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A RIGOROUS FRAMEWORK FOR OPTIMIZATION

OF EXPENSIVE FUNCTIONS BY SURROGATES

ANDREW J. BOOKER∗, J. E. DENNIS, JR.† , PAUL D. FRANK‡ , DAVID B. SERAFINI§ ,

VIRGINIA TORCZON¶, AND MICHAEL W. TROSSET‖

Abstract. The goal of the research reported here is to develop rigorous optimization algorithms to apply
to some engineering design problems for which direct application of traditional optimization approaches is
not practical. This paper presents and analyzes a framework for generating a sequence of approximations
to the objective function and managing the use of these approximations as surrogates for optimization. The
result is to obtain convergence to a minimizer of an expensive objective function subject to simple constraints.
The approach is widely applicable because it does not require, or even explicitly approximate, derivatives of
the objective. Numerical results are presented for a 31-variable helicopter rotor blade design example and
for a standard optimization test example.

Key words. approximation concepts, surrogate optimization, response surfaces, pattern search methods,
derivative-free optimization, design and analysis of computer experiments (DACE), computational engineer-
ing.

Subject classification. Applied & Numerical Mathematics

1. Introduction. The use of computer simulations in engineering decision-making is growing in im-
portance. A prototypical example, described in Section 3, involves designing a low-vibration helicopter rotor
blade. This example poses an optimization problem in which evaluation of the objective function requires
running expensive analysis code(s). Existing methods for such optimization problems are either impractical
or ad hoc. In this paper, we present a rigorous framework for optimizing expensive computer simulations
through the use of inexpensive approximations of expensive analysis codes.

We will set forth, for comment and criticism, a rigorous approach to solving the following mathematical
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problem:

minimize f(x)(1)

subject to x ∈ B ≡ {x | a ≤ x ≤ b},

where f : <n → < ∪ {∞}, a, b ∈ <n, and a ≤ b means that each coordinate satisfies ai ≤ bi. The following
characteristics distinguish the subset of such problems for which our methods are intended:

1. The computation of f(x) is very expensive and the values obtained may have few correct digits.
2. Even if x is feasible, the routines that evaluate f(x) may fail to return a value at the same compu-

tational cost as if a value were returned.
3. It is impractical to accurately approximate derivatives of f .
4. If x is infeasible, then f(x) may not be available.

Typically, f(x) is expensive to evaluate because there are large numbers of ancillary or system variables
that must be determined for each choice of x before f(x) can be evaluated. For example, in the helicopter
rotor blade design problem, each x specifies a coupled system of partial differential equations (PDEs) that
must be solved in order to obtain dependent system variables required to evaluate f(x). It may be quite
difficult to obtain accurate solutions of such systems, even after expending substantial computational re-
sources. Furthermore, when a coupled system of PDEs is solved by an iterative method, e.g., the notoriously
unreliable method of successive substitution, the method may fail to converge at all. Thus, one cannot
assume even that one will obtain an objective function value at each feasible point.

The difficulties implied by the first two properties are compounded if the intended optimization algo-
rithm requires derivative information. Actual derivatives are rarely available, although we hope that this
circumstance will change as automatic differentiation technology advances. On the other hand, choosing
an appropriate step size for approximating derivatives by finite differences is itself a difficult undertaking.
Moreover, the difficulties are compounded by the expense of function evaluation and the fact that a function
value may not be returned.

The foregoing considerations lead us to dismiss the possibility of using traditional quasi-Newton methods
to solve Problem (1). Indeed, even if actual derivative information were available, quasi-Newton methods
might be poor choices because they are adversely affected by function inaccuracies [15]. Instead, we observe
that direct search methods [14, 38, 41, 40] do not require derivatives and are relatively insensitive to func-
tion inaccuracies. Their shortcoming, especially when function evaluation is expensive, is that in practice
they tend to require a great many function values. The essential observation of the present paper is that
inexpensive surrogate objective functions can be used to accelerate (certain methods of) direct search for a
solution without sacrificing theoretical guarantees of asymptotic convergence.

The use of direct search methods provides a natural way to address the fact that f(x) may be unavailable
for some feasible x. When this occurs, we simply assign f(x) = ∞. This assignment implicitly assumes that
x is suboptimal if f(x) is not available. In fact, the failure of f(x) to evaluate might result from failures
in the analysis code rather than from the physical suboptimality of the design x, but we do not attempt to
distinguish these possibilities in the present paper.

If the optimization method causes us to consider an infeasible x, then we decline to try to evaluate
f(x). In fact, it is common practice for optimization algorithms not to evaluate the objective at points that
violate simple bound constraints because such violations are easily detected. In contrast, it is also common
practice to evaluate the objective whenever the bound constraints are satisfied, regardless of the possible
violation of more complicated (e.g., nonlinear equality) constraints. In the present paper, we skirt this issue
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by considering formally only bound constraints. Of course, we are keenly aware that most problems also
include other types of constraints, but the rigorous management of such constraints is a topic for future
research—to consider it now would only cloud the issues that we wish to address in this forum. Thus, we
treat the linear inequality constraints in our helicopter rotor blade test example by declining to evaluate
f(x) when x is infeasible.

Problems of the type that we have described arise in disparate ways in engineering design and in man-
ufacturing process control. Furthermore, there is a standard engineering practice [1] for attacking such
problems:

1. Choose a surrogate s for f that is either
(a) a simplified physical model of f ; or
(b) an approximation of f obtained by evaluating f at selected design sites, x1, . . . , xd ∈ B, at

which each f(xi) is finite, then interpolating or smoothing the function values thus obtained.
2. Minimize the surrogate s on B to obtain xs.
3. Compute f(xs) to determine if improvement has been made over the best x found to date, which

may be some baseline x or one of the design sites (if that approach is used).

The standard practice violates a fundamental tenet of numerical optimization, that one should not work
too hard until one nears a solution. In fact, the standard practice is a one-shot approach: except for the
final validation of xs, all of the function evaluations are performed at sites selected by experimental design
criteria with no concern for optimization per se. Furthermore, this approach begs a potentially embarrassing
question, viz., what does one do if (as is often the case) xs is not good enough to use as a solution to Problem
(1)?

A natural modification of the standard practice is to use a sequence of surrogates to identify promising
regions in which to use successively better surrogates, either by adopting models with greater physical
fidelity or by constructing approximations from a greater concentration of design sites. Examples of this
basic strategy include [6, 20, 13].

We present here a general methodology inspired by ideas in [13]. Our methodology is built on top of a
general class of direct search methods for numerical optimization, the pattern search methods. We exploit
in a novel way the convergence analysis for pattern search methods presented in [39, 24, 25]. Key to our
approach is the observation that the convergence analysis allows great flexibility in the heuristics that one can
employ to find the next iterate. Accordingly, we perform a fairly extensive search on the current surrogate
to select new points at which to evaluate the objective. In this paper, we are concerned with surrogates that
are interpolating approximations of the objective and we use any new values that we obtain to update the
current approximation.

In the next section, we present our surrogate management framework (SMF) and demonstrate that it
works on a standard test problem from the global optimization literature [16]. In subsequent sections, we
elaborate on the earlier presentation by examining a problem for which the computational cost of evaluating
the objective can be substantial. In Section 3, we describe the helicopter rotor blade design problem. In
Section 4, we describe a family of interpolating approximations that has become popular in the literature
on the design and analysis of computer experiments (DACE). In Section 5, we sketch some ways of using
DACE approximations as optimization surrogates. Finally, in Section 6, we report some numerical results.

Some indications of how this work fits into a larger effort are provided in Sections 2.3 and 7.

2. A Rigorous Framework for Optimization Using Surrogates. In this section we describe SMF,
our framework for managing surrogate objective functions to facilitate the optimization of expensive com-
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puter simulations. The framework is sufficiently general to accommodate surrogates that are (1) simplified
physical models of the expensive simulation; (2) approximations of the expensive simulation, constructed by
interpolating or smoothing known values of the objective; or (3) model-approximation hybrids. For the sake
of clarity, however, we focus on the case of surrogates of the second type. In Section 4 we will emphasize
interpolating approximations constructed by kriging, but the simple example in Section 2.3 illustrates that
SMF also works with polynomial interpolants. Another example using polynomial interpolants is presented
in [32].

We begin, in Section 2.1, by describing the family of underlying optimization algorithms on which SMF
is based. Next, in Section 2.2, we formally define SMF. We conclude, in Section 2.3, by using SMF to
minimize a simple algebraic test function.

2.1. Pattern Search Algorithms. Pattern search algorithms are a class of direct search methods for
numerical optimization. A formal definition of pattern search, which includes various well-known algorithms,
was proposed in [39]. An elementary introduction to pattern search algorithms and a discussion of their
historical antecedents is available in [40].

Pattern search algorithms are characterized by two crucial notions, a sequence of meshes and a list of
polling conditions. A mesh is a lattice to which the search for an iterate is restricted. As optimization
progresses, the polling conditions govern when the current mesh can be refined, ensuring that the algorithm
will satisfy the demands of the convergence theory for pattern search methods.

For our purposes, the primary polling condition that must be enforced to ensure convergence is that the
set of vectors formed by taking the differences between the set of trial points at which the objective function
is to be evaluated (the pattern) and the current iterate xk must contain a positive basis for <n. A positive
basis [11] is a set of vectors whose nonnegative linear combinations span <n, but for which no proper subset
has that property. For our purposes, the relevance of a positive basis is that it ensures that if the gradient
of f at xk is not zero, then at least one vector in the positive basis defines a descent direction for f from xk.
This can be guaranteed without any knowledge of the gradient. Any positive basis has at least n + 1 and at
most 2n vectors; we call these minimal and maximal positive bases, respectively.

For unconstrained problems, a minimal positive basis is sufficient to guarantee convergence [25]. However,
for problems with rectangular feasible regions, e.g., Problem (1), we use a maximal positive basis that
comprises all of the coordinate directions, both positive and negative. This guarantees that it is possible to
move along the boundary of the feasible region and thus prevents premature convergence to a point that
is not a constrained stationary point [24]. Recent work [26] has revealed that it is possible to construct
adaptive pattern search algorithms that identify only those constraints that are either binding or “almost”
binding at the current iterate so that the number of vectors needed at any given iteration can vary between
n + 1 and 2n, inclusively.

The following formulation of Generalized Pattern Search (GPS) differs from the formulation of pattern
search in [39, 24, 25, 26], but it is especially well-suited to our presentation. We remind the reader that if
f(x) either is infeasible or cannot be evaluated successfully, then we set f(x) = ∞.

GPS: Let M0 denote a mesh on B ≡ {x | a ≤ x ≤ b} and suppose that x0 ∈ M0 has been given. (In typical
practice, x0 ≈ x∗, where x∗ is a preliminary baseline solution, but any choice of x0 ∈ M0 is possible.) Let
X0 ⊂ M0 contain x0 and any 2n points adjacent to x0 for which the differences between those points and x0

form a maximal positive basis (composed of multiples of the coordinate vectors) for <n. As the algorithm
generates xk ∈ Mk, let Xk ⊂ Mk be defined in the same way. For k = 0, 1, . . ., do:
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1. Search: Employ some finite strategy to try to choose xk+1 ∈ Mk such that f(xk+1) < f(xk). If
such an xk+1 is found, declare the Search successful, set Mk+1 = Mk, and increment k;

2. else Poll:
if xk minimizes f(x) for x ∈ Xk, then declare the Poll unsuccessful, set xk+1 = xk, and refine Mk

to obtain Mk+1 by halving the mesh size (write this as Mk+1 = Mk/2);
else declare the Poll successful, set xk+1 to a point in Xk at which f(xk+1) < f(xk), and set
Mk+1 = Mk.
Increment k.

Step 2 provides the safeguard that guarantees convergence, as in the following result [24].

Theorem 2.1.1. If f is continuously differentiable on the feasible region B, then some limit point of the
sequence {xk} produced by a generalized pattern search (GPS) method for bound constrained minimization
is a constrained stationary point for problem (1).

Notice that this result guarantees that GPS will converge no matter how naive the search strategy in Step 1.
In practice, of course, the sophistication of the search strategy matters a great deal. We now turn to SMF,
which uses surrogate objective functions to try to Search with greater parsimony and thereby reduce the
total number of objective function evaluations.

2.2. The Surrogate Management Framework. The description of SMF that we present here is a
set of strategies for using approximations in both the Search and Poll steps of a GPS algorithm. For greater
clarity, we have also identified a separate Evaluate/Calibrate step. In what follows, we assume that a
family of approximating functions has been specified, that an initial approximation has been constructed,
and that an algorithm to recalibrate the approximation is available.

SMF: Given s0, an initial approximation of f on B, and x0 ∈ M0, let X0 ⊂ M0 contain x0 and any 2n

points adjacent to x0 for which the differences between those points and x0 form a maximal positive basis
(composed of multiples of the coordinate vectors) for <n. As the algorithm generates xk ∈ Mk, let Xk ⊂ Mk

be defined in the same way. For k = 0, 1, . . ., do:
1. Search: Use any method to choose a trial set Tk ⊂ Mk. If Tk 6= ∅ is chosen, then it is required to

contain at least one point at which f(x) is not known. If Tk = ∅, then go to Poll.
2. Evaluate/Calibrate: Evaluate f on elements in Tk until either it is found that xk minimizes f on

Tk or until xk+1 ∈ Tk is identified for which f(xk+1) < f(xk). If such an xk+1 is found, then declare
the Search successful. Recalibrate sk with the new values of f computed at points in Tk.

3. If Search was successful, then set sk+1 = sk, Mk+1 = Mk, and increment k;
else return to Search with the recalibrated sk, but without incrementing k.

4. Poll:
If xk minimizes f(x) for x ∈ Xk, then declare the Poll unsuccessful, set xk+1 = xk, and set
Mk+1 = Mk/2;
else declare the Poll successful, set xk+1 to a point in Xk at which f(xk+1) < f(xk), and set
Mk+1 = Mk.
Recalibrate sk with the new values of f computed at points in Xk. Set sk+1 = sk.
Increment k.

We structure our discussion of SMF around the proof of the following corollary of Theorem 2.1.1. Notice
that this result assumes nothing about the accuracy of the approximations. In practice, of course, we would
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expect better approximations to yield better results.

Theorem 2.2.1. If f is continuously differentiable on the feasible region B, then some limit point of the
sequence {xk} produced by SMF for bound-constrained minimization is a constrained stationary point for
problem (1).

Proof: The proof is accomplished by showing that SMF is an instance of a generalized pattern search
method and so Theorem 2.1.1 applies.

First, we need to be sure that we have specified a finite Search step, i.e., that there is a fixed upper
bound on the number of unsuccessful search steps that will be tried before a poll step is taken. This follows
immediately because each choice of Tk 6= ∅ must contain at least one point of Mk at which f is unknown
and Mk is a mesh on a compact set B, hence a finite set.

We finish the proof by noting that the Poll step is still intact. From the perspective of the optimization
algorithm, Poll is functionally unchanged by the recalibration step that it now includes. 2

The key to a successful implementation of SMF is to define the Search strategy in a way that efficiently
exploits the current approximation sk. One obvious approach is to search for points that minimize sk. In
[42], for example, a finite-difference quasi-Newton method was started from the current iterate with sk as
the objective function. A more ambitious strategy would be to explore sk globally for multiple prospective
basins, e.g., by performing a comprehensive grid search. For the examples in this paper, we performed a
comprehensive search on a subset of the current mesh, Mk.

Notice that we do not require f to be evaluated at all points in Tk or Xk before declaring a successful
Search or Poll step. Once we have identified a point in either Tk or Xk with an objective value strictly less
than f(xk), we can declare the iteration to be successful and increment k. This practical flexibility derives
from a powerful and crucial aspect of the convergence theory developed in [39, 24, 25, 26]: it is not necessary
for a pattern search algorithm to find the best point on the current mesh Mk, or even the best point in
Xk—any point that produces decrease on f(xk) will suffice.

The convergence theory states that any point on the current mesh, Mk, that produces decrease on f(xk)
can be used as the next iterate, xk+1. Traditional pattern search algorithms evaluate f at a predetermined
subset of Mk (a pattern) in order to try to discover such points. To try to reduce the number of function
evaluations required to discover a point that produces decrease, SMF uses the current approximation to
predict points in Mk at which we expect to realize decrease. The set Tk contains our list of potential
candidates. If Tk contains multiple candidates, then we choose those that are considered most promising. If
the approximation does not predict any such decrease, then we may choose to set Tk = ∅ and Poll.

SMF affords complete flexibility in deciding how many points to include in Tk. One obvious possibility
is to include a single point: the one at which the surrogate predicts the greatest decrease on f(xk). This is
precisely what we did to obtain the results reported in Section 2.3. In other situations, however, it may be
desirable to include several points. One such circumstance arises when attempts to evaluate the objective
are prone to failure. For example, for the helicopter rotor blade design problem we have performed runs
in which 60% of our attempts to evaluate f at a feasible x failed. Thus, to obtain the results reported in
Section 6, we choose Tk to contain three points in an effort to ensure that at least one of the points in Tk can
be evaluated successfully. Another circumstance arises in parallel or distributed computing environments. If
several processors are available to perform simultaneous function evaluations, then it is natural to provide
Tk with one point for each available processor.
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We also allow Tk to contain points at which the approximation does not predict decrease. This flexibility
is desirable because the step Evaluate/Calibrate actually serves two purposes. On the one hand, we
obviously want to find an xk+1 ∈ Tk for which f(xk+1) < f(xk). On the other hand, after each step we
know more objective function values and we therefore compute a new (and presumably more accurate)
approximation. However, the points that most decrease the objective may not be the points that most
improve the accuracy of the approximation. In fact, it may be desirable to select trial points that balance
the competing goals of decreasing the objective and constructing a better approximation. By selecting
trial points that lead to better approximations, we may gain greater insight into the global behavior of f ,
accelerating optimization by improving the quality of future searches. This idea will be discussed in Section
5.

Except for recalibration, the Poll steps for GPS and SMF are identical. Although SMF does not specify
the order in which f is to be evaluated at the points in Xk, it is natural to evaluate them in increasing order
of the objective values predicted by sk.

If the current iterate is sufficiently near a minimizer of the true objective function, then the current mesh
must be refined in order for optimization to progress. It is the Poll step that guarantees convergence, but
this guarantee can be costly. For bound-constrained optimization, an unsuccessfulPoll step requires between
n and 2n evaluations of the objective function [25], so we would like to avoid Poll steps whenever possible.
One possibility is to employ a hybrid approach that starts with SMF and assumes that an unsuccessful Poll

step signals a basin of attraction for a local method, which we then call to see if it can succeed. Of course,
we might need to revert to SMF if we switch too hastily. A natural candidate for the second phase of such
a hybrid approach is the derivative-free optimization (DFO) algorithm described in [8, 7]. The development
of an SMF-DFO hybrid is one objective of the larger effort mentioned in Sections 2.3 and 7.

2.3. Sample Test Results. We now apply SMF to a standard global optimization test problem, the
six-variable Hartman problem [16], which has a single global minimizer and several nonglobal minimizers. In
realistic applications, objective functions are expensive to evaluate and computed values have only several
digits of accuracy. Hence, we only attempt to solve the Hartman problem approximately, and we are prepared
to decrease the chance of converging to the global minimizer in order to restrict the total number of objective
function evaluations.

Figure 1 presents run histories for two implementations of SMF, as well as the final values obtained
from nine runs of the DFO algorithm described in [8, 7]. We imposed bounds of B = [0, 1]6 and started
each run from x0 = (.5, .5, .5, .5, .5, .5)T . (The nine runs of DFO produced different results because the DFO
algorithm includes a stochastic decision.) The only difference between the two implementations of SMF
is the choice of approximating families: one choice interpolated known function values with variable-order
multivariate polynomials [12] whose degrees were increased as more function values were obtained; the other
choice interpolated known function values by kriging. The latter family of approximations, which we also
used for the helicopter rotor blade design problem, is discussed in Section 4. In each implementation, the
initial approximation was constructed by interpolating the same set of 16 known function values. Each time
that Search was called, the current approximation was evaluated on a 7280-point subset of the current
mesh. Because the Hartman objective can always be evaluated, Search returned only a single point from
the subgrid at which the approximation predicted the greatest decrease in the Hartman objective.

The global minimum of the Hartman function is -3.322. Except for one run of DFO, each run produced
(approximately) this value. Of particular note is the fact that SMF worked effectively with each of two
different families of approximations. The SMF run histories exhibit the characteristic plateaus that result
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when Poll steps are executed on a sequential computer. The actual (“wall clock”) time spent on these
steps can be reduced if opportunities for parallel or distributed computing exist. If a sufficient number
of processors are available to evaluate all of the required function values concurrently, and if the abscissa
indicates actual time rather than number of function evaluations, then the plateaus usually disappear.
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Fig. 1. Results for the six variable Hartman problem

3. The Helicopter Rotor Blade Design Problem. Helicopter rotor blade design is used here for
illustrating concepts and motivating algorithmic requirements for SMF applied to industrial problems. The
particular task we consider is structural design of helicopter rotor blades for minimum vibration transmitted
to the hub.

As indicated in Figure 2, the design variables consist of up to five structural parameters for each span
segment. The variations on this problem that we have considered have between 10 variables and 56 variables.
As described below the objective function is a weighted sum of various harmonics of forces and moments.
The analysis code used is Tech01 [33].

Tech01 is a multidisciplinary analysis code. The disciplines include dynamic structures, aerodynamics,
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Span segments

Possible variables
in each segment are  —

• mass
• CG offset, and
• stiffnesses in 3 directions

Fig. 2. Rotor blade design variables

wake modeling, and controls. The run time for a Tech01 fixed-wake analysis is roughly 20 minutes on a mid-
level workstation. However, the run time can increase to several days on the same machine if wake updating
is invoked. The full wake analysis has greater fidelity to the physics of the problem. Our main focus is
on the use of approximations to the analysis code results as objective function surrogates for optimization.
Thus, to facilitate studies of algorithmic issues for surrogate optimization, the test results discussed here use
fixed-wake analyses.

A more detailed statement of the optimization problem is

minimize f(x) =
nh∑

i=1

wi
|hi(x)|

|hi(xB) + 1|
with respect to x ∈ <n

subject to xuj ≥ xj ≥ xlj , j = 1, . . . , n

cuk ≥ ck(x) ≥ clk, k = 1, . . . , ncon.

(2)

In the above equation, the hi, i = 1, . . . , nh, are output responses from Tech01. The subscript i is an
index that maps from the response function vector elements to forces in three directions, moments in three
directions, and harmonic numbers for each force and moment. In addition, the indexing may span several
flight conditions, such as hover and forward flight at various speeds. Normalization to account for the
different physical units of the responses is accomplished by including hi(xB) in the denominator of the
objective function terms, where xB is the baseline design.

The objective function components are weighted by factors wi. The limits xuj , xlj , cuk, and clk are upper
and lower bounds on the variables and constraints, respectively. The constraints ck(x) can be quantities such
as required rotor horsepower, centrifugal force, autorotational inertia, snow load, and limits on total mass.
Aside from the bounds on the independent variables, the only constraint in the examples considered here is
total mass. Since the masses are a subset of the design variables, the mass constraint is a linear constraint
involving a subset of the variables. Thus, it is independent of the analysis results, and does not require
consideration of issues involving the construction of surrogate approximations of constraint functions.

The helicopter rotor blade design problem is summarized in Table 1. Note that this problem has upper
and lower bounds on all the variables.
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Example Variables Objective Constraints

31 Variable 10 masses, weighted sum of 1st upper bound on
10 centers of gravity, and 2nd harmonics sum of masses
11 stiffnesses in for two flight
a single direction conditions

Table 1

Rotor blade design example

4. Constructing the Surrogates. Even with fixed wake, the helicopter rotor blade design examples
are not easily modeled using simplified, less expensive simulations. In consequence, we concentrate on
approximations constructed by interpolating or smoothing a set of known objective function values. In this
section we describe our method of choosing a set of initial design sites at which the objective function f is
evaluated before optimization commences, our choice of a class of function approximations from which the
initial surrogate s is to be selected, our method of selecting s from this class, and some diagnostic procedures
for extracting useful information from s.

The problem of choosing a set of initial design sites, x1, . . . , xd ∈ B, is a problem in the design of
experiments. This problem has been studied extensively in the recent literature on the design and analysis
of computer experiments (DACE), surveys of which include [31, 2, 22].

We seek designs that are “space-filling” (for lack of a better term), i.e., that will allow us to sample
the behavior of the objective function throughout the feasible region. We want to avoid designs that are
tied to a narrow class of approximating functions, e.g., linear or quadratic functions. We want to be able
to generate designs somewhat automatically, and we would like to be able to generate designs for irregular
(nonrectangular) feasible regions.

We have opted for designs that are used in quasi-Monte Carlo integration: Latin hypercube sampling
(LHS) [27, 35], orthogonal arrays (OA) [28] and OA-based LHS [36]. In LHS, each of the n variables is
chosen from d equally spaced values. The OAs we use are space-filling in the following sense: the variables
in the experimental design are assigned from l distinct values. In every subset of k variables every one of the
lk combinations of values occurs the same number of times. Arrays with this property are of strength k. LHS
designs are of strength 1. Typically we use OAs of strength 2. This is a straightforward process because
LHS designs are easily generated and efficient code for generating OA designs is available from STATLIB
(http://lib.stat.cmu.edu).

LHS and OA were devised for rectangular regions. In the helicopter rotor blade design examples, the
mass constraint induces a nonrectangular feasible region. We have experimented with various strategies for
adapting OA designs to this region, e.g.,

• Generate a design with d points in the rectangle defined by the variable bounds, then alter the design
so that the d points satisfy the mass constraint.

• Generate a design with many points in the rectangle defined by the variable bounds, then discard
the points that are outside a slightly expanded mass constraint boundary.

After the design sites have been chosen and the objective function f has been evaluated at them, the
initial surrogate s can be constructed. This surrogate is intended to be an approximation of f throughout the
region of interest that is inexpensive to evaluate. It will be recalibrated as new function values are obtained
in the course of solving the optimization problem. Because we do not want to make a priori assumptions
about the structure of f , we require a large, flexible class of functions from which surrogates can be selected.
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Plausible families of approximating functions include neural networks and low degree interpolating poly-
nomials [12]. In §2.3 we gave evidence that the SMF can use different families of approximation. We have
opted for the family of functions defined by the kriging procedures discussed in the DACE literature. The
kriging parameterization, defined by means and covariances of function values, is more intuitive for the
present applications than other approximations in the response surface literature. For some choices of co-
variance function, kriging is equivalent to spline interpolation, a correspondence that has been discussed in
the geostatistics literature [43].

It is quite common in the statistics literature to motivate kriging by assuming that f is a realization of
a stationary Gaussian spatial process. As implausible as this assumption may seem in the present context,
it does suggest useful ways to proceed with the selection of a surrogate objective function from the family of
approximating functions. Upon making this assumption, it becomes possible to estimate mean and covariance
parameters from f(x1), . . . , f(xd) by the method of maximum likelihood estimation (MLE) and thereby to
specify a well-defined procedure for selecting s.

Although MLE has been criticized in the spatial statistics literature, e.g. [30], it has been defended by
others as a crude form of cross-validation [19, 10]. Our experience to date has been similar to that reported in
[31]: “crude MLE’s lead to useful prediction. . . .” Assuming that the covariances in question are a constant
unknown variance times unknown correlations of a specified form, there exist closed-form expressions for
the MLEs of the mean and variance parameters. To obtain MLEs of the correlation parameters, we have
attempted global optimization of the (log) likelihood function via an implementation of the algorithm in
[29].

One technical difficulty with kriging should be noted. Kriging calculations require inversion of the matrix
of estimated correlations between function values at the design sites. The initial correlation matrix usually
is well-conditioned but as the function is sampled at additional sites that cluster near a minimizer, the
process of recalibration generally causes subsequent correlation matrices to become ill-conditioned. We have
addressed this difficulty by adding a small number (10−6) to the diagonal of the correlation matrix. With
this addition, the approximating functions do not exactly interpolate the observed function values; however,
they retain their flexibility and predict observations very closely.

Once a surrogate function s has been constructed, one can use it to predict values of f(x) and also to
approximately bound the errors in such predictions. The latter is accomplished by calculating mean squared
error (MSE) under the assumption of a stationary Gaussian process. It has been argued in [31, 21] that
this is a reasonable framework in which to bound future prediction errors, particularly if one can assess the
plausibility of the assumption of a stationary Gaussian process. Since larger values of MSE are associated
with larger uncertainty in prediction, we have used MSE to guide our choice of new sites at which data would
be of particular value in improving the accuracy of the surrogate.

One also might predict future prediction errors by examining the cross-validation residuals. These
error estimates are obtained at each observation by kriging (with the original MLE parameters) the other
observations and predicting the designated observation. Similarly, it was suggested in [21] that one might
cross-validate the MSEs to assess their predictive capabilities.

Finally, we have found that performing a functional analysis of variance [17, 28, 31] on the surrogate
function s is a useful way of identifying lower-dimensional subspaces in which most of the variation in
s resides. This ANOVA technique, which can in principle be applied to any square-integrable function,
decomposes s into main effects (contributions of individual variables to variation in s) and interaction
effects (contributions of combinations of variables to variation in s). The hope is that one can identify a few
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key variables that account for most of the variation in f , then optimize solely with respect to those variables
at reduced expense.

5. DACE Model Refinement by Balanced Searches. The Search phase of SMF allows us to use
any method to choose a trial set of new mesh points at which to evaluate the true objective function. In
this section we discuss several search strategies with which we have experimented.

Whatever approximations are used as surrogates for the objective function, a straightforward search
strategy is to optimize (either locally or globally, depending on one’s goals) the current approximation and
to return trial points that reside on the mesh Mk near the solution(s) thus obtained.

A simple implementation of this strategy, in which a finite-difference quasi-Newton method was used
to find a local minimizer of the current DACE approximation (see §4), is the model-assisted grid search
(MAGS) described in [42]. MAGS was intended for situations in which only a relatively small number of
function evaluations are permitted. Because it approximates the objective function over the entire feasible
region, recalibration of the approximation is made using one new objective value at a time, as these values
are produced by the optimization procedure.

In contrast to MAGS, a “zoom-in” method for local refinement was proposed in [18]. This strategy uses
the existing approximation to determine an interesting subregion of the design space for further exploration.
The optimization process is halted, additional function values are obtained in the subregion, and a new
approximation is formed. The expectation is that the approximation constructed in the subregion will be
more accurate than the original approximation because it will be based on a higher density of data.

One method for determining the zoom-in region is to locate the local minima of the original approxi-
mation and determine the extent of their basins. For a specified value greater than the function value at a
local minimum, the extent of its basin is assessed in terms of the distance of the minimum in each coordinate
direction to the nearest level set corresponding to the specified value (or the distance to the coordinate bound
if the specified level is not attained.)

Zoom-in methods favor exploration in the vicinity of local solutions of the current approximation. Hence,
they may fail to find basins of better local solutions elsewhere in the design space. In the parlance of global
optimization, they are purely local in nature. A purely global method for determining new points at which
to evaluate f is to minimize an estimate of the integrated mean squared error (IMSE, [31]) of the resulting
new approximation. This method is space-filling in that it tends to place new design points in previously
unexplored regions. In contrast to zoom-in methods, the IMSE-optimal methods defer examining promising
regions in the interest of obtaining a better “global” picture of the design space. The result is that they tend
to converge slowly to a minimizer of the objective.

To address both local and global concerns, we have experimented with a balanced search strategy. This
method is based on our observation that, at any location in design space, the current DACE approximation
can supply two key pieces of information: an approximate value of the objective and an estimate of the
approximation’s mean squared error (MSE) at the point. The former provides purely local information;
the latter, which increases with the distance from the subject point to the nearest design site and with the
degree of nonlinearity of the data, quantifies uncertainty about the behavior of the true objective function
and hence provides some degree of global information.

Based on local concerns, one would evaluate f at points that the approximation indicates have low
values. Based on global concerns, one would evaluate f at points with high MSE values. The balanced
search method selects a portion of the total of the trial set Tk based on each measure. Ideally, one would
measure the approximate values and MSEs at each point on a fine grid in design space and select the best

12



candidates, as in [9]. Unfortunately, in high-dimensional design spaces it is impossible to consider even a
crude grid formed by splitting each dimension in two; hence, the balanced search algorithm described below
considers each member of a “dense cloud” of (say 5000) trial sites. To ensure that this cloud is space-filling,
it is generated from an OA-based LHS.

Balanced Search Algorithm for New Site Selection
Given: an existing approximation, current design sites, a list of local minimizers of the current approximation,
the number nlocal of new design sites to be based on local concerns, the number nglobal of new design sites
to be based on global concerns, and a tolerance τ equal to the minimum distance that will be allowed between
any two sites.

1. Create an initial list of (say) 5000 trial sites using an OA-based LHS.
2. Add the local minimizers of the current approximation to the list of trial sites.
3. Calculate the distances from each of the trial sites to each other and to each of the design sites for

the current approximation.
4. Sort the trial sites in order of increasing values as determined by the current approximation.
5. Select as new design sites the nlocal trial sites with the smallest values determined by the current

approximation, maintaining the condition that each design site is ≥ τ distant from every other
design site.

6. Compute the MSE at each of the remaining trial sites using the correlation parameters of the current
approximation, but after updating the model parameters to reflect MSE = 0 at the newly selected
design sites.

7. For i = 1, . . . , nglobal, do:
(a) Select as a new design site the trial site with the largest MSE value, maintaining the condition

that each design site is ≥ τ distant from every other design site.
(b) Update the approximation to reflect MSE = 0 at the newest design site, then recompute the

MSE at each of the remaining trial sites.

6. Test Results for Rotor Blade Design. We now summarize the performance of several optimiza-
tion methods when applied to the helicopter rotor blade design problem described in Section 3. We remind
the reader that this problem has a linear inequality constraint which we treat by declining to evaluate f(x)
for any infeasible x. The optimization methods that we considered are the following:

• MMF: This is Serafini’s [32] implementation of the surrogate management framework, SMF, de-
scribed in Section 2.2. An initial approximation was constructed from 59 successful function eval-
uations using the DACEPAC software package [2, 3]. The initial iterate was a baseline solution
provided by Boeing. Search evaluated the current approximation on a 29,800-point subset of the
current mesh and returned the three points with the lowest values. The true objective function was
then evaluated sequentially at each of these points until one was found to be better than the current
iterate.

• DFO: This is the derivative-free optimization method discussed in [7, 8]. The results that we report,
which include final values but not run histories, were provided by Katya Scheinberg. The initial
iterate was the baseline solution provided by Boeing. Two variants of DFO were implemented, one
that scales the decision variables to be of comparable magnitude and one that leaves the decision
variables unscaled. (The significance of this distinction will be discussed below.) Because DFO
randomly chooses the second point at which the objective function is evaluated, multiple runs of
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each variant were performed (nine for the scaled variant, ten for the unscaled variant).
• PDS: This is Torczon’s implementation [37] of the parallel direct search method of [14], with modifi-

cations by Serafini to support constraints and the standard Message Passing Interface (MPI) parallel
communications library [34]. The initial iterate was the baseline solution provided by Boeing. PDS
was executed using 96 evaluations of the objective per iteration, more than the minimal number
(62) required to ensure convergence.

• GA: This is a genetic algorithm from PGAPack [23]. On the advice of its author, David Levine
of the Boeing Company, we used a steady-state reproductive strategy with a population size of 200
and a replacement rate of 10% of the population per iteration.

• BLGS: This implementation of the SMF is due to Booker and Frank [4] and was discussed in
Section 5. The initial approximation was the same as for MMF. The current approximation was
refined twice, each time by adding 50 new values of the objective function. Some of these 50 new sites
were chosen because the current approximation predicted that they would have objective function
values lower than that of the current iterate; others were chosen because they were relatively far
from any previously selected sites.

• Sampling: This is a simple sampling algorithm that generates OA-based LHS of the Bose type
[28]. Each sample contains the initial design, and in addition, samples that contain 58, 200, 380,
and 684 convergent points were generated independently. For each sample, the best value of the
objective function was taken to be the minimum of the objective function values computed at the
points in that sample, if this value improved on the best found in prior samples. We include these
results only as a simple strawman, and for this reason we did not count the rather larger number
of points in each sample for which the f(x) did not return a value, nor did we try to implement a
more sophisticated sampling algorithm.

For each of the above optimization methods, the best objective function value obtained after selected
numbers of function evaluations was plotted against the number of function evaluations. The resulting graph,
adapted from [5, 32], is displayed in Figure 3. We report the total number of attempts to evaluate the objective
function, whether or not the attempt was successful. However, we did not count unsuccessful attempts
encountered during the construction of initial approximations, prior to commencement of the optimization
algorithm. Thus, for MMF and BLGS, our count includes the 59 successful function evaluations obtained
by DACEPAC, but not the additional 97 evaluation attempts that failed. For the sampling algorithm, only
successful function evaluations were counted.

The results summarized in Figure 3 are quite encouraging—so good, in fact, that it may be that the
31-variable helicopter rotor blade design problem is substantially easier to solve than we anticipated. Both
GA and PDS performed as advertised. GA produced substantial decrease with a small number of function
evaluations, but then had difficulty descending below a fairly high value of the objective function. PDS
descended somewhat more steadily to an appreciably lower value of the objective function. Both DFO
and MMF found even lower objective function values in a number of function evaluations that would be
considered extremely small for finite-difference quasi-Newton methods.

Except for one variant of DFO, all of the algorithms for which we have reported results scale the decision
variables to be of comparable magnitudes. The variables in the 31-variable helicopter rotor blade design
problem differ by ten orders of magnitude, yet the single lowest value of the objective function was found by
the variant of DFO that did not scale the variables. This apparent paradox deserves further comment.
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Fig. 3. Results for the 31-variable helicopter rotor blade design problem

When DFO is applied to the unscaled problem, its trust region precludes appreciable change in the
variables of large magnitude but hardly restricts changes in the variables of small magnitude. In effect,
DFO thereby restricts its search to the subspace defined by the variables of small magnitude. A subsequent
ANOVA decomposition of a DACE approximation of the 31-variable helicopter rotor blade design objective
function revealed that the objective does not vary much with respect to the variables of large magnitude.
Thus, the unscaled variant of the DFO implementation was actually solving a lower-dimensional problem
coincidentally generated by the most important variables. (This is a dramatic illustration of the diagnostic
value of the ANOVA decomposition.) We are now investigating the lower-dimensional problem in greater
detail.

Finally, we observe that most of the above algorithms can exploit parallelism to reduce the “wall clock”
time required to get a solution, principally by concurrent evaluations of the objective function. The im-
plementations used here differ with respect to how many concurrent evaluations can be used effectively. In
particular, two of the codes, PDS and GA, were designed explicitly to be executed in parallel and so they
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have the advantage that they can use any number of processors without any recoding. Given this implemen-
tation philosophy, the total number of function evaluations these methods take to reach a solution does not
compare favorably with the sequential implementations of the other algorithms. However, when executed
in parallel, the “wall clock” time for PDS and GA is more competitive. Nonetheless, for the tests reported
here, MMF and some runs of DFO found feasible solutions with appreciably lower values of the objective
and required far fewer total evaluations of the objective function in the process.

7. Conclusions. The results reported in Section 6 lend credence to our overall plan to develop approxi-
mation-based optimization methods that use SMF. Our current intent is to construct DACE approximations
of sufficient accuracy that ANOVA decomposition will provide insight into the problem at hand. Subse-
quently, some variant of SMF, perhaps one with a BLGS flavor, will be used to identify the basin of a
promising minimizer of the true objective function.

Of course, much remains to be done. We would like to find ways to accelerate the search for a minimizer
after SMF has identified a basin and its reduction of the objective function has begun to slow. One possibility
is then to use known objective function values to provide an initial approximation for DFO, as there are
reasons to be believe that DFO enjoys faster local convergence properties than SMF. Another important
challenge is to extend SMF to address problems with general constraints, particularly constraints that involve
outputs of expensive analysis codes. We are currently working to address these issues.
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[16] L. C. W. Dixon and G. P. Szegö, eds., Towards Global Optimisation, 2, North-Holland Publishing
Company, Amsterdam, 1978.

[17] B. Efron and C. Stein, The jackknife estimate of variance, The Annals of Statistics, 9 (1981),
pp. 586–596.

[18] P. D. Frank, Global modeling for optimization, SIAG/OPT Views-and-News: A Forum for the SIAM
Activity Group on Optimization, 7 (1995), pp. 9–12.

[19] S. Geisser and W. F. Eddy, A predictive approach to model selection, Journal of the American
Statistical Association, 74 (1979), pp. 153–160.

[20] A. A. Giunta, Aircraft Multidisciplinary Design Optimization using Design of Experiments Theory and
Response Surface Modeling Methods, PhD thesis, Department of Aerospace and Ocean Engineering,
Virginia Polytechnic Institute & State University, Blacksburg, Virginia, 1997; available as MAD 97–
05–01, Multidisciplinary Analysis and Design Center for Advanced Vehicles, Virginia Polytechnic
Institute & State University, Blacksburg, Virginia 24061–0203.

17



[21] D. R. Jones, M. Schonlau, and W. J. Welch, A data analytic approach to Bayesian global opti-
mization, in Proceedings of the American Statistical Association, 1997.

[22] J. R. Koehler and A. B. Owen, Computer experiments, in Design and analysis of experiments,
S. Ghosh and C. R. Rao, eds., vol. 13 of Handbook of Statistics, North-Holland Publishing Company,
Amsterdam, 1996, pp. 261–308.

[23] D. Levine, Users guide to the PGAPack parallel genetic algorithm library, Tech. Report ANL–95/18,
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, January 1996.

[24] R. M. Lewis and V. J. Torczon, Pattern search algorithms for bound constrained minimization,
Tech. Report 96–20, Institute for Computer Applications in Science and Engineering, Mail Stop
403, NASA Langley Research Center, Hampton, Virginia 23681–2199, March 1996. To appear in
SIAM Journal on Optimization.

[25] , Rank ordering and positive bases in pattern search algorithms, Tech. Report 96–71, Institute for
Computer Applications in Science and Engineering, Mail Stop 403, NASA Langley Research Center,
Hampton, Virginia 23681–2199, 1996. In revision for Mathematical Programming.

[26] , Pattern search methods for linearly constrained minimization, Tech. Report 98–3, Institute for
Computer Applications in Science and Engineering, Mail Stop 403, NASA Langley Research Center,
Hampton, Virginia 23681–2199, January 1998. To appear in SIAM Journal on Optimization.

[27] M. D. McKay, W. J. Conover, and R. J. Beckman, A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code, Technometrics, 21 (1979),
pp. 239–245.

[28] A. B. Owen, Orthogonal arrays for computer experiments, integration and visualization, Statistica
Sinica, 2 (1992), pp. 439–452.

[29] A. H. G. Rinnooy Kan and G. T. Timmer, A stochastic approach to global optimization, in Numer-
ical Optimization 1984: Proceeding of the SIAM Conference on Numerical Optimization, Boulder,
Colorado, June 12–14, 1984, SIAM, Philadelphia, 1985, pp. 245–262.

[30] B. D. Ripley, Statistical Inference for Spatial Processes, Cambridge University Press, Cambridge,
United Kingdom, 1988.

[31] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and analysis of computer
experiments, Statistical Science, 4 (1989), pp. 409–423.

[32] D. B. Serafini, A Framework for Managing Models in Optimization of Computationally Expensive
Functions, PhD thesis, Department of Computational and Applied Mathematics, Rice University,
P.O. Box 1892, Houston, Texas 77005–1892, 1998.

[33] L. A. Shultz, B. Panda, F. J. Tarzanin, R. C. Derham, B. K. Oh, and L. Dadone, In-
terdisciplinary analysis for advanced rotors - approach, capabilities and status, in Proceedings of
the American Helicopter Society Aeromechanics Specialists Conference, San Francisco, California,
January 19–21, 1994, AHS, 1994, pp. PS 4–1–PS 4–15.

[34] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra, MPI: The Com-
plete Reference, The MIT Press, Cambridge, Massachusetts, 1996.

[35] M. Stein, Large sample properties of simulations using Latin hypercube sampling, Technometrics, 29
(1987), pp. 143–151.

[36] B. Tang, Orthogonal array-based Latin hypercubes, Journal American Statistical Association, 88 (1993),
pp. 1392–1397.

[37] V. Torczon, PDS: Direct search methods for unconstrained optimization on either sequential or par-

18



allel machines, Tech. Report TR92–09, Rice University, Department of Computational and Applied
Mathematics, Houston, Texas 77005–1892, 1992. In revision.

[38] , Pattern search methods for nonlinear optimization, SIAG/OPT Views-and-News: A Forum for
the SIAM Activity Group on Optimization, 6 (1995), pp. 7–11.

[39] , On the convergence of pattern search algorithms, SIAM Journal on Optimization, 7 (1997), pp. 1–
25.

[40] V. Torczon and M. W. Trosset, From evolutionary operation to parallel direct search: Pattern
search algorithms for numerical optimization, Computing Science and Statistics, 29 (1998), pp. 396–
401.

[41] M. W. Trosset, I know it when I see it: Toward a definition of direct search methods, SIAG/OPT
Views-and-News: A Forum for the SIAM Activity Group on Optimization, 9 (1997), pp. 7–10.

[42] M. W. Trosset and V. Torczon, Numerical optimization using computer experiments, Tech. Report
97–38, Institute for Computer Applications in Science and Engineering, Mail Stop 403, NASA
Langley Research Center, Hampton, Virginia 23681–2199, 1997.

[43] G. S. Watson, Smoothing and interpolation by kriging and with splines, Mathematical Geology, 16
(1984), pp. 601–615.

19


