefficients. Let us start with the refinement coefficients on the real line corresponding to
the equations

φ(x) = 2−1/2
∑
k∈ZZ

ak φ(2x− k), φ̃(x) = 2−1/2
∑
k∈ZZ

ãk φ̃(2x− k),

where the coefficients here are given by ([8]):

a−1 = 5.000000000000e − 01, a0 = 1.000000000000e + 00, a1 = 5.000000000000e − 01,

for the primal scaling function, and by

ã−4 = 4.687500000000e − 02, ã−3 = −9.375000000000e − 02, ã−2 = −2.500000000000e − 01,

ã−1 = 5.937500000000e − 01, ã0 = 1.406250000000e + 00, ã1 = 5.937500000000e − 01,

ã2 = −2.500000000000e − 01, ã3 = −9.375000000000e − 02, ã4 = 4.687500000000e − 02,

for the dual one.

Next, we give the entries of the refinement matrices Mj and M̃j for the whole bases Ξj , Ξ̃j , respectively,
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as defined in (2.3-a). These matrices have the following structure (taken from [11]):

MT
j :=

ML

Aj

MR

M̃T
j :=

M̃L

Ãj

M̃R

Here, the central blocks Aj and Ãj take the form

(Aj)m,k =
1√
2
am−2k, 3 ≤ m ≤ 2j+1 − 3, 2 ≤ k ≤ 2j − 2,(

Ãj

)
m,k

=
1√
2
ãm−2k, 4 ≤ m ≤ 2j+1 − 4, 4 ≤ k ≤ 2j − 4,

with the previously given coefficients ak and ãk. The upper left blocks are here given by

ML =



7.071067811865e − 01

4.890821903207e − 01

−3.794806392368e − 01

−6.010407640086e − 02

1.084230397819e − 01

4.360491817317e − 02

−2.121320343560e − 02

−1.060660171780e − 02



M̃L=



7.071067811865e − 01 0.000000000000e + 00 0.000000000000e + 00 0.000000000000e + 00

7.733980419228e − 01 7.402524115547e − 01 −2.695844603274e − 01 5.082329989778e − 02

−2.209708691208e − 01 8.175922157469e − 01 −6.187184335382e − 02 4.419417382416e − 03

−3.314563036812e − 01 4.529902816976e − 01 3.933281470350e − 01 −5.966213466262e − 02

1.657281518406e − 01 −1.933495104807e − 01 1.007627163191e + 00 −1.800912583334e − 01

0.000000000000e + 00 −6.629126073623e − 02 4.198446513295e − 01 4.198446513295e − 01

0.000000000000e + 00 3.314563036813e − 02 −1.767766952966e − 01 9.943689110436e − 01

0.000000000000e + 00 0.000000000000e + 00 −6.629126073624e − 02 4.198446513295e − 01

0.000000000000e + 00 0.000000000000e + 00 3.314563036812e − 02 −1.767766952966e − 01

0.000000000000e + 00 0.000000000000e + 00 0.000000000000e + 00 −6.629126073624e − 02

0.000000000000e + 00 0.000000000000e + 00 0.000000000000e + 00 3.314563036812e − 02


.

The lower right blocks MR and M̃R arise from their upper left counterparts by reflecting rows and columns
in the following way:

(MR)2j−m,2j−k = (ML)m,k, m = 0, . . . , 8, k = 0,

and similarly for the dual functions.
Wavelet coefficients. The wavelets on the real line can be written as linear combination of the translates

of φ on level 1, i.e.,

ψ(x) = 2−1/2
∑
k∈ZZ

bk φ(2x− k), ψ̃(x) = 2−1/2
∑
k∈ZZ

b̃k φ̃(2x− k).
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The corresponding masks for our example are given by
b1 = 1.060660171780e − 01, b2 = 2.121320343559e − 01, b3 = −5.656854249493e − 01,

b4 = −1.343502884254e + 00, b5 = 3.181980515339e + 00, b6 = −1.343502884254e + 00,

b7 = −5.656854249492e − 01, b8 = 2.121320343560e − 01, b9 = 1.060660171780e − 01,

for the primal wavelets, and by

b̃4 = −1.104854345604e − 01, b̃5 = 2.209708691208e − 01, b̃6 = −1.104854345604e − 01,

for the dual ones ([8]). Let us now consider the two-scale matrices Gj and G̃j for the whole wavelet basis,
which give the transformation

Υj = GjΞj+1, Υ̃j = G̃jΞ̃j+1.

Again, Gj and G̃j have the same block structure as Mj , M̃j , respectively, possibly with a different size of the
blocks. The inner blocks correspond to those of Mj, M̃j, by replacing ak, ãk by bk, b̃k, respectively. Here,
the upper left block of the refinement matrix for the wavelets read:

GL =



7.071067811866e − 01 0.000000000000e + 00

−4.890821903207e − 01 1.237436867076e + 00

3.794806392368e − 01 −4.313351365238e + 00

6.010407640085e − 02 4.985102807365e + 00

−1.084230397819e − 01 −1.555634918610e + 00

−4.360491817317e − 02 −6.717514421272e − 01

2.121320343560e − 02 2.121320343560e − 01

1.060660171780e − 02 1.060660171780e − 01



G̃L =


7.071067811865e − 01 0.000000000000e + 00

−7.733980419228e − 01 −1.473139127472e − 02

2.209708691208e − 01 −5.892556509888e − 02

3.314563036812e − 01 1.325825214725e − 01

−1.657281518406e − 01 −6.629126073624e − 02

 .
The lower blocks again arise by reflecting the upper blocks.

Homogeneous boundary conditions. Let us now consider scaling functions and wavelets having homoge-
neous boundary conditions. For the scaling functions, one only has to eliminate the first and last row in Mj

and M̃j , respectively.
For the corresponding wavelets, we have to modify the first and last wavelet as defined in (2.9). This

means changing the first and last column of GL and G̃L, respectively, by using the following coefficients
instead:

b0 = 0.000000000000e + 00, b1 = −6.916666666667e − 01, b2 = 5.366666666667e − 01,

b3 = 8.500000000000e − 02, b4 = −1.533333333333e − 01, b5 = −6.166666666667e − 02,

b6 = 3.000000000000e − 02, b7 = 1.500000000000e − 02,

for the primal wavelets, and
b̃0 = 0.000000000000e + 00, b̃1 = −1.093750000000e + 00, b̃2 = 3.125000000000e − 01,

b̃3 = 4.687500000000e − 01, b̃4 = −2.343750000000e − 01,

for the dual ones.
The coefficients in the refinement matrices for a whole variety of choices of the parameters L and L̃ (for

the construction in [11] based on [8]) can be obtained in Matlab–format from the homepage of the third
author http://www.igpm.rwth-aachen.de/∼urban under the topic Software. The software described in
[3] (written in C++) that has been used to produce the pictures in this paper can also be obtained via this
website.

Acknowledgement. The authors feel very grateful to Titus Barsch for his assistance in programming
and producing the pictures.
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