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APPROXIMATION OF THE NEWTON STEP BY A DEFECT CORRECTION PROCESS

E. ARIAN* A. BATTERMANNT, AND E.W. SACHS

Abstract. In this paper, an optimal control problem governed by a partial differential equation is considered. The
Newton step for this system can be computed by solving a coupled system of equations. To do this efficiently with an
iterative defect correction process, a modifying operator is introduced into the system. This operator is motivated by
local mode analysis. The operator can be used also for preconditioning in GMRES. We give a detailed convergence
analysis for the defect correction process and show the derivation of the modifying operator. Numerical tests are
done on the small disturbance shape optimization problem in two dimensions for the defect correction process and for
GMRES.

Key words. optimal control governed by PDEs, iterative methods, defect correction, GMRES, preconditioning,
Newton step, SQP.
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1. Introduction. Many optimization problems can be formulated as equality constrained problems with a special
structure. If one considers optimal control or optimal design problems, the variables are partitioned into the state and
control or design variables which we denotedbgndu, respectively. This leads to the following problem formulation

(1551151) F(p,u) s.t. h(o,u)=0.

If one is interested in algorithms with a fast rate of convergence, one would tend to use Newton’s method for these
problems. Note that this method can be applied in two different ways. Under appropriate assumptions, see Section 2.1,
one can solve for each control variakl¢he system equatiofa(¢(u), u) = 0 to obtain a state(u) which depends on

u. This is typical, wherh represents a boundary value problem where the control variable is on the right hand side of
the differential equation. Then one can apply Newton’s method to the unconstrained minimization problem

Hgl’l J(u) = F(p(u),u),

where the step is computed by solving the linear system

for s.
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Alternatively, one can keep all the variables «) and consider the necessary optimality conditions for the con-
strained optimization problem. Then one obtains the nonlinear equati@nin\),

h(¢,u)
G(o,u,\) = | Fy(d,u) +hj(d,u)h | =
Fu(d,u) + RS (@, u)A

This equation can be solved by Newton’s method. For the step one has to solve the linear system
g/(¢, u, )\)(’U, S, w)T = _g(d)v u, )‘) .

This approach is the same if one applies an sequential quadratic programming method (SQP) to the constrained prob-
lem using the Newton multiplier update for the Lagrange multiplier, see [28].

It is important to note, that in both approaches at each step of Newton’s method a linear system of equations has
to be solved which exhibits the same structure for both cases, see Section 2.3. Only the right hand sides differ in these
cases. If we denote the variables for the linear systerfvby; w) then one obtains with the Lagrangian

£(¢,U,A) :f(¢au) +A>< h(¢au)7

the linear system

L:(W) ,C¢u h;: v 0 £¢
£u¢ Lo hqf S = —Ly or — Ly,
he e O w 0 h

Since the solver of these linear systems often requires the largest part of the CPU time of an algorithm, it is the
goal to utilize the special structure of the linear system in the linear system solver. This has been considered by [5]
where several preconditioners were used and compared numerically and theoretically. Further discussions can be
found in [10], [22], [26], [27], [18], [17], and [9]. In [16] the authors use a multilevel technique on the necessary
optimality conditions in connection with Newton’s method under box constraints on the control. The structure of the
Newton system for optimal control problems is exploited in [15] to design special quasi Newton updates for problems
including differential equations. It is well known that one does not need to solve the Newton equations exactly at each
step [8] but only needs to decrease the accuracy in the residual as one approaches a stationary point of the optimization
problem. This is another reason why we investigate iterative solvers for the Newton equation.

The gradient of7 can be computed sequentially, see Section 2.9, by solving an adjoint equation after solving the
nonlinear state equation. The system for the Newton step cannot be solved sequentially, since its veriahblées
are coupled through the equations. This makes a Newton step quite expensive because an iterative procedure has to be
applied. In some applications the variabteandu are separated if andh in such a way that the mixed terms in the
second derivative of the Lagrangian disappear, i.e.,

Loy = Lyp =0.
If one would omit the upper left terifi;,, then the linear system matrix has the form

0 0 K
0 Luuw h
hg he 0



The resulting approximate Newton equation has the advantage that it can be solved sequentially, see Lemma 3.5.
Hence it can be applied in an iterative way to improve the accuracy of the solution of the Newton step. If one analyzes
its convergence, one obtains, see Section 3.3.4, that convergence is obtained if

p(LiH—-T) <1,

uu

whereH denotes the Hessian ¢f or the reduced Hessian of the constrained optimization problem in terffiswofl
h. Thus,H is given by

(1.1) Ho=h}hy* Loghy' hy =R hy ™ Low — Lug by hu + Lo -

Since the conditiop(£,,H — I) < 1 might be too restrictive we investigate the following strategy in this paper.

At first we replacel,,, by atermfl, . = L,.(I + €P), whereP ande can be chosen properly. This choice
in general depends on the application under consideration. Then the system equation changes and we consider a
separation into an outer loop iteration and an inner loop iteration. The outer loop iteration is given by

n+1
£¢¢ £q5u h; v 0
1.2) Lus Lye hY s = | —Ly,+ LyyePs" )
he hy O w 0
which is solved by an inner loop iteration through
0 0 h; Los Lou O
(1.3) 0 Lye b |2"'=r—| L, 0 0 |2".
hg hs 0 0 0 O

Here, » denotes the right hand side of the original linear system equation. Thus the advantage of the sequential
solution of the approximate Newton step is retained. In Section 3.3 we analyze the convergence properties of this
iterative solver for the Newton step.

The choice of the operat@? in the iteration (1.2), (1.3) is crucial for the convergence properties of the resulting
scheme. We suggest to make this choice by analyzing the optimization problem on the infinite dimensional level, i.e.,
before discretization is applied. The opergfbcan be derived approximately with local mode (Fourier) analysis of
the reduced Hessian, following [2], [3]. By that we are using the structure induced by the governing partial differential
equation (PDE) to accelerate the convergence process. Pi@s been determined, it can be applied in various
manners to accelerate the convergence process, for example by taking the iteration matrix in (1.3) as a preconditioner
for Krylov subspace methods. However, we concentrate on the defect correction process (1.2), (1.3) because it is
simple to apply. Once a code is given for the solution of the state and costate equations, the implementation of the
defect correction process is reduced to successively solving the linearized state and the costate equations, with possibly
different right hand sides. The defect correction process is formally introduced in Section 3.

In Section 4.1 we apply this approach to an optimal shape design problem arising in aerodynamics. Itis a boundary
control problem in which the shape of the solid wall is optimized by modifying the right hand side of the Neumann
boundary condition. It involves the solution of an elliptic boundary value problem in two space dimensions. By using
a local mode analysis of the reduced Hessian (1.1) which is done in Section 4.7, we obtain an Gperadoan
indication of the convergence properties of the method for a small step size of the discretization. This is verified by the
numerical results and the rates obtained for the example. In Section 4.10 we present numerical results for the defect
correction process and for preconditioned GMRES using different choices of the oferaMar obtain a significant
decrease of the residual in the first iterations. This convergence property is crucial in many applications that involve
computationally intensive cost functional evaluations and derivative computations.



2. General Approach. In this section, a general equality constrained optimal control problem is addressed. The
necessary optimality conditions are given for this problem together with the optimality conditions for an equivalent
unconstrained problem.

2.1. Problem Formulation. We repeat the problem to be considered in its general formulation

(2.2) (r(I;m) F(od,u) st h(d,u)=0.

The constraink(¢, u) = 0 denotes the state equation wherés the state variable and is the control, or design,
variable. Under the following assumption, the equation can be solved uniquglfoina givenu. Also, the Newton
step for the minimization problem (2.1) is well defined. In our presentation we follow [19].

ASSUMPTION2.1.Let X, ), Z be Hilbert spaces. Let: X x)Y — IR andh: X x) — Z be twice continuously
Fréchet differentiable. Léi,, the partial Frechet derivative ok with respect tap, be bijective and continuous. Let
h., the partial Fechet derivative of with respect ta:, be continuous.

REMARK 2.2. By Assumptiof.1, the inverse of, (¢, u.) atthe point ., u.) exists. The derivativie, (d., u.)(54)
of h with respect tap at the point(¢., u.) is linear in the incremend¢. Thus, the inverse df} (¢, u.) also exists
and is continuous (see, e.{ji7]). Here and in the following, the superscriptdenotes the adjoint operator or space.
We will in the following often denotie, (4., u.) by hy and apply similar conventions to other functions. Note also
that the relationshipihdf)X = hg holds forh, and the other considered functions (see, ¢4j),

The implicit function theorem (see, e.g., [30, p.150]) allows to define the following magping

LEMMA 2.3. Let Assumptior2.1 hold and letg,, u. satisfyh(é.,u.) = 0. Letd be an open neighborhood of
(¢, ue) € X x Y. Then there exists a uniqgue mapping/ — X that is twice continuously Echet differentiable in
a neighborhood/ of u. € Y and satisfied(¢(u),u) =0 VYu € U. Furthermore, the derivative’ of ¢ with respect
tou is given by

(2.2) ¢'(u) = —hy ' (B(w), u) hu(p(u),u) Yuel.

In the situation of Lemma 2.3 we can define the following unconstrained optimization problem which is equivalent
to the problem in its original formulation (2.1):

(2.3) min - J(u) = F(é(u), u).
2.2. The Necessary Optimality Conditions.The Lagrangian function for problem (2.1) is given by
(2.4) L(p,u,A) = F(d,u) + A h(e,u),

where) denotes the Lagrange multiplier defineddrt, the dual ofZ. The first order necessary optimality conditions
for a minimizer of problem (2.1) are given (see, e.g., [20]) by setting the gradiémf the Lagrangian functiog to
zero, i.e., by the equations

(2.5) state: Ly= h(¢,u) =0,
(2.6) costate: Lg= Fy + hj A =0,
2.7 design: L,=F,+hiA=0

The gradienty = J'(u), is given by the following lemma (this is the necessary optimality condition of first order
for the unconstrained problem (2.3) (see, e.g., [20])).



LEMMA 2.4.Let Assumptio2.1hold. Define for € Y
i.) a functiong(u) that satisfieg2.5)and
ii.) afunctionA(u) as the unique solution of the adjoint equati@6), i.e., of

(2.8) hg (D(u), u) Au) = =Fo(d(u), u).
Then the gradieng of (2.3)is given by

(2.9) g9 =J"(u) = Fu(¢(u), u) + hy (¢(u),u) Aw).

Proof. The assertion follows from the chain rule and (2.2):

9=J'(w) = Fulé(w),u) +¢'(u)" Fy((u),u)
= Fu((u),u) + hyf (6(u),u) (=hy ™ (¢(uw), u)) Fo (d(u), u).

2.3. The Newton Step.The definition of the Newton step for the unconstrained problem (2.3) requires the
computation of the second derivative of the objective functigiial This, in turn, requires the differentiation of
the adjoint variable\.

LEMMA 2.5. Let Assumptior2.1hold. Then\(u) defined in the adjoint equatiai2.8)is differentiable, and the
derivative is given by

(2.10) N(u) = =hy ™ (¢(u), ) [Lou(d(u), u, A(u)) + &' (u) Log(d(u),u, A(u))] -

Proof. Define a maps by x(\, u) = L4(é(u),u, A), where by (2.8\ = A\(u) solvesk(A(u),u) = 0. Since
wa(N,u)(.) = b (¢(u),u)(.) is invertible by Assumption 2.1 (see Remark 2.2), the assertion follows by the implicit
function theoremQ

With this result we can now express the Hessian of the unconstrained problem (2.3).

THEOREM2.6. Let Assumptio2.1hold. Then7 defined in(2.3)is twice Ftechet differentiable, and the Hessian
is given by

(2.11) H=T"(u)=h}hy” Loghy hu—hi hy™ Lou— Lug by hu+ Lo

Proof. Apply the chain rule to equation (2.9) and use equations (2.2) and (2.10).
With HessianH, and gradienty, for problem (2.3) the Newton step, is given by

(2.12) Hs=—g.

REMARK 2.7. So far we assumed that the state and costate equations are feasible at every SQP step (reduced
SQP). Thus the Newton equation is given®y12) In case of a full SQP algorithm, where feasibility is not required
at each step(2.12)has to be modified to

(2.13) Hs=—Lu—Lughy ' h+hihy*Loghy ' h—hih, L.

The right hand side 2.13)consists of the residual of the design equation (this term is equal to the reduced gradient,
g, when the state and costate equations are solved), two terms that vanish when feasibility is achieved, i.e., when
h(¢,u) = 0, and the last term that vanishes when the costate equation is feasible, i.e.Lwlem, \) = 0.



THEOREM 2.8. Let Assumptio2.1hold. The Newton step, defined by{2.12)can be computed by solving the
self-adjoint system of equations

£¢¢ £¢u h; v 0
(2.14) Ly Lyuw S =| —g
h¢ hu 0 w 0

REMARK 2.9. In case of a full SQP on a nonlinear problem, the right hand sid@df4)should be modified to
—(Ls, Ly, L) to be consistent wit(2.13)
Proof. Fors € Y definev € X andw € Z* by

voo= —h;l hy s,

(2.15) ?
w = —h¢ (£¢¢U+£¢u s).
Then by (2.11) and (2.12) the Newton stepsatisfies the equation

—g = IRy Loghythus —hlhy” Louws— Lughy' hus+ Loy s
;Cuqﬂ) + Loy S+ h;f (—h;x £¢¢U - h;x ﬁqm S).

We have shown that solving (2.12) for the Newton stefis equivalent to solving (2.14). Writing the right hand
side of (2.14)(0, —g,0)T, as(r1, r2,73)T = r, we denote (2.14) by

(2.16) Ke=r,
and the exact solution of (2.16) hy. Thus,K is defined as

Los Lou h
(2.17) K=\ Lus Luu R
he he O

NOTATION 2.10. In the following, the vector of unknowits, s,w)? will often be referred to as. For the
description of iterative processes, the superscriptswill denote current and new iterates, respectively, e:fthe
currentx—iterate. The solution of an iterative process will be indicated with the superscrpg.,z*. In addition, the
error in the vectorr is denoted by; specifically,e is the error in the current—iterate. The error in the components,
e.g.s, will be denoted by,. Thus, for instance,

/UC /U* /IC)
.T/'C _ J)* — Sc _ 5* — eg — eC.
w° w* <

3. The Solution Method. In order to solve for the Newton step, a defect correction process is employed. The
defect correction process (see [12], [24]) is derived in this section. Convergence of the process is governed by the
choice of approximating operatfi. A detailed discussion and convergence analysis is done in this section.

3.1. The Defect Correction ProcessSolving for the Newton step, i.e., solving (2.12), is equivalent to solving
Kz = rin (2.16). The idea of the defect correction approach is to reptabs a simple approximatiofC. The
solution of the approximate problem

(3.1) Kaz=7



is then reached iteratively. It is essential th&t! be relatively simple, i.e., that it is much easier to find a solution
to (3.1) than to (2.16).
We now introduce the defect correction process.
AssuUMPTION3.1. Guided by the treatment [12], we assume the following.
i.) Letk: & DD — D c £ continuous and bijective;, £ Hilbert spacesD, D closed subsets.
ii.) The defect

(3.2) d(i) = K& — 7

can be evaluated for approximate solutighg D to all neighboring problems. The neighboring problem is
to findi € D with K & = 7 for given7 € D.
iii.) The approximate probleif3.1)can be solved uniquely fére D, i.e., we assume the existence of an approx-
imative inverseC—! of K such thatC—! Kz ~ z for z € DandK K~ 7 ~ 7 for 7 € D.
Assuming that we know an approximatioh € D for z* and that we have computed its defégt®) = K z¢—r =
K z¢ — K x*, this information can be used for the computation of an updatby means of solving a problem (3.1).
The errore® = z¢ — z* satisfiese® = K1 (r + d(z¢)) — K~1r = K~ d(z°). Instead of performing the difficult
solve with K, we use the approximatiofi to computez® = K1 d(z¢) and use this quantity as a correction 6t
The iterative usage leads to the scheme

(3.3) et =a¢4e¢=1T-K 1K)z +2°
with 29 = K11 as initial iterate. We defin® by the relationR := K — K and callK + R asplitting of . With
this notation we write (3.3) as

(3.4 Kzt =r—Ra¢

to indicate that we do not really apply* but solve the system witK.

3.2. The Modified System Defect Correction.We will in the following apply the defect correction process not
precisely in the way it was derived in the above Section 3.1, but introduce two changes. First, the defect correction
process described in Section 3.1 can be nested, i.e., an inner defect correction loop can be used to find the solution to
the system (3.4) that has to be solved in each step of an outer loop. This is the point of view we take in the following
presentation. Secondly, we modify the system (2.14) that we are interested in solving with the help of an additional
operatorP. We call this approach the modified system defect correction process.

We now turn to the splittings we propose for the solution of (2.14) by the process (3.4). The chhide tife
splitting K = K + R is crucial for both applicability and convergence of the iterative scheme (3.4). Our chdice of
is motivated by the structure of the underlying system (2.14). We now supplement Assumption 2.1.

ASSUMPTION3.2.Let L, # 0, L, exist

We will in the following see that the pa#,,, in the system is crucial for the performance of the solution
method. The convergence requirement is

LM ~T) < 1.

In general L., will not model the Hessiar#{, very well, and convergence is not necessarily ascertained. To ensure

convergence, and to allow for convergence acceleration, we introduce an ogratdch will be used to modify the

system. The choice @ will be discussed subsequent to the convergence analysis in Section 3.3.
AssumMPTION3.3. Let an operatofP on ) and a real scalak exist such thaf + ¢P is invertible.



Here,I is the identity ory. Note that Assumption 3.3 is necessarily satisfied for smalhe operato® will in
general be applied to modifg,.,. As an abbreviation we use

Lue= Lo (I+€P).

Thus, L, is naturally regained a8, .

3.2.1. Outer Loop. To solve the systen’C = = r in (2.16) efficiently, we modifyC, K given in (2.17), through
repIaCing’Cuu by L:u,e = »Cuu (I + 67)) to

L:d)(b L:d)u h;
(3.5) Ko=| Lup Luc hX

hg ha O
With

0 0 0
(3.6) Ro=| 0 —LuweP 0 |,

0 0 0

the equalityCo + Ro = K holds so thak o, Ro define a splitting ofC.
For the solution ofC x = r we start a defect correction process given by

3.7) Ko it =r —Roal,

which is equivalent to

n+1

£¢¢ £¢u h;j v 0
(3.8) Ly Lye h s = —go + Lyu€Ps™
h¢ hu 0 w 0

We start at, = 0 with a starting point?, s, w°. In each step of this defect correction process, a linear system has to
be solved. One possibility is to do this via an inner defect correction loop.

3.2.2. Inner Loop. For the inner loop we define a splitting of the system mattix in (3.8). The splitting
Ko = Kr + R; we propose is given by

i 0 0 h; Lss Lou O
(39) Kr= 0 L:u,e h;; , Ri= »Cu(b 0 0
he hy, 0 0 0 O
The corresponding inner loop is
(3.10) Kraht' =ro —Ryaf,

wherero is the right hand side of the outer loop, i, is given byro = r — Ro zg. This amounts in each step to

k+1

0 0 h; T _£¢¢ LL']f — L:d)u {EIQC
(3.11) 0 Ly hX Lo = | —g0+ LuuePs™ — Lypa}
h¢ hu 0 T3 0

Starting atk = 0, usez} = z33. Set the solution’} of the inner loop as the new outer loop iterafs™.



REMARK 3.4. For the splitting defined b{8.9), the iterative schemg.4) can be viewed as applying (forward)
Gauss—Seidel on the system

hy Lou Loo
(3.12) h;: Acu,e £u¢
0 he hy

Becausg3.12)is, even fore = 0, a non—selfadjoint permutation of syst€th17) symmetric Gauss—Seidel (i.e.,
forward Gauss—Seidel followed by backward Gauss—Seidel14¢e[14]), does not lead to a selfadjoint operator
M=T—-K'Kin(3.3).

3.2.3. One Inner Iteration. If only one inner iteration is performed, inner and outer loop can be combined in
one closed formula

(3.13) Kartt =r — Rt

This is described by (3.11) with” replaced byz5. The corresponding splitting i€ = K + R with £ = K,
R =R; + Ro, and given by

) 0 0 Ay Lso  Low O
(3.14) K= 0 Luc b |, R=| Lus —LuwweP 0O
hs he O 0 0 0

3.2.4. Applicability. With the splittings defined in the preceding Sections 3.2.2 and 3.2.3, the saldtiofthe
scheme (3.4),i.e., t& 2t = r — R z¢, can be computed at the cost of solving three linear subsystems.

LEMMA 3.5. Let the Assumption®.1, 3.2and 3.3 hold. The solution to the systerf&10)and (3.13)can be
accomplished at the cost of solving three linear subsystems.

Proof. Since the systems are blocktriangular, back—substitution furnishes the solution.

1.) The solution:**1 to (3.13), i.e., toC 2%+ = » — R z* | can be computed by successively solving the systems

x k+1 k k
hy x3 1 — Loy 2] — Loy T3 ,
k+1 : : k+1
Lo J)2+ = 19— Lug x]f + Lo 6731‘15 —hy .133+ )
he x’f“ = r3—hy xé“ .

2.) The solutionz¥*! to (3.10), i.e., toCr 25+ = ro — Ry 2%, can be computed by successively solving the
systems

x k1l _ k k
h¢ i3 = Toa— Loy Lr1— L LI 2
k41 _ k k+1
Lo Tra = To2~— Lug Tr1— hy Trs
E+1 k+1
he Ty = Tos— hy Ty -

0 We now turn to the convergence analysis of the iteration (3.4) for the proposed splittings.

3.3. Convergence Analysis.The convergence of the defect correction process depends on properties of the
iteration operatoM = I — KK = —K~'R in the process (3.3). First, we state the basic requiremeritfon
Theorem 3.6. We then address the necessary and sufficient conditions for convergence of the modified system defect
correction for the processes described in Sections 3.2.1, 3.2.2, and 3.2.3. For this, we investigate the convergence—
governing matrices\o, My, and M of the processes. The composing operators are derived from the respective
splittings defined in (3.5) and (3.6), (3.9) and (3.14).



The basic convergence requirement/his described in [30, Cor.1.13].
THEOREM 3.6. Let Assumption2.1, 3.1, and3.2hold. If the condition

(3.15) p(M) <1

holds for the spectral radius of M = I — K~1K in process3.3), then the iteration converges, for everand for
arbitrary initial elementz°, to a unique solutior* of (2.16)

In the following we often need the invertibility of the reduced Hessidnand of a modificationH. = H +
L..€P. The invertibility is guaranteed for smalunder the usual second order sufficiency conditions for optimization
problems because these require, with some constant

for all those(d¢, du) that satisfyhg d¢ + h,, du = 0. The last condition allows to substituie = —h;l hy du, thus
leading to

he hy ™ Lo hy h(6u, 6u) — hy hy ™ Lou (8u, 6u) — Lughy hu(8u, 6u) + Lo (6u, Su)
= H(u, éu) > c(||h;1 ho 6u|? + ||6ul|?) > cl|dul|®
ThereforeH is invertible and so i¢{, for smalle.
ASSUMPTION3.7. Let a real scala > 0 exist such that{, = H + L,.€P is invertible for0 < ¢ < &.
In addition we will need the following lemma to prove the central statements in Theorems 3.9, 3.10, and 3.11.
LEMMA 3.8.Let Assumption®.1and3.7hold. Then the inverse of the operatérdefined in(2.17) written as
Knt Kp' K
K™= K™ ’CQEI ’ngl J
Ky Ky Kss'

is given by its entries

Ki' = hy heH 'R,

K = hy'hyH™!,

Ky = hy' = hy "B HT R R Loghy ' + hy ' hy H Lughy '

Ky = ML,

Koy = HhIhy Loshy' —H Lughy ",

Ksg' = —hy*Loshy' +hy Loshy hu M RS hy *Loshy ' + hy *LouH Lughy, !

—hy X LouH by ™ Loghyt —hy " Loghy ' huH ™ Lughy,.

Here, H, explicitly given in(2.11) denotes the reduced Hessian of the constrained profi?et) For the operator
Ko in (3.5)which differs from only in the central entnt, ., the inverse is given by

K 171176 K ;2{5 K 173176

’C51 = 15,Xe ’C2721,e ’C2731,e )

Kise Kzl Kas
where the entries differ from those &6f ! insofar asH is replaced by, = H + Lyu€P = h by Ly h;l ha —
hy h;x Loy — Lug h;l hoy + Ly (I + €P).

10



3.3.1. Convergence Analysis of the Outer LoopWe now investigate the convergence properties of the outer
loop. The convergence af* = (v", s",w™)? can be characterized by the convergence of the sequé&ncEhis is
important because in the application (see Sectianid)a vector which consists of functions defined also on the whole
two—dimensional domain whereass only defined on the boundary.

THEOREM 3.9. Under Assumption®.1, 3.2, 3.3and3.7 the following statements hold.

1.) The iteration(3.7) converges if and only if the iteration

(3.17) s = Koy Lo€Ps™ + 7

converges, wheré = K'r.
2.) If the spectral radius of — (H + L., €P)~! H, defined on the boundary, satisfies

(3.18) p(I — (H + Ly €P) P H) < 1,

then the iterates f3.7) converge to the solution* of (2.16)
Proof. Denotingk," by its entriesC; ;L (4,5 = 1,2,3), we see thatMo = I — K5 'K is given by

ij,€

0 M, 0
(3.19) Mo=| 0 M 0
0 M; 0

where
M; = K33 Lou€P
fori = 1,2, 3. By the iteration (3.7) we have
ittt = Kolr + (I — K5 'Ro)zpy = Ko'r + Mol

or by (3.8) withz}, = (v™, s, w™)T

= My s™+ 71,
(3.20) sl = My s™ + 79,
w71,+1 — M3 sn + fS ,

wherer = f(alr = (71,72,73)T. It is immediate that the convergence of the sequerfge= (v",s™, w™)? is
equivalent to the convergence#f which proves the first statement of the theorem.
The entryM, is given by, see Lemma 3.8,

My = K33 LouweP =M LoweP =1 — (H+ LuueP) " H.

By Theorem 3.6 the condition(M>) < 1 is sufficient for convergence of the sequerteand by part 1.) also for the
convergence afp. 0

From the result (3.18) it can be seen that we can set the convergence rate of the outer loop by effosing
appropriately. However, the choice d? influences the convergence of the inner loop as well.

3.3.2. Convergence Analysis of the Inner LoopThe convergence properties of the inner loop are described in
the following theorem.
THEOREM 3.10.Under Assumption®.1, 3.2and 3.3the following statements hold.

11



1.) The iteration(3.10)converges if and only if the iteration
(3.21) bt = (I 4+ eP) ™ (L H — Dab + 7

converges, where = K; 'ro.
2.) If the spectral radius of the boundary operatdr+ ¢P)~! (£, H — I) satisfies

(3.22) p((I+eP) M (LodH-1)) <1

then the iterates of3.10)converge to the solutios;.
Proof. The inverse of the operat#i; defined in (3.9) is given by

hy tha Loy thihy ™ —hy tha Ly hy!
(3.23) Kt = L hXhy ﬁui 0
h— 0 0

Thus, the operatoi; = I — I@jl K in (3.3) is for the inner loop explicitly given by

hy thuLye(Rhy* Loy — Lug) by by Ly thihy " Loy 0

u Vo u,e’u g
(3.24) M = —Ew(hqfh “Lop — Lug) —Euﬁhlfh “ L
hg ™ Los hy ™ Lou

Denoting the following composed operators@yQ, N, C, U,

G = —h;l R,
Q = —ﬁ;i (hx hix £¢¢ — £u¢),
(3.25) N = —L,ih¥ h_ Lo,
Cc = h_ Ly,
U = h;x £¢u7
M can be written in the form
GQ GN 0
(3.26) Mi=| @ N 0
C U 0

Hence the inner iteration with = (7} ;, 2} 5,2} 5)" can be written as

k+1 k k -
Ty fGQxI!1 —|—GN$L1 + 71,

(3.27) aitt = Qak + Nak )+,
k+1 _

Ty = C’x’f}l + Uat:’f!2 + 73.
Multiply (3.27) by G and substitute the resulting equality into (3.27). This yields
(3.28) it = G+ — Gy,

From this equation it is clear thatif; , converges, then so doe$ , and by (3.27) alsa’} ;.
To show the second statement, use (3.28) in the fdrmn= G = , + 71 — G’ to eliminater} , in (3.27) which
gives

xllcgl = (QG+N)37];,2+7:2+Q771—QGF2.

12



By definition (3.25), the operat@p G + N coincides with(I + ¢P)~! (£, 1H — I) (see (2.11)), because

uu

QG+ N= L-1hx h;x Lo h;l By — Eai Loy h;l hy — L7LRX h;x Lo

u,€e ' Yu u,e u

= L;1(H-Luw)

u,€

= (I+eP) L (L tH-T).

Therefore, ifp((I + €P) ™' (L0 H — 1)) = p(Q G+ N) < 1, then by Theorem 3.6 the iterates, converge and by
the first assertion also the sequentel

3.3.3. Convergence Analysis in Case of One Inner lterationln case only one inner iteration is performed,
convergence is determined as follows.

THEOREM 3.11.Under Assumption®.1, 3.2and 3.3the following statements hold.

1.) The iteration(3.13)converges if and only if the iteration

st = (Lt H - 1) s

converges.
2.) If the spectral radius of the boundary operatof . H — I satisfies

(3.29) p(LytH—1) <1,

then the iterates iif3.13)converge to the solution* of (2.16)
Proof. The inverse of the operat#it = K; is given in (3.23). Thus, in this case where only one inner iteration is
performed M = I — K~ K is given by

hy tha Ly (B Log — Lug) by huLyt(hXhy ™ Loy + Loy €P) 0
M= —Loc(hihy™ Log — Lug) —Loe(hihy ™ Louw+ LuweP) 0
h;xﬁ(lw h;xﬁ(bu 0

We denote the composed operatorshy), C, U as before in (3.25) and lé{; be defined by

Nl = —,C_l (h;; h;x ﬁd)u + ﬁuu 673) .

u,€

ThenM can be written in the form (3.26) witly replaced byV,. The proof follows the same lines as for the one of
the previous theorem.
By definition of G, @, C, U in (3.25) and ofNV; above, the operatdp G + N; equals
Lothlhy™ Loghy hy — Loyt Lug byt hy — Lot h hy ™ Lo — Lok Luw €P
=QG+ N - L, Ly €P
= £17,£ (H = Luu) — ‘c;,i‘cuu ep
= +eP)  LyptH -1
=L,tH-1I

3.3.4. Discussion of?. The preceding convergence analysis shows th&tig not present, or, equivalently, if
e = 0, there is no outer loop in the nested defect correction process. In that case, the convergence requirements (3.29)
and (3.22) coincide and are given by

p(LotH —T) < 1.
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In general £,,,, will not model the Hessiar{, very well, and convergence is not necessarily ascertained.

In order to solve the system (2.14) efficiently with the defect correction approach, we modify (2.14) through
replacingL,,, by L, = L., (I + €P). We have seen in the preceding Sections 3.3.1, 3.3.2, and 3.3.3, that the
convergence rate of the processes can be determined by appropriate ch@lcétoafever, finding:P that performs
well both in the outer and inner loop requires solving conflicting tasks. Theorem 3.9 suggedfs th@ should
be small in the sense that + L., €P is only a small perturbation té{. Theorem 3.10 indicates that, . should
approximaté — L, fairly well, becaus€l +¢P)~' (L,, H —I) = L+ (H — L) is the convergence-governing
part. The problem to be solved is

Irgnmax {p(I—(H+LuweP) "H),p(I+€eP) " (LpaH —1)} .

If only one inner iteration is doné&,,, . is required to approximate as described in (3.29). In both situations, i.e.,
in the nested defect correction and in the case with only one inner iteration, some knowledge of the operators involved
is necessary for an appropriate choicgofHowever, the defect correction process with one inner iteration is easier
to apply than the nested defect correction process (because it allows for a closed representation), and thus preferable
whenever applicable. If there is not much information available on the Hessian, choosing a ‘“matitl applying
nested defect correction seems to be more promising. We will discuss the ch@icimobur example problem in
Sections 4.5and 4.7.

4. Application: The Small Perturbation Potential Problem. We consider an optimal control problem governed
by a partial differential equation. The example problem is motivated by problems of aerodynamic optimization. In the
following, we derive the example problem and state the equations relevant to the approach delineated in Sections 2
and 3. Subsequently we turn to the discretization and the finite—dimensional solution of the optimization problem. We
include a convergence estimate for the example using local mode analysis.

4.1. The Small Perturbation Potential Equation. We start with a short derivation of the state equation that
governs our optimal control problem. We assume inviscid irrotational flow modeled by the continuity equation,

V(pv) =0,
wherep is the density of the fluid andthe velocity field. The potential functio®, is defined with the relation
v =Vao.

The density is related to the potential by the isentropic density law (see, e.g., [13]). We consider a slender body aligned
with the z—axis, and define a perturbation potentidly

® = Uoo(x + ¢)a

whereU,, is the free—stream velocity. Under the assumption of a dominatitpmponent of the velocity field,
and neglecting terms that are proportionapfoand thbf/, the following first-order transonic small-perturbation is
obtained (Prandtl-Glauert equation):

(1 - Mgo)d)zw + d)yy =0.

If y = u(x) is the equation of the surface of the slender body, it is possible to set the surface boundary condition on the
x—axis, that is ayy = 0. The presence of the slender body will appear in the computation only through the boundary
condition

(4.2) V= (Uso + 0ty =~ Usoltiy.
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In terms of the perturbation potential, (4.1) is given by the normal derivative

On = Ug.

The boundary conditions at the farfield for the perturbation potential are set such that it does not affect the farfield
velocity.

The small perturbation potential equation has been for a long time the basis for potential flow theories as it is a
simplified form valid for flow fields along slender bodies aligned with th@xis. We turn to form a simple optimal
control problem based on that model.

4.2. The Optimal Control Problem. The small-perturbation potential problem allows us to study a shape op-
timization problem with a boundary control model defined on a fixed domain, thus avoiding the complication of a
changing geometry.

We consider the following minimization problem,

1
(4.2) min —/(¢x—¢;ﬁ)2 ds+ﬂ/u2ds+n2/¢muds,
() 2 Jr 2 Jr r
subject to the following state equations,
(1 _Mgo)¢mm+¢yy =0 in Q= (0’1)27

n = ury onT={(z,0):0<z<1},

43 on = u {(@,0):0 <z <1}
(bn =0 on Iy uUT,,
¢ = 0 on I'y.

Here, the parts of the boundary, T, andT; are given by, = {(0,y) : 0 <y < 1}, T, = {(1,y) : 0 < y < 1},
andl'; = {(z,1): 0 < x < 1}.

We now give a short explanation of the different terms in the cost functional (4.2). The first term is proportional
to a pressure matching term since in the small disturbance model the pressure of the flow on the slender body is
proportional to the derivative of the potential in the flow directigp, The desired “pressure distribution?, is
given. The second term is a penalty on the control gngs a parameter. The third term is artificially introduced
to the objective function to better model the structure of problems in applications since in aerodynamic optimization
problems often non—zero ternds,, andLy,, are present.

4.3. Existence and Uniqueness of an Optimal ControlLet us assume that the desigr{;z), belongs to the
subspace of functions that can be spanned by the pasi@nkx)}}_,, i.e.,

(4.4) u(x) = z": Uy sin (2mkx),
k=1

where{u}7_, are real numbers andis a positive integer. For that choiceofz) there exists a solution(z, y) of
the minimization problem (4.2) subject to the state equation (4.3) of the form

(4.5) $(w,y) = Y anoi(y) cos (2mkz)
k=1
where then functiongy (y) are given by

(4.6) Yr(y) = % (— tanh(27vk) cosh(2myky) + sinh(2myky))
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fory = /1 — MZ. By inspection the abovg satisfies the state equation (4.3).

REMARK 4.1. By the solution4.5) the operatorh, has the symbo(27k)/¢x(y). (For the definition of the
symbol of a differential operator see, e.g., [21], p.38.) Since the Fourier transformation is a homeomorphism we
conclude that the operatdr, satisfies Assumption 2.1.

THEOREM 4.2. There exists a unique solutiarf (z) to the optimal control problen.2) subject to the state
equation(4.3).

Proof. Let us denote the vector of design coefficientsdy vl = (a1,---,a,). A direct substitution of the
solution (4.5) into the cost functional (4.2) results in a leading quadratic term of thed§@uy with @ being a
positive definite matrix. This proves that the minimization problem has a unique soldtion.

4.4. Optimality Conditions and the Newton Step. The first—order optimality conditions of the problem (2.1),
as outlined in Section 2.2, are the state, costate, and design equations (2.5), (2.6) (2.7). The state equation is given
in (4.3). The adjoint equation for this problem takes the form

(1= M2 s+ Ay = O in Q.
(47) An = _(¢mm - d)gz) + M2 Uy on Fv
A = 0 on 90 —T.

From the design equation (2.7) we get the gradient

(4.8) g = —det+mu+nds onT.

The Newton step satisfies (2.14) with the operators

0|Q 0|Q
Loy = ) Loy = - ) Lup = Loy =
b0 { Ol } m - 1I|r 6= Lo { S }

(1_M2 )arr“‘aulﬂ O|Q
hs = h>< — 00 vy ) hu — _h>< — .
¢ ¢ { _an|F “ —am|p

Explicitly, the Newton steps, satisfies the following system of PDEs:

and

4.9) (1= MZ2)wey +wy, = 0 in €,
' Wy —Vgp +M28, = 0 onT.
(4.10) MS+ MU, —w, = —g (z,0)on T,
w(l) = g(1).
(1= M2)ves + Uyy = 0 (z,y)in Q,
(4.11) Up—8; = 0 (z,0)on T,
s(0) = 0.

The defect correction process described in Section 3 will now be applied to the example problem introduced in
Section 4.2. Convergence of the solution process (3.4) is governed by the singular values of the opésatdfs,
andM derived in Sections 3.3.1, 3.3.2, and 3.3.3. The operators for the small perturbation potential problem are given
in Section 4.4 so that, M, and M are easily found for the example.

Knowledge of the operators allows to cho@3such that small convergence rates are obtained. We now use local
mode analysis of the convergence—governing operator to choose the ofer8torilar analysis has been introduced
in the past to approximate the reduced Hessian of optimization problems governed by PDEs (see, e.g., [1], [2], [3])-
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4.5. Choice ofP by local mode analysis of the PDEsThe local mode analysis is performed locally around a
point on the boundary, ignoring the boundary conditions @if2 — I'. Thus for a boundary value problem, as we
have, itis only an approximation. We deliberately do not insist on the exact analysis since it can not be done in general
applications while the given analysis can be applied (after linearization and freezing of coefficients when the problem
is nonlinear).

We choose to use the splitting of Section 3.2.3, i.e., the case of one inner iteration. We have seen in that section
that convergence depends on the eigenvalues of the op@’raioﬁ;}i?—( — I . We study one Fourier component of the
error,

e(z,y) = é(wy,ws) el @rotwsy)
The interior equation in (4.3) relates andw, by
(4.12) (1 - M2)w? +wi =0.
We choose the decaying mode solution for Equation (4.12),
(4.13) wy = iy/1 — M2, |w].
The boundary equation implies that
V1= M2 |w| ¢ = iw .

We arrive at the Fourier symbols of the operators in the convergence—governing oferator

hg = bl = I=MZ|wl,
iLu = —ﬂqf = —iw,
(4.14) Log = —Dpw = wi,
Low = —Lug = —mpiw,
Low = M.

These imply that the Fourier symbol of the Hessian is given by
A . R R R . . R R . 2
H=hyhy Loghy' hy —hi hy™ Low — Lug by hu + Low = wf — 2772% + 1.
By (3.29), the choice of the operatfris such thatP ~ £, H. We obtain the approximated symbol of the desired
operatorP as
A 1 2
(4.15) P — (wf _ 2772&) ,
m w1
Since the second term in (4.15) does not correspond to a differential operator, and because it is of lower order than the
first term, our first approximation d? is given by
1
(4.16) P =——Dg,.
m
We now turn to use the same local mode analysis to approximate the asymptotic convergence rate of the defect
correction process for low mesh sizeThe above symbols (4.14) imply that the symbol of the convergence—governing
operator7 is, wherecP is taken to benl—lwf,

T=L'H-1=01+eP) " LotH -1
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Using Parseval identity we estimate an upper bound for the convergence rate of the iterates of the defect correction
process by

(4.17) w< max (f* (w) f(w))% ,

wherew = ’% for k ranging from1, ..., n. Here,n is the number of grid points on the bounddryand7* is the
complex conjugate of .

4.6. The Discretization. We define a uniform grid on the domaity containingn grid points. The perturbation
potential,¢, is defined on the grid vertices, and the control is defined on the mid—interval points on the bdundary
i.e.,¢ € R™ andu € R", withn = \/m — 1. We then apply a second order finite difference discretization to the
problem (4.2), (4.3). The stencils can be found in (4.24) and (4.26). The resulting finite dimensional problem is to
minimize a quadratic functional under linear constraints,

(4.18) min  F(¢én,un)S.t. Aoy + Buy = b,
(on,uN)

where the discretized objective function can be written as

1
(4.19) F =5 6§ Hos o + "—21 uE Howun + 12 6% Hypw un + 6% e + uZd.
The discrete Lagrangian is given by

(4.20) L(on,un,An) = F + X5 (Aon + Buy — b).

Note that for this (quadratic) problem the second partial derivaiiygs L., and L., of the Lagrangian coincide
with Hyy, Hg, and Hy,,, respectively.

Applying the first order optimality conditions (Karush—Kuhn—Tucker conditions, see, e.qg., [20]), we have to solve
the system

Loy o Lou AT ON —c
2 Lud) m Luu BT un = _d )
A B 0 AN b

where
oy €EIR™, uy € IR", Ay € IR™, ce R™, de IR", be IR™,
L¢¢ e E{WLXHL7 Luu E B7L><YL7 Ld)u E E{WLXH7 A e ]Rmxm7 B e Ran.

If Ais invertible, the discrete state equatidm + Buy = b can be solved fovy, ¢on(un) = A1 (b — Buy).
Thus, we can define the discrete unconstrained problem

(4.21) min J(UN) = F(qu(uN),uN).

UN

In order to get the gradienf,y, of the unconstrained problem (4.21), the state and the costate equations must be solved
exactly. This means that for a given contagl the following set of equations has to be satisfied,

L¢¢ AT d)N B —C — L¢u uUnN
A 0 Av ) b— Buy '
Then the gradient can be computed as

gn = BT AN +m1 Lywun + 12 Leudn + d.
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The Hessian of the discrete unconstrained problem (4.21) is given by
(4.22) H=B"ATLy A 'B-L,A'B-B" A" Ly, + Lyu.

The Newton stepsy, of the discretized unconstrained problem (4.21) can be computed by solving the system

L¢¢ L¢u AT UN 0
(423) Lu¢ Loy BT SN = —gnN
A B 0 wWN 0

4.7. Choice ofP by local mode analysis of the Finite Difference EquationsWe now perform the local mode
analysis, similar to the local mode analysis in Section 4.5, taking into account the specific discretization. By analyzing
the finite difference equations we hope to get a better approximation of the reduced Hessian and as a result a better ap-
proximation of the operatdP. Note that although the operators analysed in this section are finite difference operators
and not differential operators, we still denote them as before to avoid excessive notation.

The discrete interior equation has the form

(4.24) adij +b(dijr1 + dij—1) + c(Piv1,; + di—1,5) =0
where
b—l = (1—M2)b, a=(1—M2)(—2b) —2b
*ﬁa C*( - oo)ﬂ a*( - oo)(_ )_ :

We study one Fourier component of the error,
e(z,y) = &(01,02) "1 ETO20),

where the mesh sizes in the and in they—directions are assumed to be a constanthe discrete interior equation
(4.24) relate®; andfs (a + 2(ccos by + beosby) = 0) to

a+ 2ccos by

(4.25) 0y = cos!| 5 ]
The discrete boundary equation has the form
1
(4.26) agij +2b¢i 11+ c(Giv1,j + dim1,5) = E(W’ —Ui_1).

In terms of the Fourier component of the erroginthis implies

(4.27) (a + 2ccos by + 2be2) (01, 02) = % sin(%) (61),
or equivalently,
(4.28) 2bi sin by ¢ = % sin(ﬁ)a.

h 2

Using the identityin cos~! 2 = /1 — 22 together with Equations (4.25), (4.27), and (4.28), we arrive at the symbol
of the operatoh,, given by

R _Ax_i' 3 a+2ccosfi\2
h¢_h¢_h\/1 ( 2b )
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The other operators in the convergence—governing opeiayéﬂ — I, have the following symbols:

}Alu = _ﬂfj = —% sin(%l) = —}% 2(1 — cos ),
L — —ﬁmzi(l—cosﬂl),
(4.29) A o
Low = —Lup =m2hu,
Auu = M.

The reduced Hessian (2.11) contains the opehq‘btbhu and its adjoint. The expressi(inglfzu can be simplified to

1
V(= M2) — H( = M2)2(1 — cosy)

—
hi b =

This leads to our second choice of the operdpr

2 —1
(4.30) p__L <(1 — M2)I + %(1 - M;)QDM> Dy .
m

Having chosen the operat®y, the asymptotic convergence estimates follows as in Section 4.5.

4.8. The Defect Correction ProcessOn the discrete level, the linear system (4.23), which we denote by
(4.31) Kzy=rn,
has to be solved in order to compute the Newton stgp,The defect correction process is described by the iteration
(4.32) f(m} =ry — Razf,

where K and R define a splitting of, i.e., K + R = K. Convergence of the solution process (4.32) is governed
by the singular values of the operatov$o, M, and M derived in Sections 3.3.1, 3.3.2, and 3.3.3. Their discrete
counterparts\/o, M;, and M are analyzed with local mode analysis in Section 4.7. Convergence of the outer loop
depends on the spectrupiMo) = p(I — (H + L, eP)~* H). Convergence in the inner loop is governed by
p(Mp) = p((I +eP)~" (L,tH —I)). If only one inner iteration is done, we investigate)/) = p(L,1H —I).

One specific choice dP was given in Section 4.5, motivated by the local mode analysis of the differential operators.
The corresponding matrix is

1

Dmm,N .
Analyzing further the finite difference equations, the local mode analysis in Section 4.7 motivates secondly to use the
matrix

1 h2 -1

(4.34) Py=— (77_(1 — M2)I + Z(l - M§O)2me) Dy N -
1

The main computational work in the defect correction process with the splittings defined in Sections 3.3.1, 3.3.2,

and 3.3.3 is the solve with, and its adjoint. This is the solution of the linearized state equation and of the adjoint

equation, which amounts to the solution of two linear PDEs in our example. On the discreté Jeigetepresented

by A, and the main computational work in each iteration is the solve wigmd A”'.
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4.9. A Preconditioned Krylov Subspace Method.Linear systems like the above (4.31) can be solved with
Krylov subspace methods, e.g., the well-known Krylov subspace method for general matrices GMRES, see [23].
However, with ill-conditioned problems, as the one given in Equations (4.2) and (4.3), the number of steps these
methods require can be as high as the dimension of the linear system, if they do not fail altogether. A high number
of steps usually presents an unacceptable computational effort. However, Krylov subspace methods can be very fast
and efficient for well-conditioned systems, cf. [25], [29]. Under certain assumptions, see [6], superlinear convergence
can be proven for GMRES. In the following we will see that the results furnished by the local mode analysis for the
modified system defect correction can enhance the performance of preconditioned GMRES iterations.

The preconditioner we use is closely related to the splittings we propose for the defect correction; it is in fact
identical to the splitting matrix< introduced in Section 3.2.3. Thus, the linear system (4.31) is replaced by the
preconditioned system

(4.35) K 'Kay=K lry.

In each iteration of the preconditioned GMRES, the matrix—vector—prdduétk = = =+ must be computed. This
can be done successively by solving three linear subsystems, in a similar way as described in Section 3.2.4. In this
respect, the work required in one GMRES iteration is roughly the same as in one defect correction iteration, i.e., one
solve with A and one solve witid” (see [4]). However, the implementation of GMRES is more difficult than that of
the defect correction process. For example, re—orthogonalization, which can be very costly as well, is often necessary.
In addition, storage requirements increase as the iteration progresses, thus rendering the method unattractive of very
large problems. For these issues see, e.g., [23], [14].

The eigenvalues of the preconditioned system makfix' K are bounded below in absolute value hy The
number of eigenvalues distinct fronare at most, wheren is the number of design variables. For these results see [4].
Since the performance of GMRES, similar to that of other Krylov subspace methods, depends on the eigenvalue
distribution of the underlying system matrix (see, e.g., [6]), the theory indicates that GMRES will take not more than
n + 1 steps. The numerical results are described in the following Section 4.10.

4.10. Numerical Results.In the numerical tests, we did not restrict the design varialile), to the subspace of
sin functions, thus extending the computations beyond the theoretical treatment in Section 4.3.

We show results of the defect correction process for the case of one inner iteration as described in Section 3.2.3.
The system is modified witl’, and P, defined in (4.33) and (4.34), respectively. For the paramifgr, the values
0.0,0.1,0.5,0.9 are used in the computations. We consider the combination of cost function parameters.o,

12 = 0.0, andn; = 1.0, 7, = —1.0. For the same combinations of parameters, GMRES is tested on the preconditioned
systemK ~! K. We do not give the convergence history for unpreconditioned GMRES, but state that the number of
iterations required for convergence is almost equal to the dimegsio# n of the system in all considered cases.

In Figures 5.1 and 5.2, typical convergence behavior of the defect correction process and preconditioned GMRES
can be seen. The figures depict the main results, the small and mesh—independent convergence rates of the defect
correction process that are exhibited right from the beginning of the iterations, and the improvements in GMRES
achieved with the suggested preconditioning.

In the tables, results are shown for systems of dimensipmwhich corresponds toéx 4 grid, up to dimension
8514, which is a grid of64 x 64 points. We always chose the discretization/direction equal to the discretization
in z—direction and refer to this number by the dimensioaf the design space. The numberof state variables is
given asn = (n + 1)2.

Stopping criterion for all iterations is a threshalgi> for thel,—norm of the residual, i.e., we stop if the following
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requirementis met,

1 2m-+n
Kaxy — L= Kazy—rn)2 <1075,
1K zn —rnlli, T ; (Kzn —7TN)3

Performance of the defect correction process is shown in Tables 5.3 and 5.4. In the considered cases we only allow
for one inner iteration. For the choice of cost function parameggees 1.0, 772 = 0.0 in Table 5.3, the term& 4., Ly
in K vanish. This does not only simplify the convergence analysis, but also often admits a faster numerical solution
than the second choice of nonzefn This is easily seen by a comparison with Table 5.4. The dimension of the
design spacey, and of the entire system are given together with the numerical resulty famd P, defined in (4.33)
and (4.34), respectively. For both choiceghthe number of steps until solution and the CPU required by the iterative
process are given. The convergence rate, the ratio of successive errors, is the asymptotic convergence rate valid at the
end of the defect correction iterations. This rate is approximately a constant throughout the defect correction process
for given parameters and grid. The largest eigenvalue of the nmitrbefined by the splitting is a close upper bound
for the convergence rate. The computations are done for four different paraméterd/,. = 0.0,0.1,0.5,0.9.

Although the original system becomes increasingly ill-conditioneti/asapproaches, the modified system defect
correction still performs well fod, = 0.9. The convergence of this defect correction is mesh—independent. The
asymptotic convergence rates, in the limit of mesh—size going to zero, furnished by the local mode analysis for each
specific combination of parameters is given in Table 5.5. The discrepancy between the results of the local mode
analysis and the actual convergence rates of the defect correction process is due to the fact that the considered domain
is finite, which is not taken into account by the local mode analysis performed here.

Performance of the preconditioned GMRES is shown in Tables 5.2 and 5.1. Again, the dimensions of the design
space and of the entire system are given together with the number of steps until solution and the required CPU. It
can be seen that the required CPU times for iterations of preconditioned GMRES and of the defect correction process
are of the same order of magnitude. Since the convergence rate of GMRES is in general not constant throughout the
iteration, it is not considered in the tables. Qualitatively, the convergence rate is depicted in Figure 5.1.

In our computations with GMRES we have not only considefednd P, given in (4.33) and (4.34) , but also
P =0, ie., the preconditionef{ with the entryL, o = L,,. It can be seen that the number of steps with this
preconditioner roughly equais/2 (Table 5.2,L4, = 0, L,y = 0) orn (Table 5.1,L4, # 0, L, # 0), respectively.
Investing the computational effort of introducidy or P, as suggested by the local mode analysis pays out in a low
and mesh-independent number of iterations.

All computations were done with Matlab on a SUN 2 X UltraSPARC-II with 2Gb RAM.

5. Discussion and Concluding RemarksWe propose a modified defect correction process to solve efficiently
the (KKT-)system of equations composed of the necessary optimality conditions for optimization problems governed
by state equations. The new method is simple to apply and embed into existing codes. It requires to solve successively
the linearized state and the costate (adjoint) equations with different right hand sides in each iteration. These linear
equations are obtained by first modifying the KKT systéfnwith the introduction of a “preconditioning” operator
P, and then splitting the system into two paits= K(P) + R(P). The solution is obtained by a defect correction
process that requires one solve with the operaftOP) in each iteration. Convergence theory is provided in the
paper for the different splittings that we propose. We also suggest to use the opé(lﬁt)oas a preconditioner
for GMRES. The introduction of the operat®¥ is crucial for fast convergence. We advocate to use the structure
induced by the governing PDE. This can be done by a local mode analysis of either the PDE, or of its discretized
equations. We test both the defect correction process and the preconditioned GMRES on a model problem that mimics
an aerodynamic shape optimization problem. We obtain for both methods fast and mesh—independent convergence.
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The numerical results are consistent both with the convergence theory in the paper and with the approximated local
mode analysis for the asymptotic convergence rate. An extension of the approach to optimization problems with
inequality constraints will be treated elsewhere. Another application might be the area of multidisciplinary design
and optimization problems. When considering a large system of equations, obtained for example in those problems,
a splitting of the KKT system can be applied twice, once to decouple the large multidisciplinary KKT system into
subsystems [1], and a second time to solve efficiently each of the subsystems. Such a method might require the
introduction of an operatd? for the different subsystems as well as for the large system.
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TABLE 5.1

Performance of preconditioned GMRES for cost function parameters 1.0, 72 = —1.0.
(M =0.0)
Py P P
n| dim | #it | CPUins || #it | CPUins || #it | CPUins
54 6| 2.00e-01|| 6| 9.00e-02| 6 | 9.00e-02
8| 170|| 10| 1.80e-01|| 6| 9.00e-02(| 7 | 1.00e-01
16| 594 | 18| 8.20e-01|| 6| 4.10e-01| 7 | 4.40e-01
32| 2210|| 32 | 6.60e+00|| 7 | 3.10e+00|| 6 | 3.12e+00
64 | 8514 || 57 | 8.26e+01|| 7 | 3.29e+01|| 6 | 3.17e+01
(Ms =0.1)
Py P P
n| dim || #it | CPUins || #it | CPUins | #it | CPUins
54 6 | 8.00e-02|| 6| 4.00e-02| 6 | 4.00e-02
8| 170|| 10| 1.70e-01|| 6| 9.00e-02(| 7 | 1.00e-01
16| 594 | 18| 7.50e-01|| 6| 3.80e-01| 7 | 4.00e-01
32| 2210|| 32 | 6.51e+00|| 7 | 2.64e+00|| 6 | 2.72e+00
64 | 8514 || 57 | 8.36e+01|| 7 | 2.46e+01|| 6 | 2.48e+01
(M =0.5)
Py P P
n| dim || #it | CPUins || #it | CPUins | #it | CPUins
54 6 | 8.00e-02|| 6| 5.00e-02| 6 | 5.00e-02
8| 170|| 10| 1.70e-01|| 6| 8.00e-02(f 6 | 1.00e-01
16| 594 | 18| 7.50e-01|| 6| 3.70e-01|| 6 | 4.00e-01
32| 2210|| 33 | 6.71e+00|| 6 | 2.63e+00|| 6 | 2.74e+00
64 | 8514 || 59 | 8.68e+01|| 6 | 2.38e+01|| 6 | 2.52e+01
(Ms =0.9)
Py P P
n| dim || #it | CPUins || #it | CPUins | #it | CPUins
54 6| 9.00e-02|| 5| 5.00e-02f 5| 5.00e-02
8| 170|| 10| 1.60e-01|| 6| 8.00e-02(f 6 | 9.00e-02
16| 594 | 18| 7.20e-01|| 6| 3.20e-01|| 6 | 3.70e-01
32| 2210|| 34 | 6.75e+00|| 6 | 2.48e+00|| 6 | 2.54e+00
64 | 8514 || 66 | 9.37e+01|| 6 | 2.32e+01|| 6 | 2.43e+01
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TABLE 5.2
Performance of preconditioned GMRES for cost function parameters 1.0,72 = 0.0.

(Mo, = 0.0)
P, P P,
n dim || #it | CPUins || #it | CPUins || #it | CPUins
54 4 | 8.00e-02|| 4| 4.00e-02|| 4 | 3.00e-02
8 170 6 | 1.30e-01|] 6| 8.00e-02|| 4 | 6.00e-02
16| 594 10| 5.30e-01|| 6| 3.40e-01| 4 | 3.00e-01
32 | 2210 18| 4.19e+00|| 5| 2.55e+00| 4 | 2.18e+00
64 | 8514 | 33| 5.30e+01|| 4 | 2.34e+01| 4 | 2.15e+01
(M =0.1)
P P P,
n dim || #it | CPUins || #it | CPUins || #it | CPUins
54 4 | 8.00e-02|| 4| 4.00e-02|| 4 | 3.00e-02
8 170 6 | 1.30e-01|] 6| 8.00e-02|| 4 | 6.00e-02
16| 594 10| 5.30e-01|| 6| 3.50e-01| 4 | 2.90e-01
32 | 2210 18| 4.23e+00|| 5| 2.49e+00| 4 | 2.20e+00
64 | 8514 | 33| 5.31e+01|| 4 | 2.35e+01|| 4 | 2.14e+01
(M = 0.5)
P P P,
n dim || #it | CPUins || #it | CPUins || #it | CPUins
54 4 | 8.00e-02|| 4| 4.00e-02|| 4 | 4.00e-02
8 170 6 | 1.30e-01|] 6| 8.00e-02|| 4 | 7.00e-02
16| 594 10| 5.20e-01|| 6 | 3.60e-01| 4 | 2.90e-01
32 | 2210 18| 4.21e+00|| 5| 2.48e+00| 4 | 2.15e+00
64 | 8514 | 34 | 5.35e+01|| 4 | 2.36e+01| 4 | 2.15e+01
(M = 0.9)
P P P,
n dim || #it | CPUins || #it | CPUins || #it | CPUins
54 4 | 7.00e-02|| 4| 3.00e-02|| 4 | 4.00e-02
8 170 6 | 1.30e-01]] 5| 8.00e-02|| 5| 7.00e-02
16| 594 10| 5.20e-01|] 5| 3.20e-01|| 4 | 3.10e-01
32 | 2210 18| 4.20e+00|| 5| 2.37e+00| 4 | 2.28e+00
64 | 8514 | 34 | 5.53e+01|| 5| 2.29e+01| 4 | 2.25e+01
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TABLE 5.3

Performance of DCP for cost function parametgis= 1.0, n2 = 0.0.

(M = 0.0)
P1 P2
n dim || #it | CPUins conv.rate|| #it | CPU ins conv.rate
4 54 || 12| 1.70e-01| 4.4219e-01]| 4 | 5.00e-02| 8.9447e-03
8 170 || 12 | 2.70e-01| 4.8270e-01]| 4 | 8.00e-02| 7.2777e-03
16| 594 | 12 | 1.03e+00| 4.8478e-01|| 4 | 3.10e-01| 6.8858e-03
32| 2210 11| 6.98e+00| 4.8348e-01)| 4 | 2.69e+00| 6.7893e-03
64 | 8514 | 10 | 6.89e+01| 4.8118e-01j| 3 | 2.76e+01| 6.7653e-03
(M =0.1)
P1 P2
n dim || #it | CPUins conv.rate|| #it | CPU ins conv.rate
4 54 || 12| 1.60e-01| 4.3988e-01]| 4 | 5.00e-02| 9.2148e-03
8 170 || 12| 2.70e-01| 4.8033e-01]| 4 | 8.00e-02| 7.5113e-03
16| 594 | 12| 1.02e+00| 4.8238e-01|| 4 | 3.20e-01| 7.1105e-03
32| 2210 11| 6.92e+00| 4.8109e-01)| 4 | 2.69e+00| 7.0118e-03
64 | 8514 | 10 | 6.99e+01| 4.7879e-01)| 3 | 2.79e+01| 6.9873e-03
(M = 0.5)
P1 P2
n dim || #it | CPUins conv.rate|| #it | CPU ins conv.rate
4 54 || 11| 1.50e-01| 3.7660e-01] 4 | 5.00e-02| 1.9846e-02
8 170 || 11| 2.70e-01| 4.1315e-01|| 4 | 8.00e-02| 1.6904e-02
16| 594 | 10| 9.20e-01| 4.1261e-01]| 4 | 3.10e-01| 1.6202e-02
32| 2210|| 10| 6.58e+00| 4.1312e-01|| 4 | 2.65e+00| 1.6028e-02
64 | 8514 9 | 6.65e+01| 4.1044e-01)| 4 | 3.06e+01| 1.5985e-02
(M = 0.9)
P1 P2
n dim || #it | CPUins conv.rate|| #it | CPU ins conv.rate
4 54 || 10 | 1.40e-01| 2.4531e-01) 10 | 9.00e-02| 2.4010e-01
8 170 9| 2.20e-01| 2.1838e-01|| 10 | 1.50e-01| 2.2788e-01
16 | 594 9 | 8.50e-01| 2.1129e-01]| 9 | 5.00e-01| 2.2484e-01
32| 2210 9 | 6.16e+00| 2.0949e-01|| 9 | 3.91e+00| 2.2409e-01
64 | 8514 9 | 6.53e+01| 2.0904e-01)| 9 | 4.31e+01| 2.2390e-01

27




TABLE 5.4

Performance of DCP for cost function parameteis= 1.0, 772 = —1.0.
(Mo = 0.0)
P P,
n| dim | #t| CPUins conv.rate|| #it | CPU ins conv.rate
4 54 || 13| 2.90e-01| 3.8568e-01| 12 | 1.60e-01| 3.5942e-01
8| 170 17| 3.70e-01| 4.8401e-01f| 17 | 2.20e-01| 4.9946e-01
16 | 594 | 20| 1.62e+00| 5.2462e-01|| 20 | 9.40e-01| 5.5028e-01
32| 2210 21 | 1.17e+01| 5.3696e-01| 21 | 7.19e+00| 5.6899e-01
64 | 8514 || 21 | 1.19e+02| 5.4020e-01 21 | 7.51e+01| 5.7651e-01
(Mo = 0.1)
P P,
n| dim | #it | CPUins conv.rate|| #it | CPU ins conv.rate
4 54| 13| 1.80e-01| 3.8366e-01| 12 | 1.00e-01| 3.5812e-01
8| 170 17| 3.70e-01| 4.8193e-01f| 17 | 2.30e-01| 4.9748e-01
16 | 594 || 20 | 1.58e+00| 5.2247e-01f| 20 | 9.40e-01| 5.4815e-01
32| 2210 21 | 1.13e+01| 5.3484e-01|| 21 | 6.94e+00| 5.6681e-01
64 | 8514 || 21| 1.13e+02| 5.3811e-01| 21 | 7.28e+01| 5.7432e-01
(Mo = 0.5)
P P,
n| dim | #it | CPUins conv.rate|| #it | CPU ins conv.rate
4 54| 12| 1.70e-01| 3.3273e-01| 11 | 1.00e-01| 3.2583e-01
8| 170 | 15| 3.40e-01| 4.2961e-01| 15| 2.00e-01| 4.4778e-01
16 | 594 | 17 | 1.39e+00| 4.6841e-01| 17 | 8.50e-01| 4.9393e-01
32| 2210 18| 9.90e+00| 4.8126e-01)| 18 | 6.18e+00| 5.1115e-01
64 | 8514 || 19 | 1.04e+02| 4.8552e-01|| 18 | 6.56e+01| 5.1815e-01
(Mo = 0.9)
P P,
n| dim | #it | CPUins conv.rate| #it | CPU ins conv.rate
4 54| 14| 1.90e-01| 3.6261e-01| 14 | 1.10e-01| 3.7223e-01
8| 170 | 15| 3.40e-01| 4.1422e-01] 16 | 2.20e-01| 4.2473e-01
16 | 594 || 16 | 1.30e+00| 4.3635e-01| 16 | 7.90e-01| 4.4671e-01
32| 2210 16 | 9.07e+00| 4.4537e-01)| 16 | 5.65e+00| 4.5569e-01
64 | 8514 || 16 | 9.34e+01| 4.4926e-01)| 16 | 6.00e+01| 4.5958e-01

28




TABLE 5.5
LMA Prediction of asymptotic convergence rates for the DCP.

(m = 1.0iin all cases)

P Py
My || m2=0.0 | no=-=1.0 || 72 =0.0 | no =—-1.0
0.0 0.5000 0.5781 0.0 0.5781
0.1 0.4975 0.5757 0.0 0.5757
0.5 0.4286 0.5124 0.0 0.5124
0.9 0.1597 0.2723 0.0 0.2723
REFERENCES

[1] E. ARIAN, On the coupling of aerodynamic and structural desigpurnal of Computational Physics, 135 (1997),
pp. 83-96.

[2] E. ARIAN AND S. TA’ ASAN, Analysis of the Hessian for Aerodynamic Optimization: Inviscid FIGASE Report
No. 96-28, Institute for Computer Applications in Science and Engineering (ICASE), MS 403, NASA LaRC,
Hampton, VA 23681-2199, 1996. To appear in Computefduids.

[3] E. ARIAN AND V. VATSA, A Preconditioning Method for Shape Optimization Governed by the Euler Equations
ICASE Report No. 98-14, Institute for Computer Applications in Science and Engineering (ICASE), MS 403,
NASA LaRC, Hampton, VA 23681-2199, 1996. To appear in International Journal of Computational Fluid
Dynamics.

[4] A. BATTERMANN, An Indefinite Preconditioner for Karush—-Kuhn—Tucker Systems Arising in Optimal Control
Problemstech. report, Universat Trier, Fachbereich IV, Abt. Mathematik, 54286 Trier, Germany, 1999. To
appear.

[5] A. BATTERMANN AND M. HEINKENSCHLOSS Preconditioners for Karush—Kuhn—Tucker Systems Arising in
the Optimal Control of Distributed Systenns Optimal Control of Partial Differential Equations, Vorau 1996,

W. Desch, F. Kappel, and K. Kunisch, eds., Biakisér Verlag, Basel, Boston, Berlin, 1996, pp. 15-32.

[6] S. L. CAMPBELL, I. C. F. IPSEN C. T. KELLEY, AND C. D. MEYER, GMRES and the Minimal Polynomijal
BIT, 36 (1996), pp. 664-675.

[7] J. ConwAY, A Course in Functional AnalysiSpringer—Verlag, New York, 1990.

[8] R. S. DEMBO, S. C. HSENSTAT, AND T. STEIHAUG, Inexact Newton methodSIAM J. Numer. Anal., 19
(1982), pp. 400-408.

[9] R. W. FREUND, Preconditioning of Symmetric, but Highly Indefinite Linear Systefash. Report 97—-3-03,

Bell Laboratories, 700 Mountain Avenue, Murray Hill, New Jersey 07974-0636, 1997.

[10] P. E. GLL, W. MURRAY, D. B. PONCELEON, AND M. A. SAUNDERS, Preconditioners for indefinite systems
arising in optimization SIAM J. Matrix Anal. Appl, 13 (1992), pp. 292-311.

[11] G. H. GoLuB AND C. F.vaN LOAN, Matrix ComputationsThe Johns Hopkins University Press, Baltimore
and London, 1989.

[12] P. W. HEMKER, Lecture Notes on Defect Correctiohech. Report Lecture Notes, Centrum voor Wiskunde en
Informatica (CWI), P.O. Box 94079, NL — 1090 GB Amsterdam, 1997.

29



[13] C. HIrscH, Numerical Computation of Internal and External Flows, VolJ@hn Wiley & Sons, Inc., New York,
1988.

[14] C. T. KELLEY, Iterative Methods for Linear and Nonlinear Equatio®AM, Philadelphia, 1995.

[15] C. T. KELLEY AND E. W. SACHS, Quasi-Newton methods and unconstrained optimal control prohl8hAdv
J. on Control and Optimization, 25 (1987), pp. 1503-1517.

[16] ——, Multilevel algorithms for constrained compact fixed point probleB8I&M J. Scientific and Stat. Com-
puting, 15 (1994), pp. 645-667.

[17] A. KLawONN, An Optimal Preconditioner for a Class of Saddle Point Problems with a Penalty, T J.

Sci. Comput., 19 (1998), pp. 540-552.

[18] ——, Block—Triangular Preconditioners for Saddle Point Problems with a Penalty T8tAM J. Sci. Comput.,
19 (1998), pp. 5172-5184.

[19] M. LAUMEN AND E. W. SACHS, Concepts of Newton and quasi—Newton methods for optimal shape design
problems Control and Cybernetics, 25 (1996), pp. 895-913.

[20] D. G. LUENBERGER Optimization by vector space methpdshn Wiley & Sons, Inc., New York, 1969.

[21] M. RENARDY AND R. C. ROGERS An Introduction to Partial Differential EquationsSpringer Verlag, New
York, 1993.

[22] T. RUSTEN AND R. WINTHER, A preconditioned iterative method for saddlepoint proble8i&\M J. Matrix
Anal. Appl., 13 (1992), pp. 887—904.

[23] Y. SAAD AND M. H. ScHuLTZ, GMRES: A generalized minimal residual algorithm for solving nonsymmetric
linear systemsSIAM J. Sci. Stat. Comput., 7 (1986), pp. 856—869.

[24] H. J. STETTER, The Defect Correction Principle and Discretization Methods Numer. Math., 29 (1978),
pp. 425-443.

[25] J. STOER, Solution of large linear systems of equations by conjugate gradient type methddathematical
Programming, The State of the Art, A. Bachem, Mo@Gchel, and B. Korte, eds., Springer Verlag, Berlin,
Heidelberg, New York, 1983.

[26] D. SYLVESTER AND A. WATHEN, Fast iterative solution of stabilized Stokes systems part I: Using simple
diagonal preconditionefsSIAM J. Numer. Anal., 30 (1992), pp. 630—-649.

[27] ——, Fast iterative solution of stabilized Stokes systems part II: Using general block preconditiSiks J.
Numer. Anal., 31 (1994), pp. 1352-1414.

[28] R. A. TaPiA, Diagonalized multiplier methods and quasi-Newton methods for equality constrained optimization
J. Optim. Theory Appl., 22 (1977), pp. 135-194.

[29] A. WATHEN, B. FISCHER, AND D. SYLVESTER, The convergence rate of the minimal residual method for the
Stokes problepNumer. Math., 71 (1995), pp. 121-134.

[30] E. ZEIDLER, Nonlinear Functional Analysis and its Applications3pringer Verlag, New York, Berlin, Heidel-
berg, Tokyo, 1986.

30



