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APPROXIMATION OF THE NEWTON STEP BY A DEFECT CORRECTION PROCESS

E. ARIAN∗, A. BATTERMANN†, AND E.W. SACHS‡

Abstract. In this paper, an optimal control problem governed by a partial differential equation is considered. The

Newton step for this system can be computed by solving a coupled system of equations. To do this efficiently with an

iterative defect correction process, a modifying operator is introduced into the system. This operator is motivated by

local mode analysis. The operator can be used also for preconditioning in GMRES. We give a detailed convergence

analysis for the defect correction process and show the derivation of the modifying operator. Numerical tests are

done on the small disturbance shape optimization problem in two dimensions for the defect correction process and for

GMRES.

Key words. optimal control governed by PDEs, iterative methods, defect correction, GMRES, preconditioning,

Newton step, SQP.
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1. Introduction. Many optimization problems can be formulated as equality constrained problems with a special

structure. If one considers optimal control or optimal design problems, the variables are partitioned into the state and

control or design variables which we denote byφ andu, respectively. This leads to the following problem formulation

min
(φ,u)

F(φ, u) s.t. h(φ, u) = 0.

If one is interested in algorithms with a fast rate of convergence, one would tend to use Newton’s method for these

problems. Note that this method can be applied in two different ways. Under appropriate assumptions, see Section 2.1,

one can solve for each control variableu the system equationh(φ(u), u) = 0 to obtain a stateφ(u) which depends on

u. This is typical, whenh represents a boundary value problem where the control variable is on the right hand side of

the differential equation. Then one can apply Newton’s method to the unconstrained minimization problem

min
u

J (u) = F(φ(u), u) ,

where the steps is computed by solving the linear system

J ′(u)s = −J (u)

for s.
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Alternatively, one can keep all the variables(φ, u) and consider the necessary optimality conditions for the con-

strained optimization problem. Then one obtains the nonlinear equation in(φ, u, λ),

G(φ, u, λ) =




h(φ, u)
Fφ(φ, u) + h×φ (φ, u)λ
Fu(φ, u) + h×u (φ, u)λ


 =




0
0
0


 .

This equation can be solved by Newton’s method. For the step one has to solve the linear system

G′(φ, u, λ)(v, s, w)T = −G(φ, u, λ) .

This approach is the same if one applies an sequential quadratic programming method (SQP) to the constrained prob-

lem using the Newton multiplier update for the Lagrange multiplier, see [28].

It is important to note, that in both approaches at each step of Newton’s method a linear system of equations has

to be solved which exhibits the same structure for both cases, see Section 2.3. Only the right hand sides differ in these

cases. If we denote the variables for the linear system by(v, s, w) then one obtains with the Lagrangian

L(φ, u, λ) = F(φ, u) + λ× h(φ, u),

the linear system



Lφφ Lφu h×φ
Luφ Luu h×u
hφ hu 0






v

s

w


 =




0
−Lu

0


 or −



Lφ

Lu

h


 .

Since the solver of these linear systems often requires the largest part of the CPU time of an algorithm, it is the

goal to utilize the special structure of the linear system in the linear system solver. This has been considered by [5]

where several preconditioners were used and compared numerically and theoretically. Further discussions can be

found in [10], [22], [26], [27], [18], [17], and [9]. In [16] the authors use a multilevel technique on the necessary

optimality conditions in connection with Newton’s method under box constraints on the control. The structure of the

Newton system for optimal control problems is exploited in [15] to design special quasi Newton updates for problems

including differential equations. It is well known that one does not need to solve the Newton equations exactly at each

step [8] but only needs to decrease the accuracy in the residual as one approaches a stationary point of the optimization

problem. This is another reason why we investigate iterative solvers for the Newton equation.

The gradient ofJ can be computed sequentially, see Section 2.9, by solving an adjoint equation after solving the

nonlinear state equation. The system for the Newton step cannot be solved sequentially, since its variables(v, s, w)
are coupled through the equations. This makes a Newton step quite expensive because an iterative procedure has to be

applied. In some applications the variablesφ andu are separated inF andh in such a way that the mixed terms in the

second derivative of the Lagrangian disappear, i.e.,

Lφu = Luφ = 0.

If one would omit the upper left termLφφ, then the linear system matrix has the form




0 0 h×φ
0 Luu h×u
hφ hu 0


 .

2



The resulting approximate Newton equation has the advantage that it can be solved sequentially, see Lemma 3.5.

Hence it can be applied in an iterative way to improve the accuracy of the solution of the Newton step. If one analyzes

its convergence, one obtains, see Section 3.3.4, that convergence is obtained if

ρ(L−1
uuH− I) < 1 ,

whereH denotes the Hessian ofJ or the reduced Hessian of the constrained optimization problem in terms ofF and

h. Thus,H is given by

H = h×u h
−×
φ Lφφ h

−1
φ hu − h×u h

−×
φ Lφu − Luφ h

−1
φ hu + Luu .(1.1)

Since the conditionρ(L−1
uuH− I) < 1 might be too restrictive we investigate the following strategy in this paper.

At first we replaceLuu by a termLu,ε = Luu(I + εP), whereP andε can be chosen properly. This choice

in general depends on the application under consideration. Then the system equation changes and we consider a

separation into an outer loop iteration and an inner loop iteration. The outer loop iteration is given by

Lφφ Lφu h×φ
Luφ Lu,ε h×u
hφ hu 0






v

s

w




n+1

=




0
−Lu + LuuεPsn

0


 ,(1.2)

which is solved by an inner loop iteration through


0 0 h×φ
0 Lu,ε h×u
hφ hu 0


 xk+1 = r −



Lφφ Lφu 0
Luφ 0 0
0 0 0


xk .(1.3)

Here, r denotes the right hand side of the original linear system equation. Thus the advantage of the sequential

solution of the approximate Newton step is retained. In Section 3.3 we analyze the convergence properties of this

iterative solver for the Newton step.

The choice of the operatorP in the iteration (1.2), (1.3) is crucial for the convergence properties of the resulting

scheme. We suggest to make this choice by analyzing the optimization problem on the infinite dimensional level, i.e.,

before discretization is applied. The operatorP can be derived approximately with local mode (Fourier) analysis of

the reduced Hessian, following [2], [3]. By that we are using the structure induced by the governing partial differential

equation (PDE) to accelerate the convergence process. OnceP has been determined, it can be applied in various

manners to accelerate the convergence process, for example by taking the iteration matrix in (1.3) as a preconditioner

for Krylov subspace methods. However, we concentrate on the defect correction process (1.2), (1.3) because it is

simple to apply. Once a code is given for the solution of the state and costate equations, the implementation of the

defect correction process is reduced to successively solving the linearized state and the costate equations, with possibly

different right hand sides. The defect correction process is formally introduced in Section 3.

In Section 4.1 we apply this approach to an optimal shape design problem arising in aerodynamics. It is a boundary

control problem in which the shape of the solid wall is optimized by modifying the right hand side of the Neumann

boundary condition. It involves the solution of an elliptic boundary value problem in two space dimensions. By using

a local mode analysis of the reduced Hessian (1.1) which is done in Section 4.7, we obtain an operatorP and an

indication of the convergence properties of the method for a small step size of the discretization. This is verified by the

numerical results and the rates obtained for the example. In Section 4.10 we present numerical results for the defect

correction process and for preconditioned GMRES using different choices of the operatorP . We obtain a significant

decrease of the residual in the first iterations. This convergence property is crucial in many applications that involve

computationally intensive cost functional evaluations and derivative computations.
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2. General Approach. In this section, a general equality constrained optimal control problem is addressed. The

necessary optimality conditions are given for this problem together with the optimality conditions for an equivalent

unconstrained problem.

2.1. Problem Formulation. We repeat the problem to be considered in its general formulation

min
(φ,u)

F(φ, u) s.t. h(φ, u) = 0 .(2.1)

The constrainth(φ, u) = 0 denotes the state equation whereφ is the state variable andu is the control, or design,

variable. Under the following assumption, the equation can be solved uniquely inφ for a givenu. Also, the Newton

step for the minimization problem (2.1) is well defined. In our presentation we follow [19].

ASSUMPTION2.1. LetX ,Y,Z be Hilbert spaces. LetF: X×Y → IR andh: X×Y → Z be twice continuously

Fréchet differentiable. Lethφ, the partial Fŕechet derivative ofh with respect toφ, be bijective and continuous. Let

hu, the partial Fŕechet derivative ofh with respect tou, be continuous.

REMARK 2.2.By Assumption2.1, the inverse ofhφ(φc, uc) at the point(φc, uc) exists. The derivativehφ(φc, uc)(δφ)
of h with respect toφ at the point(φc, uc) is linear in the incrementδφ. Thus, the inverse ofh×φ (φc, uc) also exists

and is continuous (see, e.g.,[7]). Here and in the following, the superscript× denotes the adjoint operator or space.

We will in the following often denotehφ(φc, uc) by hφ and apply similar conventions to other functions. Note also

that the relationship(h×φ )× = hφ holds forhφ and the other considered functions (see, e.g.,[7]).

The implicit function theorem (see, e.g., [30, p.150]) allows to define the following mappingφ.

LEMMA 2.3. Let Assumption2.1 hold and letφc, uc satisfyh(φc, uc) = 0. LetU be an open neighborhood of

(φc, uc) ∈ X×Y. Then there exists a unique mappingφ: U → X that is twice continuously Fréchet differentiable in

a neighborhoodU of uc ∈ Y and satisfiesh(φ(u), u) = 0 ∀u ∈ U . Furthermore, the derivativeφ′ of φ with respect

to u is given by

φ′(u) = −h−1
φ (φ(u), u) hu(φ(u), u) ∀u ∈ U .(2.2)

In the situation of Lemma 2.3 we can define the following unconstrained optimization problem which is equivalent

to the problem in its original formulation (2.1):

min
u

J (u) = F(φ(u), u).(2.3)

2.2. The Necessary Optimality Conditions.The Lagrangian function for problem (2.1) is given by

L(φ, u, λ) = F(φ, u) + λ× h(φ, u),(2.4)

whereλ denotes the Lagrange multiplier defined inZ×, the dual ofZ. The first order necessary optimality conditions

for a minimizer of problem (2.1) are given (see, e.g., [20]) by setting the gradient∇L of the Lagrangian functionL to

zero, i.e., by the equations

state: Lλ= h(φ, u) = 0,(2.5)

costate: Lφ= Fφ + h×φ λ = 0,(2.6)

design: Lu= Fu + h×u λ = 0.(2.7)

The gradient,g = J ′(u), is given by the following lemma (this is the necessary optimality condition of first order

for the unconstrained problem (2.3) (see, e.g., [20])).
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LEMMA 2.4. Let Assumption2.1hold. Define foru ∈ Y
i.) a functionφ(u) that satisfies(2.5)and

ii.) a functionλ(u) as the unique solution of the adjoint equation(2.6), i.e., of

h×φ (φ(u), u) λ(u) = −Fφ(φ(u), u).(2.8)

Then the gradientg of (2.3) is given by

g = J ′(u) = Fu(φ(u), u) + h×u (φ(u), u) λ(u).(2.9)

Proof. The assertion follows from the chain rule and (2.2):

g ≡ J ′(u) = Fu(φ(u), u) + φ′(u)× Fφ(φ(u), u)
= Fu(φ(u), u) + h×u (φ(u), u) (−h−×φ (φ(u), u))Fφ(φ(u), u).

2.3. The Newton Step.The definition of the Newton step for the unconstrained problem (2.3) requires the

computation of the second derivative of the objective functionalJ . This, in turn, requires the differentiation of

the adjoint variableλ.

LEMMA 2.5. Let Assumption2.1hold. Thenλ(u) defined in the adjoint equation(2.8) is differentiable, and the

derivative is given by

λ′(u) = −h−×φ (φ(u), u) [Lφu(φ(u), u, λ(u)) + φ′(u) Lφφ(φ(u), u, λ(u))] .(2.10)

Proof. Define a mapκ by κ(λ, u) = Lφ(φ(u), u, λ), where by (2.8)λ = λ(u) solvesκ(λ(u), u) = 0. Since

κλ(λ, u)(.) = h×φ (φ(u), u)(.) is invertible by Assumption 2.1 (see Remark 2.2), the assertion follows by the implicit

function theorem.

With this result we can now express the Hessian of the unconstrained problem (2.3).

THEOREM 2.6. Let Assumption2.1hold. ThenJ defined in(2.3) is twice Fŕechet differentiable, and the Hessian

is given by

H = J ′′(u) = h×u h
−×
φ Lφφ h

−1
φ hu − h×u h

−×
φ Lφu − Luφ h

−1
φ hu + Luu.(2.11)

Proof. Apply the chain rule to equation (2.9) and use equations (2.2) and (2.10).

With Hessian,H, and gradient,g, for problem (2.3) the Newton step,s, is given by

H s = −g.(2.12)

REMARK 2.7. So far we assumed that the state and costate equations are feasible at every SQP step (reduced

SQP). Thus the Newton equation is given by(2.12). In case of a full SQP algorithm, where feasibility is not required

at each step,(2.12)has to be modified to

H s = −Lu − Luφ h
−1
φ h+ h×u h

−×
φ Lφφ h

−1
φ h− h×u h

−×
φ Lφ.(2.13)

The right hand side of(2.13)consists of the residual of the design equation (this term is equal to the reduced gradient,

g, when the state and costate equations are solved), two terms that vanish when feasibility is achieved, i.e., when

h(φ, u) = 0, and the last term that vanishes when the costate equation is feasible, i.e., whenLφ(φ, u, λ) = 0.
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THEOREM 2.8. Let Assumption2.1hold. The Newton step,s, defined by(2.12)can be computed by solving the

self–adjoint system of equations

Lφφ Lφu h×φ
Luφ Luu h×u
hφ hu 0






v

s

w


 =




0
−g
0


 .(2.14)

REMARK 2.9. In case of a full SQP on a nonlinear problem, the right hand side of(2.14)should be modified to

−(Lφ,Lu,Lλ)T to be consistent with(2.13).

Proof. Fors ∈ Y definev ∈ X andw ∈ Z× by

v = −h−1
φ hu s,

w = −h−×φ (Lφφ v + Lφu s) .
(2.15)

Then by (2.11) and (2.12) the Newton step,s, satisfies the equation

−g = h×u h
−×
φ Lφφ h

−1
φ hu s− h×u h

−×
φ Lφu s− Luφ h

−1
φ hu s+ Luu s

= Luφ v + Luu s+ h×u (−h−×φ Lφφ v − h−×φ Lφu s).

We have shown that solving (2.12) for the Newton step,s, is equivalent to solving (2.14). Writing the right hand

side of (2.14),(0,−g, 0)T , as(r1, r2, r3)T = r, we denote (2.14) by

K x = r ,(2.16)

and the exact solution of (2.16) byx∗. Thus,K is defined as

K =



Lφφ Lφu h×φ
Luφ Luu h×u
hφ hu 0


 .(2.17)

NOTATION 2.10. In the following, the vector of unknowns(v, s, w)T will often be referred to asx. For the

description of iterative processes, the superscriptsc,+ will denote current and new iterates, respectively, e.g.,xc the

currentx–iterate. The solution of an iterative process will be indicated with the superscript∗, e.g.,x∗. In addition, the

error in the vectorx is denoted bye; specifically,ec is the error in the currentx–iterate. The error in the components,

e.g.s, will be denoted byes. Thus, for instance,

xc − x∗ =




vc

sc

wc


 −




v∗

s∗

w∗


 =




ec
v

ec
s

ec
w


 = ec.

3. The Solution Method. In order to solve for the Newton step, a defect correction process is employed. The

defect correction process (see [12], [24]) is derived in this section. Convergence of the process is governed by the

choice of approximating operator̃K. A detailed discussion and convergence analysis is done in this section.

3.1. The Defect Correction Process.Solving for the Newton step, i.e., solving (2.12), is equivalent to solving

K x = r in (2.16). The idea of the defect correction approach is to replaceK by a simple approximatioñK. The

solution of the approximate problem

K̃ x = r̃(3.1)
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is then reached iteratively. It is essential thatK̃−1 be relatively simple, i.e., that it is much easier to find a solution

to (3.1) than to (2.16).

We now introduce the defect correction process.

ASSUMPTION3.1. Guided by the treatment in[12], we assume the following.

i.) LetK : E ⊃ D → D̂ ⊂ Ê continuous and bijective,E , Ê Hilbert spaces,D, D̂ closed subsets.

ii.) The defect

d(x̃) = K x̃− r̃(3.2)

can be evaluated for approximate solutionsx̃ ∈ D to all neighboring problems. The neighboring problem is

to findx̃ ∈ D withK x̃ = r̃ for givenr̃ ∈ D̂.

iii.) The approximate problem(3.1)can be solved uniquely for̃r ∈ D̂, i.e., we assume the existence of an approx-

imative inversẽK−1 ofK such thatK̃−1K x ≈ x for x ∈ D andK K̃−1 r̃ ≈ r̃ for r̃ ∈ D̂.

Assuming that we know an approximationxc ∈ D for x∗ and that we have computed its defectd(xc) = K xc−r =
K xc −K x∗, this information can be used for the computation of an updatex+ by means of solving a problem (3.1).

The errorec = xc − x∗ satisfiesec = K−1 (r + d(xc)) − K−1 r = K−1 d(xc). Instead of performing the difficult

solve withK, we use the approximatioñK to computẽec = K̃−1 d(xc) and use this quantity as a correction forxc.

The iterative usage leads to the scheme

x+ = xc + ẽc = (I − K̃−1K)xc + x0(3.3)

with x0 = K̃−1 r as initial iterate. We defineR by the relationR := K − K̃ and callK̃ +R a splitting of K. With

this notation we write (3.3) as

K̃ x+ = r −Rxc(3.4)

to indicate that we do not really applỹK−1 but solve the system with̃K.

3.2. The Modified System Defect Correction.We will in the following apply the defect correction process not

precisely in the way it was derived in the above Section 3.1, but introduce two changes. First, the defect correction

process described in Section 3.1 can be nested, i.e., an inner defect correction loop can be used to find the solution to

the system (3.4) that has to be solved in each step of an outer loop. This is the point of view we take in the following

presentation. Secondly, we modify the system (2.14) that we are interested in solving with the help of an additional

operatorP . We call this approach the modified system defect correction process.

We now turn to the splittings we propose for the solution of (2.14) by the process (3.4). The choice ofK̃ in the

splittingK = K̃ +R is crucial for both applicability and convergence of the iterative scheme (3.4). Our choice ofK̃
is motivated by the structure of the underlying system (2.14). We now supplement Assumption 2.1.

ASSUMPTION3.2. LetLuu 6= 0,L−1
uu exist.

We will in the following see that the partLuu in the systemK is crucial for the performance of the solution

method. The convergence requirement is

ρ(L−1
uuH− I) < 1.

In general,Luu will not model the Hessian,H, very well, and convergence is not necessarily ascertained. To ensure

convergence, and to allow for convergence acceleration, we introduce an operatorP , which will be used to modify the

system. The choice ofP will be discussed subsequent to the convergence analysis in Section 3.3.

ASSUMPTION3.3. Let an operatorP onY and a real scalarε exist such thatI + εP is invertible.
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Here,I is the identity onY. Note that Assumption 3.3 is necessarily satisfied for smallε. The operatorP will in

general be applied to modifyLuu. As an abbreviation we use

Lu,ε = Luu (I + εP).

Thus,Luu is naturally regained asLu,0.

3.2.1. Outer Loop. To solve the systemK x = r in (2.16) efficiently, we modifyK, K given in (2.17), through

replacingLuu byLu,ε = Luu (I + εP) to

K̃O =



Lφφ Lφu h×φ
Luφ Lu,ε h×u
hφ hu 0


 .(3.5)

With

RO =




0 0 0
0 −LuuεP 0
0 0 0


 ,(3.6)

the equalityK̃O +RO = K holds so that̃KO,RO define a splitting ofK.

For the solution ofK x = r we start a defect correction process given by

K̃O x
n+1
O = r −RO x

n
O ,(3.7)

which is equivalent to



Lφφ Lφu h×φ
Luφ Lu,ε h×u
hφ hu 0






v

s

w




n+1

=




0
−g0 + LuuεPsn

0


 .(3.8)

We start atn = 0 with a starting pointv0, s0, w0. In each step of this defect correction process, a linear system has to

be solved. One possibility is to do this via an inner defect correction loop.

3.2.2. Inner Loop. For the inner loop we define a splitting of the system matrixK̃O in (3.8). The splitting

K̃O = K̃I +RI we propose is given by

K̃I =




0 0 h×φ
0 Lu,ε h×u
hφ hu 0


 , RI =



Lφφ Lφu 0
Luφ 0 0
0 0 0


 .(3.9)

The corresponding inner loop is

K̃I x
k+1
I = rO −RI x

k
I ,(3.10)

whererO is the right hand side of the outer loop, i.e.,rO is given byrO = r −RO x
n
O. This amounts in each step to




0 0 h×φ
0 Lu,ε h×u
hφ hu 0






x1

x2

x3




k+1

=




−Lφφ x
k
1 − Lφu x

k
2

−g0 + LuuεPsn − Luφx
k
1

0


 .(3.11)

Starting atk = 0, usex0
I = xn

O. Set the solutionx∗I of the inner loop as the new outer loop iteratexn+1
O .
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REMARK 3.4. For the splitting defined by(3.9), the iterative scheme(3.4)can be viewed as applying (forward)

Gauss–Seidel on the system 


h×φ Lφu Lφφ

h×u Lu,ε Luφ

0 hu hφ


 .(3.12)

Because(3.12) is, even forε = 0, a non–selfadjoint permutation of system(2.17), symmetric Gauss–Seidel (i.e.,

forward Gauss–Seidel followed by backward Gauss–Seidel, see[11], [14]), does not lead to a selfadjoint operator

M = I − K̃−1K in (3.3).

3.2.3. One Inner Iteration. If only one inner iteration is performed, inner and outer loop can be combined in

one closed formula

K̃ xk+1 = r −Rxk.(3.13)

This is described by (3.11) withsn replaced byxk
2 . The corresponding splitting isK = K̃ + R with K̃ = K̃I ,

R = RI +RO, and given by

K̃ =




0 0 h×φ
0 Lu,ε h×u
hφ hu 0


 , R =



Lφφ Lφu 0
Luφ −Luu εP 0
0 0 0


 .(3.14)

3.2.4. Applicability. With the splittings defined in the preceding Sections 3.2.2 and 3.2.3, the solutionx+ of the

scheme (3.4), i.e., tõK x+ = r −Rxc, can be computed at the cost of solving three linear subsystems.

LEMMA 3.5. Let the Assumptions2.1, 3.2 and 3.3 hold. The solution to the systems(3.10)and (3.13)can be

accomplished at the cost of solving three linear subsystems.

Proof. Since the systems are blocktriangular, back–substitution furnishes the solution.

1.) The solutionxk+1 to (3.13), i.e., toK̃ xk+1 = r−Rxk , can be computed by successively solving the systems

h×φ xk+1
3 = r1 − Lφφ x

k
1 − Lφu x

k
2 ,

Lu,ε x
k+1
2 = r2 − Luφ x

k
1 + Luu εPxk

2 − h×u x
k+1
3 ,

hφ x
k+1
1 = r3 − hu x

k+1
2 .

2.) The solutionxk+1
I to (3.10), i.e., toK̃I x

k+1
I = rO − RI x

k
I , can be computed by successively solving the

systems

h×φ xk+1
I,3 = rO,1 − Lφφ x

k
I,1 − Lφu x

k
I,2 ,

Lu,ε x
k+1
I,2 = rO,2 − Luφ x

k
I,1 − h×u x

k+1
I,3 ,

hφ x
k+1
I,1 = rO,3 − hu x

k+1
I,2 .

We now turn to the convergence analysis of the iteration (3.4) for the proposed splittings.

3.3. Convergence Analysis.The convergence of the defect correction process depends on properties of the

iteration operatorM = I − K̃−1K = −K̃−1R in the process (3.3). First, we state the basic requirement onM in

Theorem 3.6. We then address the necessary and sufficient conditions for convergence of the modified system defect

correction for the processes described in Sections 3.2.1, 3.2.2, and 3.2.3. For this, we investigate the convergence–

governing matricesMO, MI , andM of the processes. The composing operators are derived from the respective

splittings defined in (3.5) and (3.6), (3.9) and (3.14).
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The basic convergence requirement onM is described in [30, Cor.1.13].

THEOREM 3.6. Let Assumptions2.1, 3.1, and3.2hold. If the condition

ρ(M) < 1(3.15)

holds for the spectral radiusρ ofM = I − K̃−1K in process(3.3), then the iteration converges, for everyr and for

arbitrary initial elementx0, to a unique solutionx∗ of (2.16).

In the following we often need the invertibility of the reduced Hessian,H, and of a modification,Hε = H +
LuuεP . The invertibility is guaranteed for smallε under the usual second order sufficiency conditions for optimization

problems because these require, with some constantc,

L((φ,u),(φ,u))(φ∗, u∗, λ∗)(δφ, δu)(δφ, δu) ≥ c ‖(δφ, δu)‖2(3.16)

for all those(δφ, δu) that satisfyhφ δφ + hu δu = 0. The last condition allows to substituteδφ = −h−1
φ hu δu, thus

leading to

h×u h
−×
φ Lφφ h

−1
φ hu(δu, δu)− h×u h

−×
φ Lφu(δu, δu)− Luφh

−1
φ hu(δu, δu) + Luu(δu, δu)

= H(δu, δu) ≥ c (‖h−1
φ hu δu‖2 + ‖δu‖2) ≥ c ‖δu‖2.

Therefore,H is invertible and so isHε for smallε.

ASSUMPTION3.7. Let a real scalar̄ε > 0 exist such thatHε = H+ LuuεP is invertible for0 ≤ ε < ε̄.

In addition we will need the following lemma to prove the central statements in Theorems 3.9, 3.10, and 3.11.

LEMMA 3.8. Let Assumptions2.1and3.7hold. Then the inverse of the operatorK defined in(2.17), written as

K−1 =



K−1

11 K−1
12 K−1

13

K−×
12 K−1

22 K−1
23

K−×
13 K−×

23 K−1
33


 ,

is given by its entries

K−1
11 = h−1

φ huH−1h×u h
−×
φ ,

K−1
12 = h−1

φ huH−1 ,

K−1
13 = h−1

φ − h−1
φ huH−1h×u h

−×
φ Lφφh

−1
φ + h−1

φ huH−1Luφh
−1
φ ,

K−1
22 = H−1 ,

K−1
23 = H−1h×u h

−×
φ Lφφh

−1
φ −H−1Luφh

−1
φ ,

K−1
33 = −h−×φ Lφφh

−1
φ + h−×φ Lφφh

−1
φ huH−1h×u h

−×
φ Lφφh

−1
φ + h−×φ LφuH−1Luφh

−1
φ

−h−×φ LφuH−1h×u h
−×
φ Lφφh

−1
φ − h−×φ Lφφh

−1
φ huH−1Luφh

−1
φ .

Here,H, explicitly given in(2.11), denotes the reduced Hessian of the constrained problem(2.1). For the operator

K̃O in (3.5)which differs fromK only in the central entryLu,ε, the inverse is given by

K̃−1
O =




K−1
11,ε K−1

12,ε K−1
13,ε

K−×
12,ε K−1

22,ε K−1
23,ε

K−×
13,ε K−×

23,ε K−1
33,ε


 ,

where the entries differ from those ofK−1 insofar asH is replaced byHε = H + LuuεP = h×u h
−×
φ Lφφ h

−1
φ hu −

h×u h
−×
φ Lφu − Luφ h

−1
φ hu + Luu(I + εP).
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3.3.1. Convergence Analysis of the Outer Loop.We now investigate the convergence properties of the outer

loop. The convergence ofxn = (vn, sn, wn)T can be characterized by the convergence of the sequencesn. This is

important because in the application (see Section 4)x is a vector which consists of functions defined also on the whole

two–dimensional domain whereass is only defined on the boundary.

THEOREM 3.9. Under Assumptions2.1, 3.2, 3.3and3.7 the following statements hold.

1.) The iteration(3.7)converges if and only if the iteration

sn+1 = K̃−1
22,εLuuεPsn + r̃2(3.17)

converges, wherẽr = K̃−1
O r.

2.) If the spectral radius ofI − (H + Luu εP)−1H, defined on the boundary, satisfies

ρ(I − (H+ Luu εP)−1H) < 1,(3.18)

then the iterates of(3.7)converge to the solutionx∗ of (2.16).

Proof. DenotingK̃−1
O by its entries,K̃−1

ij,ε (i, j = 1, 2, 3), we see thatMO = I − K̃−1
O K is given by

MO =




0 M1 0
0 M2 0
0 M3 0


(3.19)

where

Mi = K̃−1
i2,εLuuεP

for i = 1, 2, 3. By the iteration (3.7) we have

xn+1
O = K̃−1

O r + (I − K̃−1
O RO)xn

O = K̃−1
O r +MOx

n
O

or by (3.8) withxn
O = (vn, sn, wn)T

vn+1 = M1 s
n + r̃1 ,

sn+1 = M2 s
n + r̃2 ,

wn+1 = M3 s
n + r̃3 ,

(3.20)

where r̃ = K̃−1
O r = (r̃1, r̃2, r̃3)T . It is immediate that the convergence of the sequencexn

O = (vn, sn, wn)T is

equivalent to the convergence ofsn which proves the first statement of the theorem.

The entryM2 is given by, see Lemma 3.8,

M2 = K̃−1
22,εLuuεP = H−1

ε LuuεP = I − (H + Luu εP)−1H .

By Theorem 3.6 the conditionρ(M2) < 1 is sufficient for convergence of the sequencesn and by part 1.) also for the

convergence ofxn
O.

From the result (3.18) it can be seen that we can set the convergence rate of the outer loop by choosingεP
appropriately. However, the choice ofεP influences the convergence of the inner loop as well.

3.3.2. Convergence Analysis of the Inner Loop.The convergence properties of the inner loop are described in

the following theorem.

THEOREM 3.10.Under Assumptions2.1, 3.2and3.3 the following statements hold.
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1.) The iteration(3.10)converges if and only if the iteration

xk+1
2 = (I + εP)−1 (L−1

uuH− I)xk
2 + r̄2(3.21)

converges, wherēr = K̃−1
I rO.

2.) If the spectral radius of the boundary operator(I + εP)−1 (L−1
uuH− I) satisfies

ρ((I + εP)−1 (L−1
uuH− I)) < 1,(3.22)

then the iterates of(3.10)converge to the solutionx∗I .

Proof. The inverse of the operatorKI defined in (3.9) is given by

K̃−1
I =




h−1
φ huL−1

u,εh
×
u h

−×
φ −h−1

φ huL−1
u,ε h−1

φ

−L−1
u,εh

×
u h

−×
φ L−1

u,ε 0
h−×φ 0 0


 .(3.23)

Thus, the operatorMI = I − K̃−1
I K in (3.3) is for the inner loop explicitly given by

MI =




h−1
φ huL−1

u,ε(h
×
u h

−×
φ Lφφ − Luφ) h−1

φ huL−1
u,εh

×
u h

−×
φ Lφu 0

−L−1
u,ε(h

×
u h

−×
φ Lφφ − Luφ) −L−1

u,εh
×
u h

−×
φ Lφu 0

h−×φ Lφφ h−×φ Lφu 0


 .(3.24)

Denoting the following composed operators byG,Q,N,C, U ,

G = −h−1
φ hu,

Q = −L−1
u,ε (h×u h

−×
φ Lφφ − Luφ),

N = −L−1
u,ε h

×
u h

−×
φ Lφu,

C = h−×φ Lφφ,

U = h−×φ Lφu,

(3.25)

MI can be written in the form

MI =




GQ GN 0
Q N 0
C U 0


 .(3.26)

Hence the inner iteration withxk
I = (xk

I,1, x
k
I,2, x

k
I,3)

T can be written as

xk+1
I,1 = GQxk

I,1 +GN xk
I,1 + r̄1,

xk+1
I,2 = Qxk

I,1 +N xk
I,2 + r̄2,

xk+1
I,3 = C xk

I,1 + U xk
I,2 + r̄3.

(3.27)

Multiply (3.27) byG and substitute the resulting equality into (3.27). This yields

xk+1
I,1 = Gxk+1

I,2 + r̄1 −Gr̄2.(3.28)

From this equation it is clear that ifxk
I,2 converges, then so doesxk

I,1 and by (3.27) alsoxk
I,3.

To show the second statement, use (3.28) in the formxk
I,1 = Gxk

I,2 + r̄1 −G r̄2 to eliminatexk
I,1 in (3.27) which

gives

xk+1
I,2 = (QG+N)xk

I,2 + r̄2 +Qr̄1 −QG r̄2.
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By definition (3.25), the operatorQG+N coincides with(I + εP)−1 (L−1
uuH− I) (see (2.11)), because

QG+N = L−1
u,ε h

×
u h

−×
φ Lφφ h

−1
φ hu − L−1

u,ε Luφ h
−1
φ hu − L−1

u,ε h
×
u h

−×
φ Lφu

= L−1
u,ε (H−Luu)

= (I + εP)−1 (L−1
uu H− I) .

Therefore, ifρ((I + εP)−1 (L−1
uu H− I)) = ρ(QG+N) < 1, then by Theorem 3.6 the iteratesxk

I,2 converge and by

the first assertion also the sequencexk
I .

3.3.3. Convergence Analysis in Case of One Inner Iteration.In case only one inner iteration is performed,

convergence is determined as follows.

THEOREM 3.11.Under Assumptions2.1, 3.2and 3.3 the following statements hold.

1.) The iteration(3.13)converges if and only if the iteration

sn+1 = (L−1
u,εH− I) sn

converges.

2.) If the spectral radius of the boundary operatorL−1
u,εH− I satisfies

ρ(L−1
u,εH− I) < 1,(3.29)

then the iterates in(3.13)converge to the solutionx∗ of (2.16).

Proof. The inverse of the operator̃K = K̃I is given in (3.23). Thus, in this case where only one inner iteration is

performed,M = I − K̃−1K is given by

M =




h−1
φ huL−1

u,ε(h
×
u h

−×
φ Lφφ − Luφ) h−1

φ huL−1
u,ε(h

×
u h

−×
φ Lφu + Luu εP) 0

−L−1
u,ε(h

×
u h

−×
φ Lφφ − Luφ) −L−1

u,ε(h
×
u h

−×
φ Lφu + Luu εP) 0

h−×φ Lφφ h−×φ Lφu 0


 .

We denote the composed operators byG,Q,C, U as before in (3.25) and letN1 be defined by

N1 = −L−1
u,ε (h×u h

−×
φ Lφu + Luu εP) .

ThenM can be written in the form (3.26) withN replaced byN1. The proof follows the same lines as for the one of

the previous theorem.

By definition ofG,Q,C, U in (3.25) and ofN1 above, the operatorQG+N1 equals

L−1
u,ε h

×
u h

−×
φ Lφφ h

−1
φ hu − L−1

u,ε Luφ h
−1
φ hu − L−1

u,ε h
×
u h

−×
φ Lφu − L−1

u,ε Luu εP
= QG+N − L−1

u,ε Luu εP
= L−1

u,ε(H−Luu)− L−1
u,εLuu εP

= (I + εP)−1 L−1
uuH− I

= L−1
u,εH− I.

3.3.4. Discussion ofP . The preceding convergence analysis shows that ifP is not present, or, equivalently, if

ε = 0, there is no outer loop in the nested defect correction process. In that case, the convergence requirements (3.29)

and (3.22) coincide and are given by

ρ(L−1
uuH− I) < 1.
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In general,Luu will not model the Hessian,H, very well, and convergence is not necessarily ascertained.

In order to solve the system (2.14) efficiently with the defect correction approach, we modify (2.14) through

replacingLuu by Lu,ε = Luu (I + εP). We have seen in the preceding Sections 3.3.1, 3.3.2, and 3.3.3, that the

convergence rate of the processes can be determined by appropriate choices ofP . However, findingεP that performs

well both in the outer and inner loop requires solving conflicting tasks. Theorem 3.9 suggests thatLuu εP should

be small in the sense thatH + Luu εP is only a small perturbation toH. Theorem 3.10 indicates thatLu,ε should

approximateH−Luu fairly well, because(I + εP)−1 (L−1
uuH− I) = L−1

u,ε (H−Luu) is the convergence-governing

part. The problem to be solved is

min
P

max
{
ρ
(
I − (H + Luu εP)−1H

)
, ρ
(
I + εP)−1 (L−1

uuH− I
)}

.

If only one inner iteration is done,Lu,ε is required to approximateH as described in (3.29). In both situations, i.e.,

in the nested defect correction and in the case with only one inner iteration, some knowledge of the operators involved

is necessary for an appropriate choice ofP . However, the defect correction process with one inner iteration is easier

to apply than the nested defect correction process (because it allows for a closed representation), and thus preferable

whenever applicable. If there is not much information available on the Hessian, choosing a “small”εP and applying

nested defect correction seems to be more promising. We will discuss the choice ofP for our example problem in

Sections 4.5 and 4.7.

4. Application: The Small Perturbation Potential Problem. We consider an optimal control problem governed

by a partial differential equation. The example problem is motivated by problems of aerodynamic optimization. In the

following, we derive the example problem and state the equations relevant to the approach delineated in Sections 2

and 3. Subsequently we turn to the discretization and the finite–dimensional solution of the optimization problem. We

include a convergence estimate for the example using local mode analysis.

4.1. The Small Perturbation Potential Equation. We start with a short derivation of the state equation that

governs our optimal control problem. We assume inviscid irrotational flow modeled by the continuity equation,

∇(ρ~v) = 0,

whereρ is the density of the fluid and~v the velocity field. The potential function,Φ, is defined with the relation

~v = ∇Φ.

The density is related to the potential by the isentropic density law (see, e.g., [13]). We consider a slender body aligned

with thex–axis, and define a perturbation potentialφ by

Φ = U∞(x+ φ),

whereU∞ is the free–stream velocity. Under the assumption of a dominatingx–component of the velocity field,

and neglecting terms that are proportional toφ2
x and toφ2

y, the following first-order transonic small-perturbation is

obtained (Prandtl-Glauert equation):

(1 −M2
∞)φxx + φyy = 0.

If y = u(x) is the equation of the surface of the slender body, it is possible to set the surface boundary condition on the

x–axis, that is aty = 0. The presence of the slender body will appear in the computation only through the boundary

condition

v = (U∞ + u)ux ≈ U∞ux.(4.1)
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In terms of the perturbation potential, (4.1) is given by the normal derivative

φn = ux.

The boundary conditions at the far–field for the perturbation potential are set such that it does not affect the far–field

velocity.

The small perturbation potential equation has been for a long time the basis for potential flow theories as it is a

simplified form valid for flow fields along slender bodies aligned with thex–axis. We turn to form a simple optimal

control problem based on that model.

4.2. The Optimal Control Problem. The small-perturbation potential problem allows us to study a shape op-

timization problem with a boundary control model defined on a fixed domain, thus avoiding the complication of a

changing geometry.

We consider the following minimization problem,

min
(φ,u)

1
2

∫
Γ

(φx − φd
x)2 ds+

η1
2

∫
Γ

u2 ds+ η2

∫
Γ

φxu ds ,(4.2)

subject to the following state equations,

(1 −M2∞)φxx + φyy = 0 in Ω = (0, 1)2,
φn = ux on Γ = {(x, 0) : 0 < x < 1},
φn = 0 on Γl ∪ Γr ,

φ = 0 on Γt.

(4.3)

Here, the parts of the boundaryΓl, Γr, andΓt are given byΓl = {(0, y) : 0 < y < 1}, Γr = {(1, y) : 0 < y < 1},
andΓt = {(x, 1) : 0 < x < 1}.

We now give a short explanation of the different terms in the cost functional (4.2). The first term is proportional

to a pressure matching term since in the small disturbance model the pressure of the flow on the slender body is

proportional to the derivative of the potential in the flow direction,φx. The desired “pressure distribution”,φd
x, is

given. The second term is a penalty on the control andη1 is a parameter. The third term is artificially introduced

to the objective function to better model the structure of problems in applications since in aerodynamic optimization

problems often non–zero termsLuφ andLφu are present.

4.3. Existence and Uniqueness of an Optimal Control.Let us assume that the design,u(x), belongs to the

subspace of functions that can be spanned by the basis{sin(2πkx)}n
k=1, i.e.,

u(x) =
n∑

k=1

ûk sin (2πkx),(4.4)

where{ûk}n
k=1 are real numbers andn is a positive integer. For that choice ofu(x) there exists a solutionφ(x, y) of

the minimization problem (4.2) subject to the state equation (4.3) of the form

φ(x, y) =
n∑

k=1

ûkψk(y) cos (2πkx) ,(4.5)

where then functionsψk(y) are given by

ψk(y) =
1
γ

(− tanh(2πγk) cosh(2πγky) + sinh(2πγky))(4.6)
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for γ =
√

1−M2∞. By inspection the aboveφ satisfies the state equation (4.3).

REMARK 4.1. By the solution(4.5) the operatorhφ has the symbol(2πk)/ψk(y). (For the definition of the

symbol of a differential operator see, e.g., [21], p.38.) Since the Fourier transformation is a homeomorphism we

conclude that the operatorhφ satisfies Assumption 2.1.

THEOREM 4.2. There exists a unique solutionu∗(x) to the optimal control problem(4.2) subject to the state

equation(4.3).

Proof. Let us denote the vector of design coefficients byuN : uT
N = (û1, · · · , ûn). A direct substitution of the

solution (4.5) into the cost functional (4.2) results in a leading quadratic term of the formuT
NQuN with Q being a

positive definite matrix. This proves that the minimization problem has a unique solution.

4.4. Optimality Conditions and the Newton Step.The first–order optimality conditions of the problem (2.1),

as outlined in Section 2.2, are the state, costate, and design equations (2.5), (2.6) (2.7). The state equation is given

in (4.3). The adjoint equation for this problem takes the form

(1−M2
∞)λxx + λyy = 0 in Ω,

λn = −(φxx − φd
xx) + η2 ux on Γ,

λn = 0 on ∂Ω− Γ.

(4.7)

From the design equation (2.7) we get the gradient

g = −λx + η1 u+ η2 φx on Γ.(4.8)

The Newton step satisfies (2.14) with the operators

Lφφ =

{
0|Ω

−∂xx|Γ

}
, Luu = η1 · I|Γ, Luφ = Lφu =

{
0|Ω

η2∂x|Γ

}

and

hφ = h×φ =

{
(1−M2

∞)∂xx + ∂yy|Ω
−∂n|Γ

}
, hu = −h×u =

{
0|Ω

−∂x|Γ

}
.

Explicitly, the Newton step,s, satisfies the following system of PDEs:

(1−M2
∞)wxx + wyy = 0 in Ω,

wn − vxx + η2 sx = 0 on Γ.
(4.9)

η1 s+ η2 vx − wx = −g (x, 0) on Γ,
w(1) = g(1).

(4.10)

(1−M2∞) vxx + vyy = 0 (x, y) in Ω,
vn − sx = 0 (x, 0) on Γ,

s(0) = 0.

(4.11)

The defect correction process described in Section 3 will now be applied to the example problem introduced in

Section 4.2. Convergence of the solution process (3.4) is governed by the singular values of the operatorsMO,MI ,

andM derived in Sections 3.3.1, 3.3.2, and 3.3.3. The operators for the small perturbation potential problem are given

in Section 4.4 so thatMO,MI , andM are easily found for the example.

Knowledge of the operators allows to chooseP such that small convergence rates are obtained. We now use local

mode analysis of the convergence–governing operator to choose the operatorP . Similar analysis has been introduced

in the past to approximate the reduced Hessian of optimization problems governed by PDEs (see, e.g., [1], [2], [3]).
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4.5. Choice ofP by local mode analysis of the PDEs.The local mode analysis is performed locally around a

point on the boundaryΓ, ignoring the boundary conditions on∂Ω − Γ. Thus for a boundary value problem, as we

have, it is only an approximation. We deliberately do not insist on the exact analysis since it can not be done in general

applications while the given analysis can be applied (after linearization and freezing of coefficients when the problem

is nonlinear).

We choose to use the splitting of Section 3.2.3, i.e., the case of one inner iteration. We have seen in that section

that convergence depends on the eigenvalues of the operatorT = L−1
u,εH− I . We study one Fourier component of the

error,

e(x, y) = ê(ω1, ω2) ei(ω1x+ω2y) .

The interior equation in (4.3) relatesω1 andω2 by

(1−M2
∞)ω2

1 + ω2
2 = 0.(4.12)

We choose the decaying mode solution for Equation (4.12),

ω2 = i
√

1−M2∞ |ω1|.(4.13)

The boundary equation implies that √
1−M2∞ |ω1| φ̂ = iω1 û.

We arrive at the Fourier symbols of the operators in the convergence–governing operatorT :

ĥφ = ĥ×φ =
√

1−M2∞ |ω1| ,

ĥu = −ĥ×u = −iω1 ,

L̂φφ = −D̂xx = ω2
1 ,

L̂φu = −L̂uφ = −η2 iω1 ,

L̂uu = η1 .

(4.14)

These imply that the Fourier symbol of the Hessian is given by

Ĥ = ĥ×u ĥ
−×
φ L̂φφ ĥ

−1
φ ĥu − ĥ×u ĥ

−×
φ L̂φu − L̂uφ ĥ

−1
φ ĥu + L̂uu = ω2

1 − 2η2
ω2

1

|ω| + η1.

By (3.29), the choice of the operatorP is such thatP ≈ L−1
uuH. We obtain the approximated symbol of the desired

operatorP as

P̂ =
1
η1

(
ω2

1 − 2η2
ω2

1

|ω1|
)
.(4.15)

Since the second term in (4.15) does not correspond to a differential operator, and because it is of lower order than the

first term, our first approximation ofP is given by

P = − 1
η1
Dxx.(4.16)

We now turn to use the same local mode analysis to approximate the asymptotic convergence rate of the defect

correction process for low mesh sizeh. The above symbols (4.14) imply that the symbol of the convergence–governing

operatorT is, whereεP̂ is taken to be1
η1
ω2

1 ,

T̂ = L̂−1
u,ε Ĥ − 1 = (1 + εP̂)−1L̂−1

uu Ĥ − 1.
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Using Parseval identity we estimate an upper bound for the convergence rate of the iterates of the defect correction

process by

µ ≤ max
ω

(
T̂ ∗(ω) T̂ (ω)

) 1
2
,(4.17)

whereω = kπ
n for k ranging from1, . . . , n. Here,n is the number of grid points on the boundaryΓ, andT̂ ∗ is the

complex conjugate of̂T .

4.6. The Discretization. We define a uniform grid on the domainΩ, containingm grid points. The perturbation

potential,φ, is defined on the grid vertices, and the control is defined on the mid–interval points on the boundaryΓ,

i.e.,φ ∈ IRm andu ∈ IRn, with n =
√
m − 1. We then apply a second order finite difference discretization to the

problem (4.2), (4.3). The stencils can be found in (4.24) and (4.26). The resulting finite dimensional problem is to

minimize a quadratic functional under linear constraints,

min
(φN ,uN )

F (φN , uN ) s.t.AφN +BuN = b,(4.18)

where the discretized objective function can be written as

F =
1
2
φT

NHφφ φN +
η1
2
uT

NHuu uN + η2 φ
T
NHφu uN + φT

N c+ uT
Nd.(4.19)

The discrete Lagrangian is given by

L(φN , uN , λN ) = F + λT
N (AφN +BuN − b).(4.20)

Note that for this (quadratic) problem the second partial derivativesLφφ, Lφu andLuu of the Lagrangian coincide

with Hφφ,Hφu andHuu, respectively.

Applying the first order optimality conditions (Karush–Kuhn–Tucker conditions, see, e.g., [20]), we have to solve

the system 


Lφφ η2 Lφu AT

η2 Luφ η1 Luu BT

A B 0






φN

uN

λN


 =




−c
−d
b


 ,

where

φN ∈ IRm, uN ∈ IRn, λN ∈ IRm, c ∈ IRm, d ∈ IRn, b ∈ IRm,

Lφφ ∈ IRm×m, Luu ∈ IRn×n, Lφu ∈ IRm×n, A ∈ IRm×m, B ∈ IRm×n.

If A is invertible, the discrete state equationAφN + BuN = b can be solved forφN , φN (uN) = A−1(b − BuN ).
Thus, we can define the discrete unconstrained problem

min
uN

J(uN ) = F (φN (uN), uN ) .(4.21)

In order to get the gradient,gN , of the unconstrained problem (4.21), the state and the costate equations must be solved

exactly. This means that for a given controluN the following set of equations has to be satisfied,(
Lφφ AT

A 0

)(
φN

λN

)
=

(
−c− Lφu uN

b−BuN

)
.

Then the gradient can be computed as

gN = BTλN + η1 LuuuN + η2 LφuφN + d.
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The Hessian of the discrete unconstrained problem (4.21) is given by

H = BT A−T LφφA
−1B − LuφA

−1 B −BT A−T Lφu + Luu.(4.22)

The Newton step,sN , of the discretized unconstrained problem (4.21) can be computed by solving the system




Lφφ Lφu AT

Luφ Luu BT

A B 0






vN

sN

wN


 =




0
−gN

0


 .(4.23)

4.7. Choice ofP by local mode analysis of the Finite Difference Equations.We now perform the local mode

analysis, similar to the local mode analysis in Section 4.5, taking into account the specific discretization. By analyzing

the finite difference equations we hope to get a better approximation of the reduced Hessian and as a result a better ap-

proximation of the operatorP . Note that although the operators analysed in this section are finite difference operators

and not differential operators, we still denote them as before to avoid excessive notation.

The discrete interior equation has the form

aφi,j + b(φi,j+1 + φi,j−1) + c(φi+1,j + φi−1,j) = 0(4.24)

where

b =
1
h2
, c = (1 −M2

∞)b, a = (1 −M2
∞)(−2b)− 2b.

We study one Fourier component of the error,

e(x, y) = ê(θ1, θ2) ei(θ1
x
h +θ2

y
h ),

where the mesh sizes in thex– and in they–directions are assumed to be a constanth. The discrete interior equation

(4.24) relatesθ1 andθ2 (a+ 2(c cos θ1 + b cos θ2) = 0) to

θ2 = cos−1[−a+ 2c cos θ1
2b

].(4.25)

The discrete boundary equation has the form

aφi,j + 2bφi,j+1 + c(φi+1,j + φi−1,j) =
1
h

(ui − ui−1).(4.26)

In terms of the Fourier component of the error inφ, this implies

(a+ 2c cos θ1 + 2beiθ2)φ̂(θ1, θ2) =
2i
h

sin(
θ1
2

) û(θ1),(4.27)

or equivalently,

2bi sin θ2 φ̂ =
2i
h

sin(
θ1
2

) û.(4.28)

Using the identitysin cos−1 x =
√

1− x2 together with Equations (4.25), (4.27), and (4.28), we arrive at the symbol

of the operatorhφ, given by

ĥφ = ĥ×φ =
i

h

√
1−

(a+ 2c cos θ1
2b

)2

.
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The other operators in the convergence–governing operator,L−1
u,εH − I, have the following symbols:

ĥu = −ĥ×u = − 2i
h sin( θ1

2 ) = − i
h

√
2(1− cos θ1) ,

L̂φφ = −D̂xx = 2
h2 (1− cos θ1) ,

L̂φu = −L̂uφ = η2 ĥu ,

L̂uu = η1.

(4.29)

The reduced Hessian (2.11) contains the operatorh−1
φ hu and its adjoint. The expression̂h−1

φ ĥu can be simplified to

ĥ−1
φ ĥu =

1√
−(1−M2∞)− 1

2 (1−M2∞)2(1− cos θ1)
.

This leads to our second choice of the operatorP ,

P = − 1
η1

(
(1−M2

∞)I +
h2

4
(1−M2

∞)2Dxx

)−1

Dxx .(4.30)

Having chosen the operatorP , the asymptotic convergence estimates follows as in Section 4.5.

4.8. The Defect Correction Process.On the discrete level, the linear system (4.23), which we denote by

K xN = rN ,(4.31)

has to be solved in order to compute the Newton step,sN . The defect correction process is described by the iteration

K̃ x+
N = rN −Rxc

N ,(4.32)

whereK̃ andR define a splitting ofK, i.e., K̃ + R = K. Convergence of the solution process (4.32) is governed

by the singular values of the operatorsMO, MI , andM derived in Sections 3.3.1, 3.3.2, and 3.3.3. Their discrete

counterpartsMO, MI , andM are analyzed with local mode analysis in Section 4.7. Convergence of the outer loop

depends on the spectrumρ(MO) = ρ(I − (H + Luu εP )−1H) . Convergence in the inner loop is governed by

ρ(MI) = ρ((I + εP )−1 (L−1
uuH − I)) . If only one inner iteration is done, we investigateρ(M) = ρ(L−1

u,εH − I) .
One specific choice ofP was given in Section 4.5, motivated by the local mode analysis of the differential operators.

The corresponding matrix is

P1 = − 1
1−M2∞

Dxx,N .(4.33)

Analyzing further the finite difference equations, the local mode analysis in Section 4.7 motivates secondly to use the

matrix

P2 = −
(

1
η1

(1−M2
∞)I +

h2

4
(1 −M2

∞)2Dxx,N

)−1

Dxx,N .(4.34)

The main computational work in the defect correction process with the splittings defined in Sections 3.3.1, 3.3.2,

and 3.3.3 is the solve withhφ and its adjoint. This is the solution of the linearized state equation and of the adjoint

equation, which amounts to the solution of two linear PDEs in our example. On the discrete level,hφ is represented

byA, and the main computational work in each iteration is the solve withA andAT .
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4.9. A Preconditioned Krylov Subspace Method.Linear systems like the above (4.31) can be solved with

Krylov subspace methods, e.g., the well–known Krylov subspace method for general matrices GMRES, see [23].

However, with ill–conditioned problems, as the one given in Equations (4.2) and (4.3), the number of steps these

methods require can be as high as the dimension of the linear system, if they do not fail altogether. A high number

of steps usually presents an unacceptable computational effort. However, Krylov subspace methods can be very fast

and efficient for well–conditioned systems, cf. [25], [29]. Under certain assumptions, see [6], superlinear convergence

can be proven for GMRES. In the following we will see that the results furnished by the local mode analysis for the

modified system defect correction can enhance the performance of preconditioned GMRES iterations.

The preconditioner we use is closely related to the splittings we propose for the defect correction; it is in fact

identical to the splitting matrixK̃ introduced in Section 3.2.3. Thus, the linear system (4.31) is replaced by the

preconditioned system

K̃−1K xN = K̃−1 rN .(4.35)

In each iteration of the preconditioned GMRES, the matrix–vector–productK̃−1K z = z+ must be computed. This

can be done successively by solving three linear subsystems, in a similar way as described in Section 3.2.4. In this

respect, the work required in one GMRES iteration is roughly the same as in one defect correction iteration, i.e., one

solve withA and one solve withAT (see [4]). However, the implementation of GMRES is more difficult than that of

the defect correction process. For example, re–orthogonalization, which can be very costly as well, is often necessary.

In addition, storage requirements increase as the iteration progresses, thus rendering the method unattractive of very

large problems. For these issues see, e.g., [23], [14].

The eigenvalues of the preconditioned system matrixK̃−1K are bounded below in absolute value by1. The

number of eigenvalues distinct from1 are at mostn, wheren is the number of design variables. For these results see [4].

Since the performance of GMRES, similar to that of other Krylov subspace methods, depends on the eigenvalue

distribution of the underlying system matrix (see, e.g., [6]), the theory indicates that GMRES will take not more than

n+ 1 steps. The numerical results are described in the following Section 4.10.

4.10. Numerical Results.In the numerical tests, we did not restrict the design variable,u(x), to the subspace of

sin functions, thus extending the computations beyond the theoretical treatment in Section 4.3.

We show results of the defect correction process for the case of one inner iteration as described in Section 3.2.3.

The system is modified withP1 andP2 defined in (4.33) and (4.34), respectively. For the parameterM∞, the values

0.0, 0.1, 0.5, 0.9 are used in the computations. We consider the combination of cost function parametersη1 = 1.0,

η2 = 0.0, andη1 = 1.0, η2 = −1.0. For the same combinations of parameters, GMRES is tested on the preconditioned

systemK̃−1K. We do not give the convergence history for unpreconditioned GMRES, but state that the number of

iterations required for convergence is almost equal to the dimension2m+ n of the system in all considered cases.

In Figures 5.1 and 5.2, typical convergence behavior of the defect correction process and preconditioned GMRES

can be seen. The figures depict the main results, the small and mesh–independent convergence rates of the defect

correction process that are exhibited right from the beginning of the iterations, and the improvements in GMRES

achieved with the suggested preconditioning.

In the tables, results are shown for systems of dimension54, which corresponds to a4× 4 grid, up to dimension

8514, which is a grid of64× 64 points. We always chose the discretization iny–direction equal to the discretization

in x–direction and refer to this number by the dimensionn of the design space. The numberm of state variables is

given asm = (n+ 1)2.

Stopping criterion for all iterations is a threshold10−5 for thel2–norm of the residual, i.e., we stop if the following
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requirement is met,

‖K xN − rN‖l2 =

√√√√ 1
2m+ n

2m+n∑
i+1

(K xN − rN )2i < 10−5 .

Performance of the defect correction process is shown in Tables 5.3 and 5.4. In the considered cases we only allow

for one inner iteration. For the choice of cost function parametersη1 = 1.0, η2 = 0.0 in Table 5.3, the termsLφu,Luφ

in K vanish. This does not only simplify the convergence analysis, but also often admits a faster numerical solution

than the second choice of nonzeroη2. This is easily seen by a comparison with Table 5.4. The dimension of the

design space,n, and of the entire system are given together with the numerical results forP1 andP2 defined in (4.33)

and (4.34), respectively. For both choices ofP , the number of steps until solution and the CPU required by the iterative

process are given. The convergence rate, the ratio of successive errors, is the asymptotic convergence rate valid at the

end of the defect correction iterations. This rate is approximately a constant throughout the defect correction process

for given parameters and grid. The largest eigenvalue of the matrixM defined by the splitting is a close upper bound

for the convergence rate. The computations are done for four different parametersM∞, M∞ = 0.0, 0.1, 0.5, 0.9.

Although the original system becomes increasingly ill–conditioned asM∞ approaches1, the modified system defect

correction still performs well forM∞ = 0.9. The convergence of this defect correction is mesh–independent. The

asymptotic convergence rates, in the limit of mesh–size going to zero, furnished by the local mode analysis for each

specific combination of parameters is given in Table 5.5. The discrepancy between the results of the local mode

analysis and the actual convergence rates of the defect correction process is due to the fact that the considered domain

is finite, which is not taken into account by the local mode analysis performed here.

Performance of the preconditioned GMRES is shown in Tables 5.2 and 5.1. Again, the dimensions of the design

space and of the entire system are given together with the number of steps until solution and the required CPU. It

can be seen that the required CPU times for iterations of preconditioned GMRES and of the defect correction process

are of the same order of magnitude. Since the convergence rate of GMRES is in general not constant throughout the

iteration, it is not considered in the tables. Qualitatively, the convergence rate is depicted in Figure 5.1.

In our computations with GMRES we have not only consideredP1 andP2 given in (4.33) and (4.34) , but also

P = 0, i.e., the preconditioner̃K with the entryLu,0 = Luu. It can be seen that the number of steps with this

preconditioner roughly equalsn/2 (Table 5.2,Lφu = 0, Luφ = 0) or n (Table 5.1,Lφu 6= 0, Luφ 6= 0), respectively.

Investing the computational effort of introducingP1 or P2 as suggested by the local mode analysis pays out in a low

and mesh–independent number of iterations.

All computations were done with Matlab on a SUN 2 X UltraSPARC-II with 2Gb RAM.

5. Discussion and Concluding Remarks.We propose a modified defect correction process to solve efficiently

the (KKT–)system of equations composed of the necessary optimality conditions for optimization problems governed

by state equations. The new method is simple to apply and embed into existing codes. It requires to solve successively

the linearized state and the costate (adjoint) equations with different right hand sides in each iteration. These linear

equations are obtained by first modifying the KKT system,K, with the introduction of a “preconditioning” operator

P , and then splitting the system into two parts,K = K̃(P) +R(P). The solution is obtained by a defect correction

process that requires one solve with the operatorK̃(P) in each iteration. Convergence theory is provided in the

paper for the different splittings that we propose. We also suggest to use the operatorK̃(P) as a preconditioner

for GMRES. The introduction of the operatorP is crucial for fast convergence. We advocate to use the structure

induced by the governing PDE. This can be done by a local mode analysis of either the PDE, or of its discretized

equations. We test both the defect correction process and the preconditioned GMRES on a model problem that mimics

an aerodynamic shape optimization problem. We obtain for both methods fast and mesh–independent convergence.
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The numerical results are consistent both with the convergence theory in the paper and with the approximated local

mode analysis for the asymptotic convergence rate. An extension of the approach to optimization problems with

inequality constraints will be treated elsewhere. Another application might be the area of multidisciplinary design

and optimization problems. When considering a large system of equations, obtained for example in those problems,

a splitting of the KKT system can be applied twice, once to decouple the large multidisciplinary KKT system into

subsystems [1], and a second time to solve efficiently each of the subsystems. Such a method might require the

introduction of an operatorP for the different subsystems as well as for the large system.
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FIG. 5.1. Residual development of preconditioned GMRES for grid sizesn = 32 (upper figure) andn = 64 (lower figure). (Problem

parameters:η1 = 1.0, η2 = 0.0, M∞ = 0.5)
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FIG. 5.2. Residual development of defect correction process for grid sizesn = 32 (upper figure) andn = 64 (lower figure). (Problem

parameters:η1 = 1.0, η2 = 0.0, M∞ = 0.5)
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TABLE 5.1

Performance of preconditioned GMRES for cost function parametersη1 = 1.0, η2 = −1.0.

(M∞ = 0.0)

P0 P1 P2

n dim #it CPU ins #it CPU ins #it CPU ins

4 54 6 2.00e-01 6 9.00e-02 6 9.00e-02

8 170 10 1.80e-01 6 9.00e-02 7 1.00e-01

16 594 18 8.20e-01 6 4.10e-01 7 4.40e-01

32 2210 32 6.60e+00 7 3.10e+00 6 3.12e+00

64 8514 57 8.26e+01 7 3.29e+01 6 3.17e+01

(M∞ = 0.1)

P0 P1 P2

n dim #it CPU ins #it CPU ins #it CPU ins

4 54 6 8.00e-02 6 4.00e-02 6 4.00e-02

8 170 10 1.70e-01 6 9.00e-02 7 1.00e-01

16 594 18 7.50e-01 6 3.80e-01 7 4.00e-01

32 2210 32 6.51e+00 7 2.64e+00 6 2.72e+00

64 8514 57 8.36e+01 7 2.46e+01 6 2.48e+01

(M∞ = 0.5)

P0 P1 P2

n dim #it CPU ins #it CPU ins #it CPU ins

4 54 6 8.00e-02 6 5.00e-02 6 5.00e-02

8 170 10 1.70e-01 6 8.00e-02 6 1.00e-01

16 594 18 7.50e-01 6 3.70e-01 6 4.00e-01

32 2210 33 6.71e+00 6 2.63e+00 6 2.74e+00

64 8514 59 8.68e+01 6 2.38e+01 6 2.52e+01

(M∞ = 0.9)

P0 P1 P2

n dim #it CPU ins #it CPU ins #it CPU ins

4 54 6 9.00e-02 5 5.00e-02 5 5.00e-02

8 170 10 1.60e-01 6 8.00e-02 6 9.00e-02

16 594 18 7.20e-01 6 3.20e-01 6 3.70e-01

32 2210 34 6.75e+00 6 2.48e+00 6 2.54e+00

64 8514 66 9.37e+01 6 2.32e+01 6 2.43e+01
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TABLE 5.2

Performance of preconditioned GMRES for cost function parametersη1 = 1.0, η2 = 0.0.

(M∞ = 0.0)

P0 P1 P2

n dim #it CPU ins #it CPU ins #it CPU ins

4 54 4 8.00e-02 4 4.00e-02 4 3.00e-02

8 170 6 1.30e-01 6 8.00e-02 4 6.00e-02

16 594 10 5.30e-01 6 3.40e-01 4 3.00e-01

32 2210 18 4.19e+00 5 2.55e+00 4 2.18e+00

64 8514 33 5.30e+01 4 2.34e+01 4 2.15e+01

(M∞ = 0.1)

P0 P1 P2

n dim #it CPU ins #it CPU ins #it CPU ins

4 54 4 8.00e-02 4 4.00e-02 4 3.00e-02

8 170 6 1.30e-01 6 8.00e-02 4 6.00e-02

16 594 10 5.30e-01 6 3.50e-01 4 2.90e-01

32 2210 18 4.23e+00 5 2.49e+00 4 2.20e+00

64 8514 33 5.31e+01 4 2.35e+01 4 2.14e+01

(M∞ = 0.5)

P0 P1 P2

n dim #it CPU ins #it CPU ins #it CPU ins

4 54 4 8.00e-02 4 4.00e-02 4 4.00e-02

8 170 6 1.30e-01 6 8.00e-02 4 7.00e-02

16 594 10 5.20e-01 6 3.60e-01 4 2.90e-01

32 2210 18 4.21e+00 5 2.48e+00 4 2.15e+00

64 8514 34 5.35e+01 4 2.36e+01 4 2.15e+01

(M∞ = 0.9)

P0 P1 P2

n dim #it CPU ins #it CPU ins #it CPU ins

4 54 4 7.00e-02 4 3.00e-02 4 4.00e-02

8 170 6 1.30e-01 5 8.00e-02 5 7.00e-02

16 594 10 5.20e-01 5 3.20e-01 4 3.10e-01

32 2210 18 4.20e+00 5 2.37e+00 4 2.28e+00

64 8514 34 5.53e+01 5 2.29e+01 4 2.25e+01
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TABLE 5.3

Performance of DCP for cost function parametersη1 = 1.0, η2 = 0.0.

(M∞ = 0.0)

P1 P2

n dim #it CPU ins conv.rate #it CPU ins conv.rate

4 54 12 1.70e-01 4.4219e-01 4 5.00e-02 8.9447e-03

8 170 12 2.70e-01 4.8270e-01 4 8.00e-02 7.2777e-03

16 594 12 1.03e+00 4.8478e-01 4 3.10e-01 6.8858e-03

32 2210 11 6.98e+00 4.8348e-01 4 2.69e+00 6.7893e-03

64 8514 10 6.89e+01 4.8118e-01 3 2.76e+01 6.7653e-03

(M∞ = 0.1)

P1 P2

n dim #it CPU ins conv.rate #it CPU ins conv.rate

4 54 12 1.60e-01 4.3988e-01 4 5.00e-02 9.2148e-03

8 170 12 2.70e-01 4.8033e-01 4 8.00e-02 7.5113e-03

16 594 12 1.02e+00 4.8238e-01 4 3.20e-01 7.1105e-03

32 2210 11 6.92e+00 4.8109e-01 4 2.69e+00 7.0118e-03

64 8514 10 6.99e+01 4.7879e-01 3 2.79e+01 6.9873e-03

(M∞ = 0.5)

P1 P2

n dim #it CPU ins conv.rate #it CPU ins conv.rate

4 54 11 1.50e-01 3.7660e-01 4 5.00e-02 1.9846e-02

8 170 11 2.70e-01 4.1315e-01 4 8.00e-02 1.6904e-02

16 594 10 9.20e-01 4.1261e-01 4 3.10e-01 1.6202e-02

32 2210 10 6.58e+00 4.1312e-01 4 2.65e+00 1.6028e-02

64 8514 9 6.65e+01 4.1044e-01 4 3.06e+01 1.5985e-02

(M∞ = 0.9)

P1 P2

n dim #it CPU ins conv.rate #it CPU ins conv.rate

4 54 10 1.40e-01 2.4531e-01 10 9.00e-02 2.4010e-01

8 170 9 2.20e-01 2.1838e-01 10 1.50e-01 2.2788e-01

16 594 9 8.50e-01 2.1129e-01 9 5.00e-01 2.2484e-01

32 2210 9 6.16e+00 2.0949e-01 9 3.91e+00 2.2409e-01

64 8514 9 6.53e+01 2.0904e-01 9 4.31e+01 2.2390e-01
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TABLE 5.4

Performance of DCP for cost function parametersη1 = 1.0, η2 = −1.0.

(M∞ = 0.0)

P1 P2

n dim #it CPU ins conv.rate #it CPU ins conv.rate

4 54 13 2.90e-01 3.8568e-01 12 1.60e-01 3.5942e-01

8 170 17 3.70e-01 4.8401e-01 17 2.20e-01 4.9946e-01

16 594 20 1.62e+00 5.2462e-01 20 9.40e-01 5.5028e-01

32 2210 21 1.17e+01 5.3696e-01 21 7.19e+00 5.6899e-01

64 8514 21 1.19e+02 5.4020e-01 21 7.51e+01 5.7651e-01

(M∞ = 0.1)

P1 P2

n dim #it CPU ins conv.rate #it CPU ins conv.rate

4 54 13 1.80e-01 3.8366e-01 12 1.00e-01 3.5812e-01

8 170 17 3.70e-01 4.8193e-01 17 2.30e-01 4.9748e-01

16 594 20 1.58e+00 5.2247e-01 20 9.40e-01 5.4815e-01

32 2210 21 1.13e+01 5.3484e-01 21 6.94e+00 5.6681e-01

64 8514 21 1.13e+02 5.3811e-01 21 7.28e+01 5.7432e-01

(M∞ = 0.5)

P1 P2

n dim #it CPU ins conv.rate #it CPU ins conv.rate

4 54 12 1.70e-01 3.3273e-01 11 1.00e-01 3.2583e-01

8 170 15 3.40e-01 4.2961e-01 15 2.00e-01 4.4778e-01

16 594 17 1.39e+00 4.6841e-01 17 8.50e-01 4.9393e-01

32 2210 18 9.90e+00 4.8126e-01 18 6.18e+00 5.1115e-01

64 8514 19 1.04e+02 4.8552e-01 18 6.56e+01 5.1815e-01

(M∞ = 0.9)

P1 P2

n dim #it CPU ins conv.rate #it CPU ins conv.rate

4 54 14 1.90e-01 3.6261e-01 14 1.10e-01 3.7223e-01

8 170 15 3.40e-01 4.1422e-01 16 2.20e-01 4.2473e-01

16 594 16 1.30e+00 4.3635e-01 16 7.90e-01 4.4671e-01

32 2210 16 9.07e+00 4.4537e-01 16 5.65e+00 4.5569e-01

64 8514 16 9.34e+01 4.4926e-01 16 6.00e+01 4.5958e-01
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TABLE 5.5

LMA Prediction of asymptotic convergence rates for the DCP.

(η1 = 1.0 in all cases)

P1 P2

M∞ η2 = 0.0 η2 = −1.0 η2 = 0.0 η2 = −1.0

0.0 0.5000 0.5781 0.0 0.5781

0.1 0.4975 0.5757 0.0 0.5757

0.5 0.4286 0.5124 0.0 0.5124

0.9 0.1597 0.2723 0.0 0.2723
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