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VIBRATIONAL CONTROL OF A NONLINEAR ELASTIC PANEL

P.L. CHOW∗ AND L. MAESTRELLO†

Abstract. The paper is concerned with the stabilization of the nonlinear panel oscillation by an active
control. The control is actuated by a combination of additive and parametric vibrational forces. A general
method of vibrational control is presented for stabilizing panel vibration satisfying a nonlinear beam equation.
To obtain analytical results, a perturbation technique is used in the case of weak nonlinearity. Possible
application to the other type of problems is briefly discussed.
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1. Introduction. The problem under consideration is the stabilization of the nonlinear panel oscillation
by an active control with a vibrational actuator. This work was motivated by the recent experimental
investigations of the second author (Maestrello [1, 2]), who demonstrated clearly that the vibrational control
could be an effective means of stabilizing the boundary-layer flow as well as the panel vibration. This paper
will offer a general method of vibrational control and its application to the problem involving a nonlinear
elastic panel excited by the periodic wall-pressure fluctuation in a boundary-layer flow.

The general principle of active control, the vibrational control in particular, is to introduce an action
which affects a change in the behavior of a dynamical system in a desirable manner. In the boundary layer
transition control [1], the periodic heating and cooling of the wall induce a parametric vibration of the fluid
viscosity which, in turn, stabilizes the flow. In the case of panel vibration [2], a properly added vibrational
force with the same forcing frequency may result in suppressing the subharmonic oscillations (see Section
2). The suppression of subharmonics, of course, has the implication of controlling the chaotic motion.

The main idea of vibrational control stems from the fact that an inverted pendulum can be stabilized
at its upper equilibrium position when the lower suspension point executes a rapid vertical vibration (see
e.g. [3]). Based on this idea, a general principle of vibrational control was proposed, notably by Meerkov [4],
to stabilize the equilibrium points of some finite-dimensional linear systems. Application of this principle
to reactor dynamics was done by Bellman et al. [5]. By contrast, in this paper, we will extend this control
principle to stabilize the periodic motions of infinite-dimensional systems, instead of equilibrium points in
finite dimensions. In addition to the high-frequency parametric vibrational control used in [4, 5], a vibrational
force with the same forcing frequency will be required. Unlike the usual feedback of feed-forward control,
the vibrational control does not need accurate measurement of the system inputs and outputs and can be
implemented much more easily, especially for an infinite-dimensional system under consideration.

In this paper we consider the panel vibration which satisfies the initial boundary value problem for the
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nonlinear beam equation [6]:



m∂2
tw + c∂tw − [Q+N(t)]∂2

xw +D∂4
xw = ∆p(t, x), 0 < x < l

w(t, 0) = w(t, l) = 0, ∂2
xw(t, 0) = ∂2

xw(t, l) = 0,
w(0, x) = w0(x), ∂tw(0, x) = w1(x).

(1.1)

Here w denotes the transverse deflection; ∂t, ∂x... are the partial differentiations in t, x...; the positive
constants m, c and D represent the unit mass, the damping coefficient and the bending stiffness of the panel,
respectively. The axial force Q is positive or negative according to the force being tensile or compressive.
The large panel deflection introduces an additional tension N(t) given by

N(t) = b

∫ l

0

|∂xw(t, x)|2dx,(1.2)

where b is an elastic constant. The forcing term ∆p denotes the pressure difference across the panel surfaces.
The homogeneous boundary conditions mean that the panel is simply supported, and the initial data w0

and w1 are given. Suppose that, without any control, the periodic solution of equation (1.1) excited by the
pressure ∆p is unstable. Our problem is to stabilize the panel oscillation by applying an appropriate control
in the form of vibrational forces added to the axial force and the pressure ∆p.

The paper is organized as follows. To illustrate the basic ideas involved, in Section 2, we consider the
control of the Duffing equation, for which the response characteristics to a time-harmonic excitation is well
known. The feasibility of the vibrational control can be discussed geometrically by referring to the response
curves. Since the applicability of vibrational control is not limited to the structure dynamics, in Section
3, a general method of vibrational control for a class of nonlinear evolution equations is presented. For a
given unstable periodic solution, the control strategy is to shift the Liapunov exponent r of the vibrational
equation to the negative half-line so that the corresponding periodic solution becomes stable. This method
is applied to the nonlinear panel vibration problem satisfying equation (1.1). For weak nonlinearity, analytic
results are obtained by a perturbation analysis and the case of single-mode excitation is worked out in detail.
Finally, in Section 5, some concluding remarks are made and other possible applications such as the flow
stabilization problem are mentioned.

2. Control of Duffing’s Equation. Before dealing with the nonlinear beam equation (1.1), we con-
sider the Duffing equation

ÿ + µẏ + δy + βy3 = F cosωt,(2.1)

where the dot denotes the time derivative, the constants µ, δ, β, and F are assumed to be positive here, and
ω > 0 is the forcing frequency. For small F , by perturbation analysis [7], it is known that equation (2.1) has
a periodic solution of the form

y = A cos(ωt+ θ)(2.2)

for some phase shift θ, where the amplitude A is related to the frequency ω by the response equation [8].

[
(ω2 − δ)A− 3

4
βA3

]2

+ µω2A2 = F 2.(2.3)
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Fig. 2.1. Response curves for harmonic oscillation

By varying the value of F , equation (2.3) yields a family of response curves in the |A|−ω plane. Referring
to Fig. 2.1 for F = F0, F1, the solid portion of the curve corresponds to the stable regime for the periodic
solution (2.2), while the dotted part of the curve (between two points of vertical tangency) renders the
solution unstable. With the frequency ω fixed, point U on the F0-curve is unstable, but, by changing F0 to
F1, point U moves up to point S on the F1-curve becoming a stable point. Therefore, in this case by adding
an in-phase force with the same frequency, an unstable periodic motion can be stabilized. On the other
hand, if the forcing amplitude F is large, the system may exhibit a subharmonic response. For example,
consider the case of subharmonic response with frequency ω

3 . Again, by a perturbation analysis, it is found
that equation (2.1) has a subharmonic solution of the form [8]:

y = A cos(ωt+ θ1) +B cos
(ω

3
t+ θ2

)
where A,B and θ1, θ2 are the corresponding amplitudes and phases, which satisfy some response equations.
For the subharmonics, the equation reads

ω2 = 9α+
27
4
γ

(
B2 + 2f2

)±
[(

27γfB
2

)2

− µ2

] 1
2

(2.4)

with f = 9F/8. For F = F0, F1 with F1 > F0 > 0, the response curves associated with (2.4) are given in
Fig. 2.2. Note that for ω = ω0, point P on the F0-curve corresponds to a subharmonics with amplitude
r0. However, this subharmonics will disappear when F changes from F0 to F1, since ω < ω0, and ω1 is the
smallest frequency for the existence of a subharmonics at F = F1. This may explain qualitatively why a
subharmonic vibration can be suppressed in the experimental investigation [2] by an additive periodic force,
which has the effect of changing the forcing amplitude F .

In contrast with the additive vibrational control, the control can be applied parametrically. For instance,
we regard the Duffing equation (2.1) as an approximate equation for an inverted pendulum near the upper
equilibrium position (y = 0), for which α = −δ < 0. Clearly y = 0 is an unstable equilibrium. If the
suspension point vibrates at a high frequency ν � ω, the equation (2.1) should be replaced by [3]

z̈ + µż + [p(νt) − δ] z + βz3 = F cosωt,(2.5)
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Fig. 2.2. Response curves for subharmonic oscillation

where p(τ) = p(τ + 2π) is a periodic function. Without the control p, a periodic motion about y = 0 is
obviously unstable. However, by the method of averaging [3], equation (2.5) can be closely approximated by
the averaged equation (see Section 4):

ÿ + µẏ +
[
< p2 > −δ] y + βy3 = F cosωt,(2.6)

where < p >= 0 and

< pn >=
1
2π

∫ 2π

0

pn(τ)dτ, for n = 1, 2.

Therefore, if α =< p2 > −δ > 0, the periodic motion can now be stabilized as before.
The above examples show the possibility of stabilizing periodic motions by vibrational control. As a

generalization we consider the following control problem:

z̈ + µż + αz + βz3 = f(λ, ωt) + h(λ, νt, z)(2.7)

where f(λ, τ) = f(λ, τ + 2π) and h(λ, τ, z) = h(λ, τ + 2π, z) are periodic functions; λ is a control parameter
and h is a certain control function with h(0, νt, y) = 0 and ω, ν are the vibration frequencies with ν � ω.
The uncontrolled case corresponds to λ = 0 and h = 0. Of course the equations (2.1) and (2.5) are special
cases of (2.7). Suppose that z = ϕ0(t) is an unstable periodic solution of equation (2.7) when λ = 0 and
h = 0. The control objective is to choose the control parameter λ and function h so that the corresponding
periodic solution z = ϕ(λ, t) with ϕ(0, t) = ϕ0(t), becomes asymptotically stable. This means analytically
that the variational equation for y = (z − ϕ) from (2.7) has only exponentially decaying solutions. More
precisely, if

r(λ, ϕ) = lim
t→∞

1
t
ln |y(t)|,

then we must choose λ and h such that r < 0. Obviously, unlike the optimal control, such a control, if
possible, is far from unique. The choice of λ and h, though guided by physical feasibility, is mostly up to the
personal preference. In what follows, this control principle will be generalized to deal with nonlinear partial
differential equations.
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3. Stabilization of Nonlinear Evolution Equations. In the theoretical discussion, it is convenient
to consider the partial differential equations of interest as a nonlinear evolution equation of the form{

du
dt = B(u) + F (λ, ωt) +H(λ, νt, u),

u(0) = h,
(3.1)

where u(t) is a vector in some infinite-dimensional vector space V with initial state h. The operator B is
nonlinear, F (λ, τ) = F (λ, τ + 2π) and H(λ, τ, u) = H(λ, τ + 2π, u) are periodic with control parameter λ,
being a scalar or vector. The control function H acts parametrically with rapid oscillations so that ν >> ω.
When λ = 0, H(0, τ, u) = 0 and the system (3.1) is uncontrolled. We are interested in stabilizing a periodic
motion which is unstable at λ = 0. If the equilibrium solution u0 of (3.1) at λ = 0 is also unstable, we
introduce a parametric vibrational control H to stabilize it as in the case of an inverted pendulum. The
effect of H can be examined by the method of averaging [3]. By a change of time from t to σ = t/ε with
ε = 1/ν, the system (3.1) can be approximated by the averaged equation{

du
dt = B(u) + F (λ, ωt) + Ĥ(λ, u),

u(0) = h,
(3.2)

where

Ĥ(λ, u) = 〈H(λ, νt, u)〉 =
1
2π

∫ 2π

0

H(λ, τ, u)dτ.(3.3)

The function H should be chosen so that the equilibrium solution of u1 of the averaged equation (3.2)
becomes stable. Without control (λ = 0), let u = ψ0(t) be an unstable periodic solution of equation (3.1)
near u0. In addition to the parametric control H , we have modulated the forcing function F (λ, ωt) by tuning
the control parameter λ so that the corresponding periodic motion satisfying the averaged equation (3.2) is
asymptotically stable. To this end let us consider the variational equation of (3.2) for v = (u− ψ):{

dv
dt = B1(ψ, v) +H1(λ, ψ, v),

v(0) = g,
(3.4)

where

B1(ψ, v) = B(v + ψ) −B(ψ),
H1(λ, ψ, v) = Ĥ(λ, v + ψ) − Ĥ(λ, ψ),

and g is an initial vector in V . Let ||h|| denote the magnitude (norm) of vector h. The control objective is
then to choose function H and parameter λ in such a way that the Liapunov exponent r is negative,

r(λ,H) = lim
t→∞

1
t
ln ||v(t)|| < 0,(3.5)

for all g with ||g|| < δ with some δ > 0. For small δ, the variational equation (3.4) can be linearized to give{
dv
dt = A(λ, t)v,
v(0) = g,

(3.6)

where A(λ, t) is a linear operator defined by

A(λ, t)v = {Bu [ψ(λ, t)] +Hu [λ, ψ(λ, t)]} v,(3.7)
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and Bu(v) = δB(v)
δv , Hu(λ, v) = δĤ(λ,v)

δv are the linearized operators of B and H at v. Note that A(λ, t) is
periodic with the same period T as that of ψ. Now, if V is finite-dimensional and A(λ, t) is a matrix, then,
by the Floquet theory [7], the solution of equation (3.6) can be expressed as

v(t) = P (t)etRg,(3.8)

where P (t) = P (t + T ) is a periodic matrix, and R is a constant matrix. The smallest real part of the
eigenvalues of R yields the Liapunov exponent r. Of course the representation (3.4) holds for any finite-
dimensional approximation of equation (3.4). Unfortunately, even the periodic function ψ is known, the
analytical computation of the Liapunov exponent r through either (3.5) or (3.8) is impossible without
simplifying assumptions. For example, for small amplitude vibration, the nonlinearity is weak so that the
perturbation method and an eigenfunction expansion can be applied. This procedure will be illustrated in
the application to the panel vibration problem.

4. Vibrational Control of Elastic Panel. By redefining the constants in the nonlinear beam equation
(1.1) under a vibrational control, it yields

∂2
tw + µ∂tw − (

α+ β||∂xw||2
)
∂xw + γ∂4

xw = p(λ, ωt, x) + h(λ, νt, x, w)(4.1)

where the initial-boundary conditions are omitted, and

||∂xw||2 =
∫ l

o

|∂xw|2dx(4.2)

p(λ, ωt, x) = ∆p(ωt, x) + p1(λ, ωt, x),(4.3)

p1 and h are the additive and parametric control forces with frequencies ω � ν. The physical constants
µ, β, γ are positive, while α is positive or negative depending on the axial force being tensile or compressive.
Without control, we assume that, at λ = 0, p1(0, x, τ) = h(0, σ, x, w) = 0. To be specific, we choose the
parametric control to be a vibrational axial force of the form

h(λ, νt, x, w) = q̇(λ, νt)∂2
xw,(4.4)

where

q̇ = ∂tq(λ, νt)

with

< q >=< q̇ >= 0(4.5)

Now let u1 = w and u2 defined by

u̇1 = u2 + q(λ, νt)∂2
xu1(4.6)

Then equations (4.1) and (4.6) yield

u̇2 = −{
µ(u2 + q∂2

xu1) − (α+ β||∂xu1||2)∂2
xu1 + γ∂4

xu1

}
−q(∂2

xu2 − q∂4
xu1) + p(λ, ωt, x).

(4.7)
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We set

u =

[
u1

u2

]

and rewrite the equations (4.6) and (4.7) in the form (3.1):

du

dt
= B(u) + F (λ, ωt) +H(λ, ωt, u),(4.8)

where

B(u) =

[
u2

−{
µu2 −

(
α+ β||∂xu1||2

)
∂2

xu1 + γ∂4
xu1

}
]
,(4.9)

F (λ, ωt) =

[
0

p(λ, ωt, ·)

]
,(4.10)

and

H(λ, νt, u) =

[
q∂2

xu1

−µq∂2
xu1 − q2∂4

xu1 − q∂2
xu2

]
.(4.11)

In view of equations (4.5) and (4.9)–(4.11), by taking the time-average of equation (4.8) in σ = νt with
τ = ωt fixed, we get

du

dt
= B(u) + F (λ, ωt) + Ĥ(λ, u),(4.12)

where

Ĥ(λ, u) =

[
0

− < q2 > ∂4
xu1

]
.(4.13)

We note that the average equation (4.12) yields a scalar equation for w = u1 as follows,

∂2
tw + µ∂2

tw − (
α+ β||∂xw||2

)
∂2

xw + (γ+ < q2 >)w = p(λ, ωt, x),(4.14)

which shows that the high-frequency axial vibrational force q(λ, νt) has the effect of increasing the bending
stiffness γ by the magnitude of < q2 >. Thus it stabilizes the system statically in general. Now let

u0 = ψ0(t) =

[
ψ01(t)
ψ02(t)

]

be an unstable periodic solution of equation (4.8) when λ = 0(H = 0), and let

u = ψ(λ, t) =

[
ψ1(λ, t)
ψ2(λ, t)

]

be a periodic solution of equation (4.14) with ψ(0, t) = ψ0(t). Define v = (u − ψ) so that v satisfies the
variational equation (3.4). Here it can be written in the form

dv

dt
= A(λ, t)v + βG(λ, t, v),(4.15)
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where A is a periodic linear operator and G is a nonlinear mapping defined as

Av =

[
v2

f1

]
, G = −

[
0
f2

]
,

and

f1 = −µv2 +
(
α+ < q2 > +β||∂xψ1||2

)
∂2

xv1 + 2β(∂xψ1, ∂xv1)∂2
xψ1 − γ∂4

xv1,

f2 = ||∂xv1||2∂2
xψ1 + 2(∂xψ1, ∂xv1)∂2

x1 + ||∂xv1||2∂2
xv1,

with the inner product notation

(g, h) =
∫ l

0

g(x)h(x)dx.

When the nonlinear term G is dropped, equation (4.15) yields a generalized Hill’s equation, a linear partial
differential equation with periodic coefficient:

dv

dt
= A(λ, t)v.(4.16)

For computational purposes, introduce a complete set of orthonormal functions {en}, which may be the
eigenfunctions associated with the linearized problem, or en(x) =

√
2
l sin nπ

l x, n = 1, 2, ... By the expansion
of the solutions of (4.12) and (4.15) into terms of e′ns as follows,

u =
∞∑

n=1

un(t)en; v =
∞∑

n=1

vn(t)en,

their coefficients satisfy the infinite systems of coupled ordinary differential equations of the form:

dui

dt
= Bi(u1, ..., un, ...) + Fi(λ, t) + Ĥi(λ, u1, ..., un, ...),

dvi

dt
=

∞∑
n=1

aij(λ, t)vj , i = 1, 2, ..., n, ...,

where aij = (Aei, ej). The above systems can only be solved numerically for truncated systems of low
dimensions. As mentioned before, if the nonlinear effect is weak, we can apply the perturbation analysis to
approximate solutions analytically. To this end let us assume that the damping coefficient and the forcing
amplitude are small. By proper scaling with respect to a small parameter ε > 0, the equation (4.14) is
rewritten as

∂2
tw + εµ∂tw − (

α+ εβ||∂xw||2
)
∂2

xw + γ∂4
xw = εp(λ, ωt, x),(4.17)

for which we assume α > 0 and set < q2 >= 0 for simplicity. It remains to study the problem of additive
control. To illustrate the perturbation procedure, we will analyze the case of single-mode excitation in some
detail.

Let us consider the case of nth mode harmonic excitation in (4.17):

p(λ, ωt, x) = F (λ) sin
nπ

l
x cosωt, n = 1, 2...(4.18)

where the control parameter λ modulates the forcing amplitude F and F0 = F (0) is the uncontrolled
amplitude. Then the equation (4.17) admits a single-mode solution

w = zn(t) sin
nπ

l
x(4.19)
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Fig. 4.1. Response curves for different modes of excitations

and zn satisfies the Duffing equation:

z̈n + εµżn + αnzn + εβnz
3
n = εF (λ) cosωt,(4.20)

where

αn =
[
α+ γ(nπ

l )2
]
(nπ

l )2,
βn = βl

2 (nπ
l )4.

The perturbation analysis of Duffing’s equation has been discussed by many authors (see e.g. [3, 7]). Here
we adopt the method of averaging by letting

zn = y1(t) sinωt+ y2(t) cosωt(4.21)

with

ẏ1 sinωt+ ẏ2 cosωt = 0

which are substituted into (4.20) to give{
ẏ1 = 1

2ω

[
δny2 − 3

4βn|y|2y2 + µwy1 + F (λ)
]
,

ẏ2 = −1
2ω

[
δny1 − 3

4βn|y|2y1 + µwy2
]
,

(4.22)

with δn = (w2 − αn) and |y|2 = y2
1 + y2

2 . In the polar form, y1 = r sinϕ, y2 = r cosϕ, this equation becomes{
ṙ = 1

2ωR(r, ϕ, ω),
ϕ̇ = 1

2ω Φ(r, ϕ, ω),
(4.23)

where {
R = µωr − F sinϕ

Φ = δn − 3
4βnr

2 + F
r cosϕ.

(4.24)

The solution (4.21) can be written as

zn = r(t) cos[ωt+ ϕ(t)].(4.25)
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Therefore, for zn being periodic with frequency ω, r and ϕ must be constants, which correspond to the
equilibrium point (r̃, ϕ̃) of equation (4.23) satisfying{

R(r̃, ϕ̃, ω) = 0
Φ(r̃, ϕ̃, ω) = 0.

(4.26)

By taking equation (4.24) into account, the above equation can be solved approximately to give

(
δnr̃ − 3

4
βnr̃

3

)2

+ µr̃2ω2 = F 2(λ),(4.27)

which, by a change of notation, agrees with the response relation (2.3). Therefore for each n, the response
curves are shown in Fig. 2.1. Schematically, for n = 1, 2, ..., the response curves are plotted in Fig. 4.1.
Geometrically the control strategy is to steer an unstable point Un on the Fo-curve to a stable point Sn on
the F1-curve. Analytically the stability of a periodic solution is now reduced to that of an equilibrium point,
which can be checked more easily. To do so we form the first variational equation of (4.23) about (r̃, ϕ̃) =


ρ̇ = 1

2ω

(
R̃rρ+ R̃rΦ̃ϕ

)
,

θ̇ = 1
2ω

(
Φ̃rρ+ R̃ϕΦ̃r

)
,

(4.28)

where R̃r = ∂rR(r̃, ϕ̃, ω), R̃ϕ = ∂ϕR(r̃, ϕ̃, ω) and so on. Let η(λ) denote an eigenvalue of the coefficient
matrix of (4.28). It can be readily verified that, by making use of (4.24) and (4.27), if

D(λ) =
(
R̃rΦ̃ϕ − R̃ϕΦ̃r

)
> 0,(4.29)

then Re η(λ) < 0 so that the steady state (r̃, ϕ̃) is stable. This is of course the stability condition for the
associated periodic solution. After computing the partial derivatives in (4.29), it yields

D(λ) =
(

3
4
βnr̃

2 − δn

) (
9
4
βnr̃

2 − δn

)
+ µ2ω2 > 0,(4.30)

with δn = (ω2 − αn). The above inequality determines the stability regime S in the r̃ − ω plane. In view of
(4.27), r̃(λ) depends on the control parameter λ, which will take an unstable point into the stable regime S.
Note that from (4.30), we can get a simple sufficient stability condition:

ω2 < αn +
3
4
βnr̃

2λ,(4.31)

or

ω2 > αn +
9
4
βnr̃

2λ.

The above inequalities give rise to stable (shaded) sub-regions as shown in Fig. 4.2.
In general, all modes are excited by periodic pressure fluctuations. For instance, consider the harmonic

forcing (4.18) with a general spatially dependent amplitude

p(λ, ωt, x) = F (λ, x) cosωt.(4.32)

If the axial load is compressive (α < 0) and slightly exceeds the lowest buckling load γ(π
l )4, the parametric

control q(νt) can still be used to stabilize the system statically by choosing < q2 >> |α|. So we remain to
consider equation (4.17) by assuming α > 0 there. To apply the above perturbation procedure, we need to
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Fig. 4.2. Stability regions (shaded) for different modes of excitations

expand w in (4.17) and F in (4.32) into infinite series with respect to the modal function en(x) =
√

2
l sin nπ

l x,

for n = 1, 2, ... The resulting infinite system of coupled nonlinear differential equations for the coefficient
functions can then be treated by a perturbation analysis. Such a procedure developed previously for nonlinear
wave equations by one of us (Chow [9]) can be applied here. However, unlike the single mode situation,
simple stability conditions such as (4.30) or (4.31) are no longer attainable. Though it is possible to study
the stability régime numerically after a finite-mode approximation, this has not yet been done.

5. Concluding Remarks. In the paper we present a general method of vibrational control for a
certain class of nonlinear evolution equations with a particular reference to the nonlinear beam equation
arising from the panel structure dynamics. The control consists of a high frequency parametric vibration
and the forcing amplitude modulation. The high-frequency control is to affect a change in system parameter
for static stability, while the additive control of the excitation force, if needed, is to stabilize an unstable
periodic motion. In application to the panel structure, we show that, for a periodically excited panel near a
buckled state, a high frequency oscillatory axial force can keep the system in the state of periodic motion,
which can then be stabilized by an additive force modulation. The reason that we only control the force
amplitude, instead of both the amplitude and phase is that the additive control is the most effective when it
is in phase or out of phase with the excitation force. For a small forcing amplitude, a perturbation technique
can be used to reduce the stabilization of a periodic motion to that of an equilibrium point, the latter of
which is much simpler to analyze. In the case of a single-modal approximation, the stabilization problem
can be studied numerically but has not yet been treated. The vibrational control principle described in this
paper can also be applied to other problems such as the flow stability control. Here the nonlinear evolution
equation is given by the Navier-Stokes equation. For a slightly unstable flow, the perturbation analysis by
Keller and Kogelman [10] can be employed to deal with the flow stabilization by vibrational control.
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