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BOUNDARY AND INTERFACE CONDITIONS FOR HIGH ORDER FINITE
DIFFERENCE METHODS APPLIED TO THE EULER AND NAVIER-STOKES

EQUATIONS

JAN NORDSTRÖM ∗ AND MARK H. CARPENTER †

Abstract. Boundary and interface conditions for high order finite difference methods applied to the
constant coefficient Euler and Navier-Stokes equations are derived. The boundary conditions lead to strict
and strong stability. The interface conditions are stable and conservative even if the finite difference operators
and mesh sizes vary from domain to domain. Numerical experiments show that the new conditions also lead
to good results for the corresponding nonlinear problems.
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1. Introduction. In many computational problems, low order finite difference methods (second order
or less) are not accurate enough. Examples in which high-frequency components in the solution must be
resolved by using high order finite difference methods (HOFDM) include aeroacoustics, turbulence and
transition simulations, the propagation and scattering of electromagnetic waves, and simulation of reactive
flows at high speeds [1], [2], [3], [4], [5], [6]. The efficiency [7] of HOFDM can be used either to increase
the accuracy for a fixed number of mesh points or to reduce the computational cost for a given accuracy by
reducing the number of mesh points.

The main reason that low order finite difference methods are used in practical calculations is because of
the difficulty that arises for HOFDM near the boundaries of the computational domain. On a Cartesian mesh,
it is quite easy to derive nonsymmetric boundary operators that have high formal accuracy; the difficulty is
to derive highly accurate and stable operators. In [8] and [9] HOFDM are constructed based on the work in
[10] and [11]. In these strictly stable schemes, the growth rates of the analytic and semidiscrete solution are
identical. Strict stability is obtained by constructing discrete operators that satisfy a summation-by-parts
(SBP) rule which mimics the integration-by-parts rule in the continuous case. For calculations over long
times, strict stability is very important beacuse it prevents error growth in time for fixed ∆x.

In [12] it was shown that many G-K-S stable [13] (convergence to true true solution as ∆x→ 0) scalar
schemes were not strictly stable. Moreover, many scalar schemes that were both G-K-S stable and strictly
stable exhibit time growth when they are applied to systems of equations. The underlying reason for the
error growth in time caused by the way the mathematical boundary conditions were imposed. An orthogonal
projection operator is used to impose the mathematical boundary conditions in [14] and [15]. In the so called
SAT (simultaneous approximation term) procedure [16], a linear combination of the boundary conditions in
the form of a forcing function and the differential equations is solved near the boundary. Both these methods
impose the correct boundary conditions and preserve strict stability.
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Another important concept is strong stability. An approximation is strongly stable if the solution,
including the values at the boundary points, can be estimated in terms of all data in the problem [17]. The
stability estimate in the strongly stable case leads directly to the error estimate if no extra or numerical
boundary conditions are necessary. Stability analysis using the Laplace transform technique leads to strong
stability if the Kreiss condition is satisfied; see [18] and [9] paper IV. Note that strict stability leads to strong
stability, but strong stability does not imply strict stability.

Most investigations regarding HOFDM are done on linear hyperbolic model equations with constant
coefficients on a uniform mesh. However, nonlinear Navier-Stokes calculations on nonuniform meshes have
been performed [19]. One of the conclusions in [19] was that the treatment of the metric derivatives is a
crucial point for nonsmooth meshes. This problem is analyzed in [20] where so called mimetic difference
operators (discrete operators with the same symmetry properties as the continuous operators) are derived.
In [15], strict stability for parabolic and hyperbolic systems in curvilinear coordinates on a single domain
were investigated.

Generating a smooth grid around a complex configuration can be very difficult, if not impossible, and is
often the most time-consuming aspect of the solution procedure. This fact has limited the use of HOFDM in
practical calculations to the small class of simple geometries which can be smoothly mapped onto the unit
cube. In this paper we consider a structured multiblock approach in which each subdomain is discretized by
using a discrete operator with the SBP property. The subdomains are patched together to a global domain
by using suitable interface conditions. This technique was used in [21], [22] and [23] for Chebyshev spectral
methods.

In [24], stable and conservative interface conditions for HOFDM applied to the scalar advection-diffusion
equation on multiple domains were derived. In each subdomain the step size was constant but significantly
different from that in the adjacent subdomains. Also, the finite difference operators could vary from sub-
domain to subdomain. In this paper we will generalize the results in [24] and extend the analysis to the
one-dimensional constant coefficient Euler and Navier-Stokes equations.

The rest of this paper will proceed as follows. In section 2, some basic definitions are given. In section 3,
the Navier-Stokes equations on conservative, primitive, and characteristic variable form are given. In section
4, the continuous problem is analyzed, while the discrete problem is investigated in section 5. Numerical
experiments are performed in Section 6 and we summarize and draw conclusions in section 7.

2. Definitions. Consider the linear initial boundary value problem

wt = Pw + δF (x, t) , x ∈ Ω , t ≥ 0,
w = δf(x) , x ∈ Ω , t = 0,

LCw = δg(t) , x ∈ Γ , t ≥ 0,

(2.1)

where P is the differential operator and LC is the boundary operator. The initial function δf , the forcing
function δF , and the boundary data δg are the data of the problem; w denotes the difference between a
solution with data f ,F ,g and one with data f+δf ,F +δf ,g+δg. There are many concepts of well posedness,
see [17]. Here we consider the following definition.

Definition 1. The problem (2.1) is strongly well posed if the solution w is unique, exists, and satisfies

‖w‖2Ω +
∫ t

0

‖w‖2Γdt ≤ Kce
ηct{‖δf‖2Ω +

∫ t

0

(‖δF‖2Ω + ‖δg‖2Γ)dt},(2.2)

where Kc and ηc may not depend on δF , δf ,δg. ‖ · ‖Ω and ‖ · ‖Γ are suitable continuous norms.
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The semidiscrete version of (2.1) is

(wj)t = Qwj + δFj(t) , xj ∈ Ω , t ≥ 0,
wj = δfj , xj ∈ Ω , t = 0, ,

LDwj = δg(t) , xj ∈ Γ , t ≥ 0,

(2.3)

where Q is the difference operator approximating the differential operator P , δFj is the forcing function, δfj

the initial function, LD the discrete boundary operator where numerical boundary conditions are included,
and δg the boundary data. It is assumed that (2.3) is a consistent approximation of (2.1).

Closely related to the concept of well posedness is the concept of stability.
Definition 2. The problem (2.3) is strongly stable, if for a sufficiently fine mesh, the solution wj

satisfies

‖w‖2Ω +
∫ t

0

‖w‖2Γdt ≤ Kde
ηdt{‖δf‖2Ω +

∫ t

0

(‖δF‖2Ω + ‖δg‖2Γ)dt},(2.4)

where Kd and ηd may not depend on δFj, δfj,δg. ‖ · ‖Ω and ‖ · ‖Γ are suitable discrete norms.
Definition 3. The approximation (2.3) of (2.1) is strictly stable if the analytical and discrete growth

rates (see (2.2) and (2.4)) satisfy

ηd ≤ ηc +O(∆x),(2.5)

where ∆x is the mesh size.
For later reference we also define some useful matrix operations; see [25].
Definition 4. Let A be a p× q matrix, B be an m× n matrix, and Il the l × l identity matrix, then

A⊗B =




a0,0B · · · a0,q−1B
...

...
ap−1,0B · · · ap−1,q−1B


 , Il ⊗B =




B 0 · · · 0
0 B · · · 0
...

...
. . .

...
0 0 · · · B


 .

The p×q block matrix A⊗B and the l× l block diagonal matrix Il⊗B are called Kronecker products. There
are a number of rules for Kronecker products (see [25]). In this paper we will make use of,

(A⊗B)(C ⊗D) = (AC)⊗ (BD), (A⊗B)T = AT ⊗BT .(2.6)

The following lemma will be used frequently below; it is a direct consequence of the first rule in (2.6).
Lemma 1. Let A be an m×m matrix, B be an n×n matrix, Ã = In⊗A and B̃ = B⊗Im, then ÃB̃ = B̃Ã.

Proof : The first condition in (2.6) leads to ÃB̃ = (In ⊗ A)(B ⊗ Im) = B ⊗ A = (B ⊗ Im)(In ⊗ A) = B̃Ã.

3. The Euler and Navier-Stokes equations. The one-dimensional constant coefficient Navier-
Stokes equations in primitive (W ), characteristic (C), and conservative (Q) variable form are

Wt + ĀWx = εB̄Wxx, Ct + Λ̄Cx = εX̄Cxx, Qt + F I
x = εFV

x(3.1)

respectively. With ε = 0, equation (3.1) becomes the one-dimensional constant coefficient Euler equations.
The overbar is used to denote variables with a constant state. The relation between W,C,Q where W =
(ρ, u, T )T is

C = R̄S̄W, Q = T̄W(3.2)
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where

R̄ =




−1/
√

2γ 1/
√

2 −√γ − 1/2γ√
γ − 1/γ 0 −1/

√
γ

1/
√

2γ 1/
√

2
√
γ − 1/2γ


 ,

S̄ =
√

2




c̄2/
√
γ 0 0

0 ρ̄c̄ 0
0 0 ρ̄/

√
γ(γ − 1)M4∞


 ,

T̄ =




1 0 0
ū ρ̄ 0

c̄2/(γ(γ − 1)) + ū2/2 ρ̄ū ρ̄/(γ(γ − 1)M2
∞)


 .

Note that R̄R̄T = I3.
The transformation (3.2) implies that the matrices and fluxes in (3.1) are

Ā =




ū ρ̄ 0
c̄2/γρ̄ ū 1/γM2

∞
0 (γ − 1)c̄2M2

∞ ū


 ,(3.3)

B̄ =




0 0 0
0 (λ̄ + 2µ̄)/ρ̄ 0
0 0 γκ̄/(Prρ̄)


 ,(3.4)

Λ̄ = (R̄S̄)Ā(R̄S̄)−1 =




ū− c̄ 0 0
0 ū 0
0 ū+ c̄


 ,(3.5)

X̄ = (R̄S̄)B̄(R̄S̄)−1 =
1
2




θ̃ + φ̃ αφ̃ θ̃ − φ̃

αφ̃ α2φ̃ −αφ̃
θ̃ − φ̃ −αφ̃ θ̃ + φ̃


 ,(3.6)

F I = T̄ ĀW = T̄ ĀT̄−1Q, FV = T̄ B̄Wx = T̄ B̄T̄−1Qx.(3.7)

The dependent variables and parameters ρ,u,T ,p,c, M∞,µ,λ,κ,Pr,γ and ε are respectively the density,
x,y,z components of the velocity, the temperature, the pressure, the speed of sound, the free-stream Mach
number, the shear and second viscosity, the coefficient of heat conduction, the Prandtl number, the ratio of
specific heats, and the inverse Reynolds number. The notations θ̃ = (λ̄ + 2µ̄)/ρ̄, φ̃ = (γ − 1)κ̄/(Prρ̄), α =√

2/(γ − 1) has also been introduced.

4. The continuous problem. In this paper we will consider interface conditions between subdomains.
However, interface conditions are closely related to boundary conditions; therefore, we start with the single
domain problem.
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4.1. The continuous single domain problem. To make the presentation self-contained, some results
in [27] are included in this section. Consider the Navier-Stokes equations on characteristic form,

Ct + Λ̄Cx = εX̄Cxx + F (x, t) , t ≥ 0 ,−1 ≤ x ≤ 1,
C = f(x) , t = 0 ,−1 ≤ x ≤ 1,

L−1C = g−1(t) , t ≥ 0 , x = −1,
L+1C = g+1(t) , t ≥ 0 , x = +1,

(4.1)

where C = (ρ̄c̄u− p, α(ρc̄2 − p), ρ̄c̄u+ p)T ,0 < ε << 1 and L−1, L+1 are the boundary operators. For ū > 0,
there is inflow at x = −1 and outflow at x = 1.

4.1.1. Well posedness. Let

(U, V ) =
∫ +1

−1

UTV dx, (U,U) = ‖U‖2, ‖U‖2Γ = |U |2x=−1 + |U |2x=+1

denote the L2 scalar product, the L2 norm, and the boundary norm respectively. The energy method applied
to (4.1) leads to

‖C‖2t = [CT Λ̄C − 2εCT X̄Cx]x=−1
x=+1 − 2ε(Cx, X̄Cx) + 2(C,F ).

The boundary conditions (see [27] and [22])

L−1C =
(Λ̄ + |Λ̄|)

2
C − εX̄Cx = g−1,(4.2)

L+1C =
{

(Λ̄− |Λ̄|)
2

C − εX̄Cx

}
i

= {g+1}i, i = 1, 2,(4.3)

where |Λ̄| = diag(|λ1|, |λ2|, |λ3|) leads to

‖C‖2t =− 2ε(Cx, X̄Cx) + 2(C,F )

− [CT ΛIC − 2CT g−1]x=−1 − [CT ΛOC + 2CT g+1]x=+1,(4.4)

where g+1 = (g1, g2, g1 − (2/α)g2)T and

ΛI = |Λ̄|, ΛO =




|λ1| 0 (|λ1| − λ1)/2
0 |λ2| 0

(|λ1| − λ1)/2 0 |λ3|


 .(4.5)

Integration of (4.4) leads to

‖C‖2 + eηT {2ε
∫ T

0

(Cx, X̄Cx)e−ηtdt+
δ

2

∫ T

0

‖C‖2Γe−ηtdt}

≤ eηT {‖f‖2 +
2
δ

∫ T

0

‖g‖2Γe−ηtdt+
1
η

∫ T

0

‖F‖2e−ηtdt},(4.6)

where 0 < η < 1, δ = min |dj |, D = |Λ̄|H , and

H = diag(H1, 1, H3), H1 =
|λ3| − |λ1|
|λ3|+ |λ3| , H3 =

|λ3| − |λ1|
|λ3|+ |λ1| .

Note that (4.2),(4.3) reduce to the characteristic boundary conditions for the Euler equations as ε→ 0.
Uniqueness follows directly from the estimate (4.6). Existence can be shown by using the Laplace-

transform technique or via difference approximations; see [26] and [28]. Since (4.6) is of the form (2.2), we
can conclude that the following theorem holds.

Theorem 1. The problem (4.1) with the boundary conditions (4.2),(4.3) is strongly well posed.
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4.2. The continuous multiple domain problem. In this section we split the domain [−1, 1] into
[−1, 0] and [0, 1] and focus on the interface problem at x = 0. The two coupled problems are

Ut + Λ̄Ux = εX̄Uxx + F (x, t) , t ≥ 0 ,−1 ≤ x ≤ 0,
U = f(x) , t = 0 ,−1 ≤ x ≤ 0,

L−1U = g−1(t) , t ≥ 0 , x = −1,
L0(U − V ) = 0 , t ≥ 0 , x = 0,

(4.7)

Vt + Λ̄Vx = εX̄Vxx + F (x, t) , t ≥ 0 , 0 ≤ x ≤ +1,
V = f(x) , t = 0 , 0 ≤ x ≤ +1,

L0(V − U) = 0 , t ≥ 0 , x = 0,
L+1V = g+1(t) , t ≥ 0 , x = +1,

(4.8)

respectively. The characteristic variables in the left [−1, 0] and right [0,+1] domain are U and V respectively.
The coupling between (4.7) and (4.8) is given by the operator L0.

By subtracting (4.1) from (4.7-4.8), by transforming the problem on [0,+1] onto [−1, 0] via the trans-
formation x→ −ξ, and finally by replacing ξ with x, we obtain

ψt + Λ̃ψx = εX̃ψxx , t ≥ 0 ,−1 ≤ x ≤ 0,
ψ = 0 , t = 0 ,−1 ≤ x ≤ 0,

L−1Ũ = 0 , t ≥ 0 , x = −1,
L̃+1Ṽ = 0 , t ≥ 0 , x = −1,

L̃0(Ũ − Ṽ ) = 0 , t ≥ 0 , x = 0,

(4.9)

where

ψ =

(
Ũ

Ṽ

)
=

(
U − C

V − C

)
, Λ̃ =

(
+Λ̄ 0
0 −Λ̄

)
, X̃ =

(
X̄ 0
0 X̄

)
,

and

L−1Ũ =
(Λ̄ + |Λ̄|)

2
Ũ − εX̄Ũx, L̃+1Ṽ =

{
(Λ̄− |Λ̄|)

2
Ṽ + εX̄Ṽx

}
i

, i = 1, 2.(4.10)

4.2.1. Well posedness. The energy method applied to (4.9) leads to

‖ψ‖2t = [ψT Λ̃ψ − 2εψT X̃ψx]x=−1
x=0 − 2ε(ψx, X̃ψx).

The analysis of the single domain problem implies that the boundary terms at x = −1 are negative semidef-
inite with the boundary operators (4.10). At the interface x = 0, we have

ψT Λ̃ψ − 2εψT X̃ψx]x=0 =

=
1
2




Ũ − Ṽ

Ũ + Ṽ

(Ũ − Ṽ )x

(Ũ + Ṽ )x







0 Λ̄ −εX̄ 0
Λ̄ 0 0 −εX̄
−εX̄ 0 0 0

0 −εX̄ 0 0







Ũ − Ṽ

Ũ + Ṽ

(Ũ − Ṽ )x

(Ũ + Ṽ )x


 .(4.11)

Well posedness for the Euler equations (ε = 0) requires Ũ − Ṽ = 0 since Λ̄ is nonsingular. With that
choice we get

[ψT Λ̃ψ − 2εψT X̃ψx]x=0 = −2εŨT X̄(Ũ + Ṽ )x = −2ε((R̄S̄)T Ũ)T B̄(W1 +W2)x,
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where (R̄S̄)−1U = WL, (R̄S̄)−1V = WR denotes the primitive variables in the left and right domain respec-
tively. The structure of B̄ (see (3.4)) and a transformation to the original coordinate system lead to the
following theorem.

Theorem 2. If Theorem 1 holds and the interface conditions

(
I3

εD1

)(
U − V

(U − V )x

)
= 0, D1 =

(
1 0 1
1 α −1

)
(4.12)

are used, then (4.7) and (4.8) are strongly well posed.

Remark. The problems (4.7) and (4.8) are strongly well posed in the sense that the solutions can be
estimated in ternms of the data in the corresponding one domain problem (4.1).

Remark. The condition (4.12) in primitive variable formulation is

(
I3

εD2

)(
WL −WR

(WL −WR)x

)
= 0, D2 =

(
0 1 0
0 0 1

)
.

5. The discrete problem. Let U ,DU be the numerical approximations of the scalar quantities u and
ux respectively. The approximation DU of the first derivative

DU = P−1QU, Pux −Qu = PTe1, |Te1| = O(∆xm,∆xn)

satisfies the SBP rule

(U,DV )P = UNVN − U0V0 − (DU, V )P(5.1)

where

(U, V )P = UTPV, P = PT , Q+QT = D, D = diag[−1, 0, .., 0, 1](5.2)

and 0 < pmin∆xI ≤ P ≤ pmax∆xI. Operators of the SBP type arise naturally with centered difference
approximations; for examples see [11],[29], [12],[30].

The second derivative can be obtained by applying the first derivative operator twice. Such an ap-
proximation satisfies the SBP rule (5.1) exactly. However, there are drawbacks with such a procedure. A
second derivative formed in that way is unnecessarily wide and inaccurate and can lead to odd-even mode
decoupling. A second derivative operator with the following properties,

D2U = P−1RU, Puxx −Ru = PTe2, Te2 = O(∆xm,∆xn),(5.3)

R = (−STM +D)S,(5.4)

was suggested in [24]. The matrix D is given in (5.2); M is positive definite, i.e., UTMU > 0 and 0 <

mmin∆xI ≤M ≤ mmax∆xI.

S is a diagonal matrix with a discrete representation of the first derivative on the first and last rows,

{Su}0 = {Du}0 = ux(x0, t) + Te3, {Su}n = {Du}n = ux(xn, t) + Te3,
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where |Te3| = O(∆xr) and

S =
1

∆x




s00 s01 s02 s03 · · ·
0 1 0

0 1 0
. . . . . . . . .

0 1 0
0 1 0

· · · snn−3 snn−2 snn−1 snn



.

The second derivative defined in (5.3) and (5.4) satisfies a modified SBP rule We have

(U,D2V )P = Un{DV }n − U0{DV }0 − (SU)TM(SV ).

The notation |Te1|, |Te2| = O(∆xm,∆xn) and |Te3| = O(∆xr) means that the approximation of the
differential operator is accurate to order m in the interior of the domain, to order n at the boundary and
that the approximation of the boundary conditions is accurate to order r. The relation between the different
orders of accuracy, i.e., m,n, r is discussed in section 5.1.2 below.

Examples of first and second derrivative approximations are given in (A.1)-(A.5) in appendix A. The
approximations are second order accurate in the interiour of the domain and first order accurate at the
boundary. This means that for (A.1)-(A.5) we have m = 2 and n = 1.

So far we have considered difference approximations of scalar quantities. The corresponding approxima-
tions for vector quantities are defined by using Kronecker products (see definition 4). The spatial operators
D,D2 and the matrices that define them are of the form B ⊗ I3 in this paper. As an example, P−1Q means
(P−1 ⊗ I3)(Q⊗ I3) = P−1Q⊗ I3. In the sequel, that notation is implied.

Let H = HT > 0; for later reference we introduce the notations

(U, V )H = UTHV, (U,U)H = ‖U‖2H, ‖U‖2ΓD
= |U |2i=0 + |U |2i=n.(5.5)

5.1. The discrete single domain problem. We introduce a uniform mesh xi = −1 + i∆x, x0 =
−1, xn = +1. The finite difference approximation of (4.1) with the SAT technique [16] for boundary condi-
tions is

Ct + Λ̃DC = εX̃D2C + F

+ P−1{σ−1(LD
−1C − g−1)e−1 + σ+1(LD

+1C − g+1)e+1},
C(0) = f,

(5.6)

where

D = P−1Q⊗ I3, D2 = P−1R⊗ I3,(5.7)

R = QP−1Q⊗ I3 or R = (−STM +D)S ⊗ I3,(5.8)

Λ̃ = In ⊗ Λ̄, X̃ = In ⊗ X̄, e−1 = (1, ...0)T ⊗ I3, e+1 = (0, ...1)T ⊗ I3.(5.9)

The unknown diagonal matrices σ−1 and σ+1 will be determined below.
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5.1.1. Stability. The energy method leads to

d

dt
‖C‖2P = −CT (Λ̃Q+QT Λ̃)C + εCT (X̃R +RT X̃)C + 2(C,F )P

+ 2CT
0 σ−1[LD

−1C − g−1] + 2CT
Nσ+1[LD

+1C − g+1].(5.10)

The definition of the first derivative operator P−1Q and Lemma 1 leads to

−CT (Λ̃Q+QT Λ̃)C = CT
0 Λ̄C0 − CT

n Λ̄Cn.(5.11)

The definition of the second derivative operators R = (−STM +D)S and R = QP−1Q yields

CT (X̃R+RT X̃)C = −2C0X̄DC0 + 2CnX̄DCn

− (SC)T (X̃M + (X̃M)T )(SC)(5.12)

CT (X̃R+RT X̃)C = −2C0X̄DC0 + 2CnX̄DCn

− 2(P−1QC)TPX̃P−1QC,(5.13)

respectively.
By introducing (5.11),(5.12) and (5.13) into (5.10) we get

d

dt
‖C‖2P + 2ε(DC, X̃DC)H = [CT Λ̄C − 2εCT X̄DC]i=0

i=n + 2(C,F )P

+ 2CT
0 σ−1[LD

−1C − g−1]

+ 2CT
Nσ+1[LD

+1C − g+1],(5.14)

where the scalar products and norms are defined in (5.5) and

R = QP−1Q⇒ H = P,

R = (−STM +D)S ⇒ H = (S(P−1Q)−1)T (
M +MT

2
)(S(P−1Q)−1).

The boundary operators LD−1, L
D
+1 are the discrete versions of (4.2)-(4.3), with one important modification.

In [27] it is shown that the two outflow conditions in (4.3) determine the value of the last row of X̄Cx in
terms of the in-going characteristic variable and boundary data; i.e., (4.3) implies that

{−εX̄Cx

}
3

= −λ1 − |λ1|
2

C1 + g1 − (2/α)g2, x = +1.(5.15)

To explicitly incorporate (5.15) into (5.6) we use

LD
−1C =

{
(Λ̄ + |Λ̄|)

2
C − εX̄DC

}
i=0

= g−1,(5.16)

LD
+1C =

{
(Λ̄ − |Λ̄|)

2
C − εX̄DC

}
i=n

= g+1,(5.17)

where (g+1)3 is equal to the right-handside of (5.15). The boundary conditions (5.16),(5.17) inserted in
(5.14) yields

d

dt
‖C‖2P = −2ε(DC, X̃DC)H + 2(C,F )P

+ {CT [+Λ̄ + σ−1(Λ̄ + |Λ̄|)]C}i=0 + {CT [−2εX̄ − 2εσ−1X̄]DC}i=0

+ {CT [−Λ̄ + σ+1(Λ̄− |Λ̄|)]C}i=n + {CT [+2εX̄ − 2εσ+1X̄]DC}i=n

+ {σ3
+1C

1C3(λ̄1 − |λ̄1|)}i=n + 2CT
0 g−1 − 2CT

n g+1.(5.18)
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The choice,

σ−1 = −I3, σ+1 = I3,(5.19)

leads to

‖C‖2t =− 2ε(DC, X̃DC)H + 2(C,F )P

− [CT ΛIC − 2CT g−1]i=0 − [CT ΛOC + 2CT g+1]i=n,(5.20)

i.e., a growth rate which is exactly the same as in the continuous case (compare (5.20) with (4.4)). The
definitions of ΛI ,ΛO are given in (4.5). Integration of (5.20) leads to

‖C‖2P + eηDT {2ε
∫ T

0

(DC, X̃DC)He
−ηDtdt+

δD
2

∫ T

0

‖C‖2ΓD
e−ηDtdt}

≤eηDT {‖f‖2P +
2
δD

∫ T

0

‖g‖2ΓD
e−ηDtdt+

1
ηD

∫ T

0

‖F‖2P e−ηDtdt}.(5.21)

The estimate (5.21) is similar to (2.4) and hence (5.6) is a strongly stable approximation. The problem
(5.6) is also strictly stable (we can choose ηD = η and δD = δ, see (4.6),(2.5)). We can summarize the result
in the following way.

Theorem 3. The approximation (5.6) of the problem (4.1) is both strictly and strongly stable if (5.19)
holds.

5.1.2. Accuracy. The problem describing the deviation Ej = C(xj , t) − Cj(t) between the exact
continuous solution and the discrete approximation given by (5.6) is

Et + Λ̃DE = εX̃D2E + T

+ P−1{σ−1(LD
−1E)e−1 + σ+1(LD

+1E)e+1},
E(0) = 0.

(5.22)

T = TDO + TBC is the truncation error. TDO and TBC comes from the approximation of the differential
operator and the approximation of the boundary conditions respectively. The truncation errors have the
general structure

TDO =




O(∆xn)
O(∆xm)

...
O(∆xm)
O(∆xn)



, TBC =




O(∆x(r−1))
0
...
0

O(∆x(r−1)



.(5.23)

In [31] and [32] it is shown that difference approximations to mixed hyperbolic-parabolic equations
retain the accuracy of the interior scheme (O(∆xm)) if a finite number of points (independent of the total
number) are closed with boundary stencils (O(∆xn)) that are one order less accurate. A requirement for
that conclusion is that an energy estimate holds, which in turn means that the mathematical boundary
conditions must be approximated to the order of the internal scheme. The discussion above implies that
that n = m− 1 and r = m is necessary.

We will now apply the theory in [31] and [32] to the type of difference approximations considered in this
paper, i.e., where difference operators of the SBP type are used together with a penalty formulation for the
boundary conditions.
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First, we split E and the T into two parts, i.e., E = E1 + E2 and T = T 1 + T 2 where

T 1 =




0
g1
...

gn−1

0




= O(∆xm), T 2 =




g0

0
...
0
gn




= O(∆x(m−1)).(5.24)

Next, we use the energy method to estimate E1. The energy method applied to (5.22) with E, T replaced
by E1, T 1, and the conditions (5.19) leads directly to

‖E1‖P ≤ O(∆xm).

Finally we use the Laplace-transform technique to take care of the boundary error and estimate E2.
So far, the treatment has been general. However, in order to keep the algebraic complexity at a reasonable
level, we now need to simplify and be specific. We will consider the inviscid (ε = 0) Euler equations at an
inflow boundary approximated with the second order scheme given by (A.1) and (A.2) in appendix A. The
half-plane problem obtained by Laplace-transforming (5.22) with E, T replaced by E2, T 2 becomes

s̃Ê2
0 + Λ̄(Ê2

1 − Ê2
0) = σ−1(Λ̄ + |Λ̄|)Ê2

0 + ∆xĝ0,
s̃Ê2

j + Λ̄(Ê2
j+1 − Ê2

j−1)/2 = 0, j ≥ 1,
Ê2

j → 0, j →∞
(5.25)

where s̃ = s∆x. The second and third equations in (5.25) lead to

E2
j = σ1




1
0
0


κj

1 + σ2




0
1
0


κj

2 + σ3




0
0
1


 κj

3,(5.26)

κj =
−(s̃/λj) +

√
1 + (s̃/λj)2 , λj > 0

0 , λj = 0
−(s̃/λj)−

√
1 + (s̃/λj)2 , λj < 0

,(5.27)

where the branch of the square root is the one with positive real part for Re(s̃) ≥ 0. The case when λj = 0
presents no problem; it only reduces the number of equations in (5.6). In the sequel, we assume λj 6= 0.

The first equation in (5.25) leads to

E(s̃)σ = ∆xĝ0, E(s̃) = diag(s̃+ λjκj − (λj + σj
−1(λj + |λj |)), j = 1, 2, 3.(5.28)

A nonsingular E(s̃)), i.e.,

det(E(s̃)) 6= 0, Re(s̃) ≥ 0,(5.29)

and (5.26),(5.27) lead to

|Ê2
j | ≤ const.|∆xĝ0|, Re(s̃) ≥ 0, j ≥ 0;

i.e., the Kreiss condition is satisfied. Parseval‘s relation and the fact that E2
j (t) cannot depend on g0(T ) for

t < T leads to ∫ t

0

|E2
j |2dt ≤ const.

∫ t

0

|∆xg0|2dt, j ≥ 0

11
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Fig. 5.1. The mesh close to the interface at x = 0.

and finally, since g0 = O(∆x),

‖E2‖P ≤ O(∆x2).

It still must be shown that (5.29) holds. The inviscid condition for strict stability λj +σj
−1(λj + |λj |) ≤ 0

(see (5.18) and (5.27)) which implies s̃+λjκj = |λj |
√

1 + (s̃/λj)2 ≥ 0, leads directly to (5.29). The procedure
to estimate the boundary error at an outflow boundary is exactly the same as in the inflow case. We can
summarize the result in the following Theorem.

Theorem 4. The approximation (5.6) of the problem (4.1) with ε = 0 is second order accurate if
Theorem 3 holds and the first derivative operator D = P−1Q is given by (A.1) and (A.2) in appendix A.

Remark. The procedure that was exemplified above to prove accuracy in the second order accurate case
is general. The last step where one uses the Laplace-transform technique to estimate the boundary error
E2 is not necessary i) if the boundary stencils have the same order of accuracy as the internal stencil, i.e.,
n = m and ii) if the approximation of the mathematical boundary conditions is one order more accurate,
i.e., r = m+ 1.

5.2. The discrete multiple domain problem. A finite difference approximation of the coupled
problems (4.7) and (4.8) is

Ut + Λ̃DLU = εX̃D2
LU + F +BT0

+ P−1
L (σI

L(Un − V0) + σV
L ((DLU)n − (DRV )0))eL

U(0) = f

Vt + Λ̃DRV = εX̃D2
RV + F +BTm

+ P−1
R (σI

R(V0 − Un) + σV
R ((DRV )0 − (DLU)n))eR

V (0) = f.

(5.30)

The characteristic variables in the left (subscript L) [x0 = −1, xn = 0] and right (subscript R) [x0 = 0, xm =
+1] domains are U and V respectively, see Figure 5.1. BT0, BTm denote the boundary terms at x = ±1
respectively. Definitions of D,D2,Λ̃, X̃ ,e−1,e+1 are given in (5.7),(5.8),(5.9), and eL = (0, , , 1)T ⊗ I3, eR =
(1, , , 0)T ⊗ I3.

The values of σ−1 and σ+1 that lead to strict and strong stability for the discrete single domain
problem are given in (5.19). We must still determine σI

L, σ
V
L , σ

I
R, σ

V
R . Note that the difference operators

DL,D2
L,DR,D2

R can be different in the left and right domains and that ∆xL 6= ∆xR.

5.2.1. Conservation. To calculate the strength and speed of a shock with finite mesh size, one needs
a conservative scheme. Let us start by considering a continuous problem in conservation form, ut + fx =
0, |x| ≤ 1, t ≥ 0. Integration over the domain leads to

d

dt

∫ +1

−1

u dx+ f+1 − f−1 = 0,
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i.e., the total change of u in the domain is only due to the flux through the boundaries. Note that integration
of fx over the the domain reverses the differentiation process and leaves information only at the boundaries.

Let F,DF denote the numerical approximations of f, fx. The discrete SBP derivative satisfies

fx −Df = Te1, Df = P−1Qf, Te1 = O(∆xr).(5.31)

Multiplying (5.31) with the operator lTP where lT = [1, 1, ..., , 1]⊗ Ip (f has p components) and observing
that f+1 − f−1 =

∫ +1

−1
fxdx leads to

lTPfx =
∫ +1

−1

fx dx+O(∆xr).

The operator lTP is the discrete integration operator. This operator reverses the process of differentiation,
leaves information only at the boundaries, and converges to the continuous integration operator as ∆x→ 0.

We can now prove the following theorem.
Theorem 5. The approximation (5.30) of the problem (4.1) is conservative if

σI
L − σI

R − Λ̄ = 0, σV
L − σV

R + εX̄ = 0,(5.32)

where the matrices Λ̄ and X̄ are given in (3.5),(3.6).
Proof : Multiplying (5.30) with lTLPL and lTRPR leads to

(lTLPLU + lTRPRV )t = −(lTLQLΛ̃U + lTRQ̃RΛ̃V ) + ε(lTLRLX̃U + lTRRRX̃V )

+(σI
L − σI

R)(UN − V0) + (σV
L − σV

R )(DUN −DV0)

+2(U,F )PL + 2(V, F )PR +BT i=0
i=m,(5.33)

where BT includes the boundary terms at x = ±1. To obtain (5.33) we have made use of Lemma 1.
The inviscid terms can be written

lTLQLΛ̃U + lTRQRΛ̃ = −(Λ̃U)0 + (Λ̃U)n − (Λ̃V )0 + (Λ̃V )m.(5.34)

Next, we consider the viscous terms. Both R = QP−1Q and R = (−STM +D)S lead to

lTLQLP
−1
L QLX̃U + lTRQRP

−1
R QRX̃V =− (X̃DU)0 + (X̃DU)n

− (X̃DV )0 + (X̃DV )m.(5.35)

By inserting (5.34) and (5.35) into (5.33), neglecting the boundary terms at x = ±1, letting F = 0, and ap-
plying condition (5.32), we obtain (lTLPLU + lTRPRV )t = 0; i.e., the approximation (5.30) is conservative.

5.2.2. Stability. We start with the following observation.
Remark. Stability of the one domain problem does not imply stability of the multiple domain problem.

Stability means that the solution can be estimated in terms of the (bounded) boundary data. In a multiple
domain problem, the boundary data are made up of the solution(s) in the other domain(s). Boundedness of
the data would require an a priori assumption.

The main result of this paper is given below.
Theorem 6. The approximation (5.30) of the problem (4.1) is both strictly and strongly stable if

σV
L = σεX̄, σI

L =
1
2
(Λ̄− βεX̄ − δI3), β ≥ σ2

2αR
+

(1 + σ)2

2αL
, δ ≥ 0,(5.36)
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and if Theorem 3 and 5 hold. αL, αR denotes the minimal eigenvalue of P if R = QP−1Q and the minimal
eigenvalue of (M +MT )/2 if R = (−STM +D)S. The matrices Λ̄, X̄ are given in (3.5),(3.6).

Proof : Strict and strong stability of (5.30) follows if the interface treatment at x = 0 is of a dissipative
nature. For that reason we neglect the terms at the boundaries x = ±1 and use F = 0. The energy method
leads to

d

dt
(‖U‖2PL

+ ‖V ‖2PR
) = −UT (Λ̃QL +QT

LΛ̃)U − V T (Λ̃QR +QT
RΛ̃)V

+εUT (X̃RL +RT
LX̃)U + εV T (X̃RR +RT

RX̃)V

+2UT
n (σI

L(Un − V0) + σV
L (DUn −DV0))

+2V T
0 (σI

R(V0 − Un) + σV
R (DV0 −DUn)).(5.37)

Equations (5.11),(5.12) and (5.13) lead to

−UT (Λ̃QL +QT
LΛ̃)U = UT

0 Λ̄U0 − UT
n Λ̄Un(5.38)

−V T (Λ̃QR +QT
RΛ̃)V = V T

0 Λ̄V0 − V T
m Λ̄Vm(5.39)

UT (X̃RL +RT
LX̃)U ≤ −2U0X̄DU0 + 2UnX̄DUn − 2αLDUT

n X̄DUn(5.40)

V T (X̃RR +RT
RX̃)V ≤ −2V0X̄DV0 + 2VmX̄DVm − 2αRDV T

0 X̄DV0.(5.41)

By inserting (5.38)-(5.41) into (5.37) and neglecting boundary terms at x = ±1 we obtain

d

dt
(‖U‖2PL

+ ‖V ‖2PR
) ≤WTEW,

where

W =




Un

V0

DUn

DV0


 , E =




2σI
L − Λ̄ −(σI

L + σI
R) σV

L + εX̄ −σV
L

−(σI
L + σI

R) 2σI
R + Λ̄ −σV

R σV
R − εX̄

σV
L + εX̄ −σV

R −2αLεX̄ 0
−σV

L σV
R − εX̄ 0 −2αRεX̄


 .

The problem (5.30) is strictly and strongly stable if E is negative semidefinite. E is an almost full
matrix; to obtain explicit stability conditions, simplifications of E are necessary. The energy method applied
to the continuous multiple domain problem leads to (4.11) which suggests that the variables

W̃ = S̃W =
1√
2




Un − V0

Un + V0

DUn −DV0

DUn +DV0


 , S̃ =

1√
2




+I −I 0 0
+I +I 0 0
0 0 +I −I
0 0 +I +I


 ,

are of interest. The use of these variables and the conservation conditions in Theorem 5 leads to

E1 = S̃ES̃T =




2(2σI
L − Λ̄) 0 2σV

L + εX̄ εX̄

0 0 0 0
2σV

L + εX̄ 0 −(αL + αR)εX̄ (αR − αL)εX̄
εX̄ 0 (αR − αL)εX̄ −(αL + αR)εX̄


 .

To show that E1 is negative semidefinite, first assume that the first condition in (5.36) holds. Secondly,
add and subtract the matrix−2βεX̄ to the upper left block in E1. The condition for negative semidefiniteness
(see Lemma 1) becomes

yT
1 (2(2σI

L − Λ̄) + 2βεX̄)y1 + ε[(Y ⊗ R̄)T y2]T [ΛE2 ⊗ B̄][(Y ⊗ R̄)T y2] ≤ 0,(5.42)
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where B̄ = R̄T X̄R̄, ΛE2 = Y TE2Y and

E2 =




−2β (1 + 2σ) 1
(1 + 2σ) −(αL + αR) αR − αL

1 αR − αL −(αL + αR)


 .

The first term in (5.42) is nonpositive if the second relation in (5.36) holds. Negative definiteness that implies
ΛE2 ≤ 0 is obtained if the third relation in (5.36) holds.

5.2.3. Accuracy. In this section we will consider the accuracy close to the interface. The procedure is
similar to the one used in section 5.1.2 for the single domain problem. The problem describing the deviations
Ũj = U(xj , t) − Uj(t) and Ṽj = V (xj , t) − Vj(t) between the exact continuous solutions and the discrete
approximations given by (5.30) is

Ut + Λ̃DLU = εX̃D2
LU + TL

+ P−1
L (σI

L(Un − V0) + σV
L ((DLU)n − (DRV )0))eL

U(0) = 0
Vt + Λ̃DRV = εX̃D2

RV + TR

+ P−1
R (σI

R(V − U) + σV
R ((DRV )0 − (DLU)n))eR

V (0) = 0.

(5.43)

For simplicity, we have used the notation U = Ũ and V = Ṽ . Note also that the terms at the boundaries
x = ±1 are neglected. The treatment at the boundaries x = ±1 has been discussed in section 5.1.2.

TL and TR are the truncation errors from the approximation of the differential operator and the interface
conditions. The truncation errors have the general structure

TL =




...
O(∆xm

L )
O(∆x(m−1)

L )


 , TR =



O(∆x(n−1)

R )
O(∆xn

R)
...


 .

The discussion in section 5.1.2 on the size of the truncation error is applicable also for the interface problem.
Following the procedure in section 5.1.2, see [31],[32], one splits up the errors in two parts, the first

part (T 1
L, T

1
R) contains the truncation error of the internal scheme, and the second part contains a boundary

contribution (T 2
L, T

2
R) with one order lower accuracy. The structure of these errors are

T 1
L =




...
O(∆xm

L )
0


 , T 2

L =




...
0

O(∆x(m−1)
L )


 ,

T 1
R =




0
O(∆xn

R)
...


 , T 2

R =



O(∆x(n−1)

R )
0
...


 .

Also the error is divided into two parts; i.e, we consider U = U1 + U2 and V = V 1 + V 2.
By using the energy method, U1 and V 1 will be bounded by T 1

L and T 1
R. This procedure is straightfor-

ward, entirely similar to the one in section 5.1.2 and will therefore not be repeated here. Suffice it to say
that the stability conditions given in Theorem 6 lead to

‖U1‖PL + ‖V 1‖PR ≤ O(∆xn
L) +O(∆xm

R ).
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To bound U2 and V 2 in terms of T 2
L and T 2

R requires use of the Laplace-transform technique. That analysis
is given in detail below.

Also in this case, we keep the algebraic complexity down by considering the inviscid (ε − 0) Euler
equations approximated with the second order accurate approximation given by (A.1) and (A.2) in appendix
A. The problem for Û2 = Û and V̂ 2 = V̂ obtained by Laplace-transforming (5.43) becomes

s̃LÛn + Λ̃(Ûn − Ûn−1) = 2σI
L(Un − V0) + ∆xLĝL

s̃RV̂0 + Λ̃(V̂1 − V̂0) = 2σI
R(V0 − Un) + ∆xRĝR

s̃LÛj + Λ̄(Ûj+1 − Ûj−1)/2 = 0, j ≤ n− 1
s̃RV̂j + Λ̄(V̂j+1 − V̂j−1)/2 = 0, j ≥ 1,

Ûj → 0, j → −∞
V̂j → 0, j →∞

(5.44)

where s̃L = s∆xL, s̃R = s∆xR, ĝL = O(∆x(n−1)
L ) and ĝR = O(∆x(m−1)

R ).

The last four equations in (5.44) lead to

Uj = σ1
L




1
0
0


 (κ1

L)j−n + σ2
L




0
1
0


 (κ2

L)j−n + σ3
L




0
0
1


 (κ3

L)j−n,(5.45)

Vj = σ1
R




1
0
0


 (κ1

R)j + σ2
R




0
1
0


 (κ2

R)j + σ3
R




0
0
1


 (κ3

R)j ,(5.46)

κj
L =

−(s̃/λj)−
√

1 + (s̃/λj)2 , λj > 0
0 , λj = 0
−(s̃/λj) +

√
1 + (s̃/λj)2 , λj < 0

,(5.47)

κj
R =

−(s̃/λj) +
√

1 + (s̃/λj)2 , λj > 0
0 , λj = 0
−(s̃/λj)−

√
1 + (s̃/λj)2 , λj < 0

,(5.48)

where the branch of the square root is the one with a positive real part for Re(s̃) ≥ 0. Also, in the case in
which λj = 0 presents no problem, only the number of equations in (5.6) is reduced. We assume λj 6= 0 in
the following.

The coefficients σL = (σ1
L, σ

2
L, σ

3
L)T and σR = (σ1

R, σ
2
R, σ

3
R)T will be determined by the first two equations

in (5.44). They, together with the first condition in Theorem 5, lead to

E(s̃L, s̃R)

(
σL

σR

)
=

(
∆xLĝL

∆xRĝR

)
,

E(s̃L, s̃R) =

(
s̃RI3 − Λ̄κ−1

L + Λ̄− 2σI
L 2σI

L

2(σI
L − Λ̄) s̃LI3 + Λ̄κR + Λ̄− 2σI

L

)
.(5.49)
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A nonsingular E(s̃L, s̃R) leads via the Kreiss condition and Parseval’s relation; (see section 5.1.2) to the
estimate

‖U2‖PL ≤ O(∆x2
L) +O(∆x2

R), ‖V 2‖PR ≤ O(∆x2
L) +O(∆x2

R).

It still must be shown that (5.29) for E, defined in (5.49), holds. A direct calculation using (5.49),(5.47),
and (5.48) leads to

Det(E) =
3∏

j=1

Gj , Gj = |λj |2(1 +
√

1 + (s̃L/λj)2
√

1 + (s̃R/λj)2)

+ |λj |
√

1 + (s̃L/λj)2
√

1 + (s̃R/λj)2.

Let
√

1 + (s̃L/λj)2 = ηL + iξL and
√

1 + (s̃R/λj)2 = ηR + iξR where ηL, ηR are non-negative. A simple
algebraic test reveals that the imaginary part and the real part of Gj cannot be zero at the same time if
the inviscid condition for stability Λ̄ − 2σI

L ≤ 0 in Theorem 6 holds. We can summarize the result in the
following Theorem.

Theorem 7. The approximation (5.30) of the problem (4.1) with ε = 0 is second order accurate; i.e.,

‖U‖PL + ‖V ‖PR ≤ O(∆x2
L) +O(∆x2

R),

if Theorem 6 holds and the first derivative operator D = P−1Q is given by (A.1) and (A.2) in appendix A.
Remark. Also in the interface case, see section 5.1.2, the procedure to prove accuracy, which was

exemplified above in the second order accurate case, is general. The last step in which one uses the Laplace-
transform technique to estimate the errors U2andV 2 is not necessary i) if the stencils adjacent to the interface
have the same order of accuracy as the internal stencil, and ii) if the interface conditions are one order more
accurate.

5.2.4. The discrete multiple domain problem in conservation form. The discrete multiple
domain problem (5.30) can be transformed to conservative form by multiplying the equations with In+1 ⊗
T̄ (R̄S̄)−1, Im+1 ⊗ T̄ (R̄S̄)−1, respectively. The result is

Ut + P−1
L (QLF

I − εRLF
V ) = + (1/2)P−1

L [(FT
L − FT

R )
+ (1 + 2σ)ε(FV

L − FV
R )− FB

L ]
Vt + P−1

R (QRF
I − εRRF

V ) = − (1/2)P−1
R [(FT

R − FT
L )

− (1 + 2σ)ε(FV
R − FV

L ) + FB
R ],

(5.50)

where FT = F I − εFV and

FB
L = (δI3 + εβT̄ B̄T̄−1)(Un − V0), FB

R = (δI3 + εβT̄ B̄T̄−1)(V0 − Un).

In (5.50), the forcing terms and the boundary conditions at x± 1 are neglected.

6. Numerical experiments. By making one-dimensional computations using the nonlinear Euler and
Navier-Stokes equations, we can check whether the theoretical conclusions drawn from the analysis of the
constant coefficient problem agree with the results obtained in practice.

In the calculations below, we use the second order scheme (given in (A.1)-(A.5)) and the fourth and
sixth order schemes reported in [24]. To integrate in time, a five-stage fourth-order RK scheme [33] has been
used. Consider the stability condition (5.36). In the calculations below we have used σ = −1/2 and the
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Fig. 6.1. L2 Errors in calculations using the Euler equations.

conservative estimate σI
L = λ/2 − δI where δ is determined through tests. Often we use δ = 1.0. Equation

(5.32) has been used to determine the other parameters.
First, we consider a sound propagation problem. The computational results, obtained using the nonlinear

Euler equations at Mach number 0.5, are compared with an exact solution of the linearized problem. In
Figure 6.1 The errors for second, fourth, and sixth order schemes using one domain (1Dom), four uniform
domains (4Dom), and eight randomly spaced domains (Rand) are shown. Clearly, the order of accuracy is
independent of the presence and location of the interfaces. Due to the small amplitudes (∝ 10−7) used in
the sixth order cases, we encounter round off, which can be seen as the kink on the sixth order results.

Next, we consider a viscous shock propagation problem at Mach number 2.0 and Reynolds number 150.
The exact solution of the Navier-Stokes equation for this case can be found in [34]. In Figure 6.2, the errors
for second, fourth, and sixth order schemes using eight uniform domains (Unif) and eight randomly spaced
domains (NonU) are shown. Also in this case, the order of accuracy is independent of the location of the
interfaces.

The curves in the sixth order case are not straight, see Figure 6.2. The curves are formed as a mean
value of 15 simulations where different wave speeds ws from −0.25 to 0.5 are used. The individual results
for each wave speed are given in Tables 6.1 and 6.2. Note: ws = 0 is stationary shock, and we have subsonic
wave speeds for ws < 0.3. The results from uniform grid calculations are shown in Table 6.1; results from
nonuniform grid calculations are given in Table 6.2. The convergence rate between the two grids is listed.
The asymptotic limit approaches−6. Note that the trends are identical between the nonuniform and uniform
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Fig. 6.2. L2 Errors in calculations using the Navier-Stokes equations.

cases.
In Figure 6.3, the propagating shock (ws = 0.25) for four different times is shown. In this case, the sixth

order scheme and 24 gridpoints were used in each domain.
Finally we will discuss two additional questions concerning accuracy and stability/efficiency. To investi-

gate the influence of interface conditions on accuracy, we made the calculations illustrated in Table 6.3. The
calculations are run to a physical time T = 3 at Mach number 2.0 and Reynolds number Re = 250. The
sixth order SBP scheme is used, and the number of total points is 289 evenly distributed on the interval
−1/2 ≤ x ≤ 1. The parameter in the study is the number of subdomains, keeping the total number of
intervals constant. The number of subdomains ranges from 1 to 24. For the case of 24 subdomains, the
spatial operator involves 12 boundary stencils (fifth-order) and one sixth-order interior stencil. No further
divisions are possible when using the sixth-order SBP operator. Note that this case is only marginally less
accurate than the single domain case, for which the most points are discretized with sixth-order stencils.

The previous study indicates that there is little loss of accuracy when subdividing the domain. There
are, however, other costs associated with domain subdivision. Introduction of additional interfaces into the
domain changes the resulting eigenspectrum of the semidiscrete operator. In [22], a reduction in the effective
CFL, when using a penalty boundary procedure, was observed. We experience a similar reduction in the
stability envelop as the number of subdomains is increased.

In Table 6.4, a study compares the effective CFL of a singledomain calculation, with those from a
comparable grid divided into eight subdomains. Plotted are the errors, and the maximum stable CFL as a
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wave a: 96 128 192 256 384
speed b:128 192 256 384 512

-0.2500 -4.4460 -4.4858 -4.8856 -5.2375 -5.5610
-0.2000 -3.1743 -4.3626 -4.6413 -4.7217 -5.2825
-0.1500 -1.5344 -6.5479 -2.8759 -7.4052 -5.6489
-0.1000 -3.4447 -5.0035 -6.5253 -5.6487 -6.2999
-0.0500 -4.7040 -4.8410 -5.0488 -5.4075 -5.6641
0.0000 -3.3093 -6.0257 -5.0116 -5.4064 -5.6608
0.0500 -5.6203 -3.0687 -3.8456 -6.8111 -6.4191
0.1000 -2.0256 -6.6065 -6.2051 -5.6289 -5.2130
0.1500 -4.9470 -5.1708 -5.5378 -5.4018 -5.7503
0.2000 -7.5646 -5.5734 -6.0670 -5.6418 -5.8898
0.2500 -4.7062 -3.0715 -3.4963 -4.1048 -5.8041
0.3000 -5.9644 -6.8890 -6.1815 -6.1886 -6.2484
0.3500 -4.9922 -5.0159 -5.5773 -5.4589 -5.1898
0.4000 -3.8538 -5.9798 -5.3015 -6.3515 -5.8163
0.4500 -0.7633 -2.4389 -5.8286 -4.9988 -7.4170
0.5000 -4.8735 -5.9665 -5.7257 -5.8033 -5.8160

Table 6.1

UNIFORM grid, 8 subdomains, refinements between grids a:b, 6th order explicit; CFL = 0.2.

wave a: 96 128 192 256 384
speed b:128 192 256 384 512

-0.2500 -3.9508 -5.0473 -5.6119 -5.9785 -4.5714
-0.2000 -3.8816 -4.6038 -4.8316 -6.3334 -6.9001
-0.1500 -4.4373 -4.8932 -5.1011 -5.4514 -5.8566
-0.1000 -7.6431 -3.4782 -7.2908 -5.8925 -5.9310
-0.0500 -3.2678 -7.4661 -3.7127 -6.8562 -6.2791
0.0000 -4.8406 -4.7810 -5.2543 -5.5640 -5.7606
0.0500 -7.8667 -2.9978 -7.8219 -4.5670 -4.7133
0.1000 -4.2532 0.6385 -2.8840 -3.9126 -6.1144
0.1500 -1.4577 -5.1589 -6.7711 -5.0271 -5.2246
0.2000 -4.2245 -4.6373 -4.5406 -5.2829 -5.9054
0.2500 -2.9734 -4.0155 -5.4352 -5.4569 -5.6145
0.3000 -4.2383 -3.2435 -4.3861 -5.5030 -5.8943
0.3500 -4.1902 -3.5835 -3.6667 -4.6596 -5.5589
0.4000 -3.4505 -3.4125 -4.8703 -5.3783 -6.3374
0.4500 -2.7380 -2.9597 -3.6868 -4.5673 -4.8980
0.5000 -4.1279 -3.7378 -3.8465 -4.8352 -6.1756

Table 6.2

NONUNIFORM grid, 8 subdomains generated randomly, refinements between grids a:b, 6th order explicit, CFL = 0.2;

max/min ratio is 6.47.

20



Fig. 6.3. Viscous shock propagation, a domain with randomly spaced interfaces.

Subdomains LOG10error

1 -4.527
2 -4.584
4 -4.457
8 -4.643
12 -4.313
16 -4.467
18 -4.342
24 -4.358

Table 6.3

Variation of L2 error on number of subdomains with grid density constant.

function of Reynolds number for the two cases. Note that while the errors are nearly equivalent for the two
test cases, the maximum CFL for the single domain case is nearly a factor of two larger.

7. Summary and conclusions. We have analyzed boundary conditions and interface conditions for
the one-dimensional Euler and Navier-Stokes equations. Both the continuous and semi-discrete problems
have been considered.

We have considered summation-by-parts operators and derived strictly and strongly stable boundary
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Re LOG10error CFLmax LOG10error CFLmax

1000 -2.154 0.55 DNC
900 -2.242 0.55 -2.265 0.30
800 -2.347 0.55 -2.376 0.30
700 -2.477 0.60 -2.517 0.30
600 -2.637 0.60 -2.698 0.30
500 -2.841 0.60 -2.935 0.30
300 -3.429 0.65 -3.617 0.30
200 -4.027 0.65 -4.185 0.35
100 -5.741 0.60 -5.699 0.35
40 -7.892 0.50 -7.331 0.20
20 -9.535 0.45 -8.637 0.20
10 -10.968 0.40 -10.665 0.18

Table 6.4

Variation of CFL number and L2 error with Reynolds number for single and multiple domain cases.

and interface conditions for the Euler and Navier-Stokes equations. We have also considered the question
of accuracy, both in the general case and more specifically for a second order accurate approximation of the
Euler equations.

The interface conditions are stable and conservative even if the finite difference operators and mesh sizes
vary from domain to domain. Numerical experiments which include a sound propagating problem and a
viscous shock propagating problem show that the new conditions lead to accurate and stable results for the
corresponding nonlinear problems also.

It was also shown by numerical experiments that there is little loss of accuracy associated with domain
subdivision. However, the introduction of interfaces into the domain changed the eigenspectrum of the
semidiscrete operator and caused a reduction of the CFL number by approximately a factor of two.

Appendix A. Stencils. We now present a few examples of the specific form of the stencils that have
the SBP property. For more accurate stencils, see [24]. The second order accurate discretization matrix that
approximates the first derivative D = P−1Q is

D=
1

2∆x




−2 2
−1 0 1

. . .

. . .

. . .

−1 0 1
−2 2




(A.1)

22



where

P =∆x




1
2

1
.

.

.

1
1
2



, Q= 1

2




−1 1
−1 0 1

. . .

. . .

. . .

−1 0 1
−1 1




(A.2)

The second order accurate discretization matrix that approximates the second derivativeD2 = P−1(−STM+
D)S is

D2 =
1

(∆x)2




1 −2 1
1 −2 1

. . .

. . .

. . .

1 −2 1
1 −2 1




(A.3)

where

S=




− 3
2 2 − 1

2

1
.

.

.

1
1
2 −2 3

2



, D=




−1
0

.

.

.

0
1




(A.4)

and

M=
1

∆x




4
9 − 2

9
2
9

− 2
9

10
9 − 10

9
2
9 − 10

9
19
9 −1
−1 2 −1

. . .

. . .

−1 2 −1
−1 19

9 − 10
9 − 2

9

− 10
9 − 10

9
2
9

− 2
9 − 2

9
4
9




(A.5)

The matrix M can be shown to be positive definite (and symmetric).
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