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EFFECTS OF HELICITY ON LAGRANGIAN AND EULERIAN TIME CORRELATIONS

IN TURBULENCE ∗

ROBERT RUBINSTEIN† AND YE ZHOU‡

Abstract. Taylor series expansions of turbulent time correlation functions are applied to show that
helicity influences Eulerian time correlations more strongly than Lagrangian time correlations: to second
order in time, the helicity effect on Lagrangian time correlations vanishes, but the helicity effect on Eulerian
time correlations is nonzero. Fourier analysis shows that the helicity effect on Eulerian time correlations
is confined to the largest inertial range scales. Some implications for sound radiation by swirling flows are
discussed.
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1. Introduction. The theory of turbulent time correlations might be said to have begun with Kraich-
nan’s demonstration [1] that the DIA response equation is infrared divergent when evaluated on a Kol-
mogorov inertial range. This calculation demonstrated the nonlocality of Eulerian time correlations. In
later Lagrangian modifications [2] of DIA, the corresponding integrals converge; this confirmed the intuitive
expectation [3] that Lagrangian time correlations are local in scale.

A simplification of Kraichnan’s calculations was proposed by Kaneda [4] who observed that short time
Taylor series expansions using the Navier-Stokes equations could produce useful information without explic-
itly invoking a specific closure scheme. These expansions express two-time correlations in terms of single-time
correlations. Later, Kaneda and Gotoh [5] posed the question of the effect of helicity on Lagrangian and
Eulerian time correlations. The present report proposes to complete this calculation using Kaneda’s method
and to note some possible applications.

2. Helical Turbulence. In the classic account of the kinematics of isotropic turbulence, Batchelor
[6] noted the possibility that the turbulent random velocity field can lack mirror symmetry, and called this
condition ‘skew isotropy.’ Subsequent work used the term ‘helicity’ instead. In terms of the single-time
velocity correlation Qij(k) defined by

< vi(k, t)vj(k′, t) >= Qij(k)δ(k + k′)(1)

a helical random field is such that Qij(k) 6= Qij(−k), although necessarily Qij(k) = Qji(−k). Therefore,
the correlation tensor is not symmetric: Qij(k) 6= Qji(k).

We will assume time-stationary, homogeneous, isotropic turbulence. For helical turbulence, the single-
time correlation function is

Qij(k) = Q(k)Pij(k) + iεimjkmH(k)(2)
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Note that the helicity spectrum H(k) contributes neither to the total energy of the velocity field nor more
generally to any of the Reynolds stress components. A nonvanishing helicity spectrum is therefore consistent
with the symmetry of the Reynolds stress tensor.

Define total helicity H by

H = < u · ∇×u > =
∫

dk 2k2H(k)(3)

An elementary calculation [7] shows that total helicity is an inviscid invariant of the equations of motion.
Helicity has a geometric significance in terms of the linking of vortex lines: if the vortex lines never link, the
total helicity vanishes, but nonzero helicity indicates nontrivial linking of vortex lines. [7]

Although initial speculation that helicity plays a dynamic role in three-dimensional turbulence analogous
to enstrophy in two-dimensional turbulence has not proven fruitful, interest in the possibility that helicity
impedes energy transfer remains. Moffat and Tsinober [7] provide a recent review of helicity effects in
turbulence.

3. Analysis. First note that

< up
∂ui

∂xq
> =

1
6
Hεpiq(4)

Let us begin by calculating the effect of helicity on Lagrangian single-point two-time correlations.1 Let

u′i(t) =
Dui

Dt
(5)

denote the convective derivative, so that

u′i(t) = − ∂p

∂xi
(6)

Then the Lagrangian two-time correlation can be expanded in the Taylor series

< ui(t)ui(0) >L = < uiui > + < u′iui > t+ < u′′i ui >
1
2
t2 + · · ·(7)

where in Eq. (7) and subsequently, a velocity without a time argument indicates evaluation at time t = 0.
In homogeneous turbulence, the linear term vanishes in view of Eq. (6), and stationarity in time implies

< u′′i ui > = − < u′iu
′
i > = − <

∂p

∂xi

∂p

∂xi
>(8)

It is convenient to write the last correlation as the Fourier transform

<
∂p

∂xi

∂p

∂xi
> =

∫
dk k−2

∫
δ(k − p− q)δ(−k − p′ − q′)dpdqdp′dq′ ×

< pjqip
′
nq′mui(p)uj(q)um(p′)un(q′) >

=
∫

dk k−2kjkikmkn

∫
δ(k− p− q)δ(−k− p′ − q′)dpdqdp′dq′ ×

< ui(p)uj(q)um(p′)un(q′) >(9)

Assuming the quasi-normal closure for fourth-order single-time correlations,

<
∂p

∂xi

∂p

∂xi
> = 2

∫
dk kikjkmknk−2

∫
δ(k− p− q)dpdq Qim(p)Qjn(q)(10)

1We are grateful to Prof. Y. Kaneda for this argument.
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On substituting Eq. (2) in Eq. (10), the symmetry of the wavevector factors in Eq. (10) implies that helicity
makes no contribution to the second order expansion of the Lagrangian time correlation.

In the corresponding calculation for Eulerian correlations, let

u̇i =
∂ui

∂t
(11)

The obvious analogs of Eqs. (7)-(8) apply. Then

< u̇iu̇i > = < up
∂ui

∂xp
uq

∂ui

∂xq
> +2 < ui

∂p

∂xi
> + <

∂p

∂xi

∂p

∂xi
>(12)

The second correlation on the right side vanishes by homogeneity, and it has just been shown that there is
no helicity contribution to the the last term. Expanding the first correlation by quasi-normality,

< up
∂ui

∂xp
uq

∂ui

∂xq
> = < up

∂ui

∂xp
>< uq

∂ui

∂xq
> + < upuq ><

∂ui

∂xq

∂ui

∂xq
>

+ < up
∂ui

∂xq
>< uq

∂ui

∂xp
>

=
2
3
kε/ν − 1

6
H2(13)

The first term in Eq. (13) is the non-helical contribution to the time correlation and the second term shows
the effect of helicity. Note that helicity decreases the turbulent frequency, hence it increases the Eulerian
time scale.

This calculation can be refined somewhat by evaluating the same effect in wavevector space. Substituting
Kolmogorov forms in Eq. (2),

Qij(k) = CKε2/3k−5/3Pij(k)/4πk2 + CHε
2/3
H iεimjkmk−7/3/4πk3(14)

Then

H = 6CHε
2/3
H k

−1/3
0(15)

where 2πk−1
0 is the integral scale of the turbulence.

The quadratic term in Kaneda’s expansion is

< üi(k)uj(−k) > = −1
4

∫
δ(k− p− q)dpdq Pimn(k)Pmrs(p)Qrj(k)Qns(q)(16)

We will investigate how this integral diverges in the limit q → 0, isolating the helical contribution. In this
limit, the contribution due to helicity to the integrand in Eq. (16) is

Pimn(k)Pmrs(p)Qrj(k)Qns(q) = −Pimn(k){Pmrs(k) − qrPms(k)

− qsPmr(k) + krqaPams(k)k−2 + ksqaPamr(k)k−2} ×
εrjαεnsβkαqβε

4/3
H (kq)−10/3/16π2k2q2(17)

Then a simple calculation shows that

−Pimn(k){Pmrs(k) − qrPms(k) − qsPmr(k)

+ krqaPams(k)k−2 + ksqaPamr(k)k−2}εrjαεnsβkαqβ

= qrβknαεrjαεniβ − ksαqrβεrjαεisβ

= −2oioj(18)
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where

oi = εipqkpqq(19)

The integral with respect to q in Eq. (16) therefore diverges as
∫

dq q−10/3+2 ∼ k
−1/3
0(20)

consequently, for the helical contribution to the second order term,

< üi(k)uj(−k) > ∼ Pij(k)k2ε
2/3
H k−10/3ε

2/3
H k

−1/3
0 = Pij(k)EH(k)H(21)

Integration of this result over k recovers the H2 dependence in Eq. (13) of the helical contribution to the
single-point correlation. Note the non-local dependence on the total helicity, which is analogous to the
non-local dependence of Eulerian time correlations on the total rms velocity fluctuations.

Define the Eulerian frequency scale by

ω2
E = − < üi(k)ui(−k) > /Q(k)(22)

Then adding the usual sweeping contribution gives the complete Eulerian frequency scale to second order

ωE = [C2
D(V k)2 − C′

HH
ε
2/3
H

ε2/3k1/3
]1/2 = CDV k{1− C′

H

2C2
D

H(εH/ε)2/3

V 2
k−5/3}(23)

Again, the frequency is decreased by helicity. Note that the effect of helicity is confined to the largest inertial
range scales.

4. Conclusion. This calculation reveals an additional dynamic distinction between Eulerian and La-
grangian time correlations. The agreement to second order of the Taylor series expansion of helical and
non-helical Lagrangian time correlation functions suggests that the effect of helicity on Lagrangian time
correlations is relatively weak, whereas helicity strongly alters Eulerian correlations.

The dependence of turbulent energy transfer on Lagrangian correlations [2, 3] might seem to suggest
a relatively small effect of helicity on turbulent energy transfer in steady-state flows. However, closures
suggest that both spatial and temporal correlations influence energy transfer, so that this analysis is certainly
consistent with some connection between helicity and energy transfer. These connections are discussed in
[7, 8]. It is possible that helicity could stabilize turbulence and play a role in the sustainment of large-scale
structures, as suggested by Yokoi and Yoshizawa. [9]

Although less theoretical interest is naturally attached to Eulerian time correlations, they arise in prob-
lems including wave propagation through turbulence sound radiation by turbulence. In the sound radiation
problem, the Eulerian space-time correlation function appears in the turbulent sound source in Lighthill’s
theory. [10] The effect of helicity on radiated sound is a redistribution of acoustic energy radiated by the
largest inertial range scales to lower frequencies. In helical flows, like swirling jets, helicity may also greatly
alter the large structures in the flow [9] and consequently modify the sweeping velocity. The combination of
both helicity effects may therefore cause significant modification of sound radiation from swirling flows.

5. Acknowledgments. Our discussions with Prof. Y. Kaneda have been very helpful and are gratefully
acknowledged.
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