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A NON-DISSIPATIVE STAGGERED FOURTH-ORDER ACCURATE EXPLICIT FINITE

DIFFERENCE SCHEME FOR THE TIME-DOMAIN MAXWELL'S EQUATIONS�

AMIR YEFETy AND PETER G. PETROPOULOS

Abstract. We consider a divergence-free non-dissipative fourth-order explicit staggered �nite di�erence

scheme for the hyperbolic Maxwell's equations. Special one-sided di�erence operators are derived in order to

implement the scheme near metal boundaries and dielectric interfaces. Numerical results show the scheme

is long-time stable, and is fourth-order convergent over complex domains that include dielectric interfaces

and perfectly conducting surfaces. We also examine the scheme's behavior near metal surfaces that are not

alligned with the grid axes, and compare its accuracy to that obtained by the Yee scheme.

Key words. Maxwell's equations, staggered schemes, �nite di�erences, FD-TD scheme, explicit fourth-

order schemes.
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1. Introduction. Recent engineering advances have resulted in ultra-wideband electromagnetic sources

that �nd application in pulsed radar devices, ground-penetrating imaging systems, non-destructive evaluation

of concrete structures, electronic on-chip interconnects, and novel communication systems. The need to

simulate such problems requires fast and accurate solvers of the time-domain Maxwell's equations in complex

open/closed domains �lled with heterogeneous dielectrics in which metals may be embedded. A mini-review

of how the Computational Electromagnetics (CEM) state of the art impacts such technologies can be found

in [13]. For about a decade, Yee's Finite-Di�erence Time-Domain (FD-TD) algorithm [1] has provided the

best [15] second-order accurate non-dissipative direct solution of the time-domain Maxwell's equations on a

staggered grid. The numerical error is controlled solely by the mesh size, and the algorithm is particularly

easy to implement in the presence of heterogeneous dielectrics and metal boundaries. As with all �nite

di�erence schemes, the algorithm is inherently dispersive and anisotropic [4] and, for large-scale problems or

for problems requiring long-time integration of Maxwell's equations, errors from dispersion and anisotropy

are signi�cant unless the spatial discretization is extremelly small [10]. This leads to prohibitive memory

requirements and high computational cost when addressing realistic problems. For some time now, workers

in CEM have realized the promise of high-order �nite di�erence schemes. The question of staggered vs.

collocated high-order schemes has been studied in [5] where it was shown that staggering is more e�cient.

At the same time a staggered high-order method can be constructed by altering a code that implements

the staggered second-order accurate FD-TD algorithm. However, the extended spatial stencil of high-order

methods has inhibited their wide acceptance as it does not allow for easy application of boundary conditions

(absorbing, metal) and modeling of dielectric interfaces. The issue of implementing an absorbing layer in

a promising staggered scheme that is fourth-order accurate in space and second-order accurate in time [12]

has been addressed in [14]. It remained though that this particular high-order scheme (desirable due to its

similarities to the Yee scheme) was only second-order convergent and slightly more accurate than FD-TD
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when used to solve problems with metal boundaries and/or dielectric interfaces. In this paper we revisit the

explicit non-dissipative staggered scheme presented in [12] in order to address the remaining objections to

its use. We demonstrate that it is divergence-free, and propose a series of numerical boundary conditions,

involving one-sided di�erentiation and extrapolation, to implement metal boundaries and dielectric interfaces.

The treatment of dielectric interfaces herein is di�erent from that in [11] where a simple pointwise speci�cation

of dielectric properties was used; we show in our Numerical Results section that such an approach degrades

the global convergence rate of the scheme to second order. Also, the treatment of metal boundaries herein

is di�erent than that used in [10] where the method of images was applicable due to the in�nite extend of

those boundaries in the numerical test performed there. As shown in our Numerical Results section, these

new numerical boundary conditions give almost the same results as the compact-implicit Ty(2,4) scheme

[2], and (more importantly) preserve the fourth-order accuracy of the scheme. Together with the results on

absorbing layers [14], the present paper should open the way towards a general acceptance of this scheme,

which is an extension of Yee's algorithm to fourth-order accuracy. We now brie
y outline the remainder of

our paper. Section 2 describes the system of partial di�erential equations for which we will present the new

boundary treatment for the fourth-order scheme considered herein. In Section 3 we present the details of

the scheme and its numerical stability and accuracy properties; a derivation of the divergence-free property

of the scheme is also given. Extensive numerical tests are given in Section 4; closed and open problems are

considered and the actual convergence rate of a code based on the work herein is determined. In Section 5,

we give a computational cost comparison between our approach and those of [1] and [2]. Section 6 closes

the paper with a short discussion, conclusions drawn from the numerical experiments, and a description of

future work required to turn this scheme into an engineering tool.

2. Preliminaries. The Maxwell equations in an isotropic non-dispersive medium are:

r�E +
@B

@t
= 0 (Faraday0s Law);

(2.1)

�r�H +
@D

@t
= 0 (Ampere0s Law);

B = �H;

D = �E;

coupled with Gauss's law

r � B = 0

r �D = �:

To simplify the notation we shall consider the two dimensional case, with the only sources for the problem

being incident waves. These waves will be scattered after they encounter an obstacle. Furthermore, in free

space, � and � are constants. The extension of the system of equations to three space dimensions, and the

inclusion of sources and variable coe�cients is straightforward. In two dimensions, the system (2.1) now

decouples into two independent sets of equations. We shall consider the Transverse Magnetic (TM) set of

equations where the electric �eld is a scalar while the magnetic �eld is a two-dimensional vector. Letting

� = ct = t=
p
�� and Z =

p
�
� , where � and � are the permittivity and permeability coe�cients in free space,

and c is the speed of light, the TM equations are:

@Ez

@�
= Z(

@Hy

@x
� @Hx

@y
)
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@Hx

@�
= � 1

Z

@Ez

@y
(2.2)

@Hy

@�
=

1

Z

@Ez

@x

3. The Scheme. The Yee scheme applied to (2.3) is

En+1
z;i;j = En

z;i;j + Z
��

�x
�xH

n+1=2
y;i;j � Z

��

�x
�yH

n+1=2
x;i;j

H
n+1=2
x;i;j�1=2 = H

n�1=2
x;i;j�1=2 �

1

Z

��

�y
�yE

n
z;i;j�1=2(3.1)

H
n+1=2
y;i�1=2;j = H

n�1=2
y;i�1=2;j +

1

Z

��

�x
�xE

n
z;i�1=2;j ;

where

Yee:

�xUi;j = Ui+1=2;j � Ui�1=2;j

�yUi;j = Ui;j+1=2 � Ui;j+1=2:(3.2)

U is evaluated at the appropriate time and space location. In order to improve the accuracy of this scheme we

replace the di�erence operators (3.2) by the following fourth-order accurate stencil for the spatial derivatives,

e.g., @U
@y :

explicit(2,4):

@U

@y i;j+1=2

=
1

24�y
(Ui;j�1 � 27Ui;j + 27Ui;j+1 � Ui;j+2)(3.3)

Hereafter we shall refer to (3.2) as the Yee scheme and to (3.3) as the explicit(2,4) scheme. To complete the

fourth-order scheme at the �rst and last points of a bounded spatial domain we use fourth- and �fth-order

accurate one sided appropximations to the derivative. We note that this is used only in order to globally

approximate the derivative. No physical boundary conditions are included at this stage. These one-sided

approximations are as follows:

@U

@y i;1=2

=
1

24�y
(�22Ui;0 + 17Ui;1 + 9Ui;2 � 5Ui;3 + Ui;4)

@U

@y i;1

=
1

24�y

��23Ui;1=2 + 21Ui;3=2 + 3Ui;5=2 � Ui;7=2

�
@U

@y i;N�1
=

1

24�y

�
23Ui;N�1=2 � 21Ui;N�3=2 � 3Ui;N�5=2 + Ui;N�7=2

�
@U

@y i;N�1=2
=

1

24�y
(22Ui;N � 17Ui;N�1 � 9Ui;N�2 + 5Ui;N�3 � Ui;N�4)

We next de�ne

AH =
1

24

2
6666666664

�23 21 3 �1 : : 0

1 �27 27 �1 : : 0

0 1 �27 27 �1 : 0

: : : : : :

0 : : 1 �27 27 �1
0 : : 1 �3 �21 23

3
7777777775
:(3.4)
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AE =
1

24

2
6666666664

�22 17 9 �5 1 : 0

1 �27 27 �1 : : 0

0 1 �27 27 �1 : 0

: : : : : :

0 : : 1 �27 27 �1
0 : �1 5 �9 �17 22

3
7777777775
;(3.5)

so the matrix form of the approximations to the derivative at the midpoint between grid points, and at the

grid points is respectively:

@

@y

2
6666664

U1=2

U3=2

:

:

UN�1=2

3
7777775

=
1

24�y
AE

2
6666664

U0

U1

:

UN�1

UN

3
7777775
;

@

@y

2
6666664

U1

U2

:

:

UN�1

3
7777775

=
1

24�y
AH

2
6666664

U1=2

U3=2

:

UN�3=2

UN�1=2

3
7777775
:

With these de�nitions, the matrix form of the discrete TM equations is:

[EZi;j ]
n+1 = [EZi;j ]

n +
�t

�x
AH[HYi+1=2;j]

n+1=2 � �t

�y
[HXi;j+1=2]

n+1=2At
H

[HXi;j+1=2]
n+1=2 = [HXi;j+1=2]

n�1=2 � �t

�y
[EZi;j ]

nAt
E

[HYi+1=2;j ]
n+1=2 = [HYi+1=2;j ]

n�1=2 � �t

�x
AE[EZi;j]

n:

Note, the staggering in time and space results in a scheme that is second-order accurate in time and fourth-

order accurate in space.

3.1. Divergence of Computed Fields. We now demonstrate that the explicit(2,4) scheme is divergence-

free for TM waves, that is

@

@t
div(�Hx; �Hy) = 0:

We note that � may be a function of the spatial variables and introduce the relations:

[(�HX)i;j+1=2]
n+1=2 = [(�HX)i;j+1=2]

n�1=2 � �t

�y
[EZi;j ]

nAt
E
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[(�HY )i+1=2;j ]
n+1=2 = [(�HY )i+1=2;j ]

n�1=2 � �t

�x
AE[EZi;j]

n:

Multiplying the �rst equation above by 1=�x and AE, the second equation by 1=�y and At
E, and adding

we get

(
1

�x
AE[(�HX)i;j+1=2] +

1

�y
[(�HY)i+1=2;j]A

t
E)

n+1 =

(
1

�x
AE[(�HX)i;j+1=2] +

1

�y
[(�HY)i+1=2;j]A

t
E)

n:

Hence, if the �eld is numerically divergence-free initially it will remain so ever after. If the � is discontinous

then the derivation of the property di�ers. In that case we segment the domain into subdomains, and on

the boundaries of the dielectric we use a fourth-order extension of the approach developed for second-order

schemes in [6] and [7]. The details of the fourth-order extension to handle dielectric interfaces is given in

Section 4.

3.2. Time Step. For each of the methods described above one must choose a time step for the numerical

integration. This time step is based on two considerations: stability and accuracy. Since all the schemes

have stability limits, this places an upper bound on the usable time step.

The ampli�cation factor is given by:

�leapfrog = 1 +
1

2
z2 �

r
(1 +

1

2
z2)2 � 1

z = ��t. � is an eigenvalue of the Fourier transform of the spatial approximation. LetD =
h

1
(�x)2 +

1
(�y)2

i1=2
.

Then

j�explicitj = 1

12
(
[27sin( �2 )� sin( 3�2 )]

2

(�x)2
+

[27sin(�2 )� sin( 3�2 )]
2

(�y)2
)1=2 � 7

3
D

Since we wish to obtain higher order accuracy it is also necessary to limit the time-step by accuracy

requirements. We do not want the accuracy of the scheme to be determined by the time integration. Hence,

the temporal error should be equal to or less than the spatial error. For the Yee scheme one should choose

the time step close to the stability limit. For the explicit(2,4) scheme the time step chosen depends on

the accuracy desired. As the mesh is re�ned the spatial error decreases as of a fourth order scheme and

so decreases faster than the temporal error. Thus, the time step should depend on (�x)2. If the error

requirements are too severe then this is ine�cient and the leapfrog in time should be replaced by a fourth

order Runge-Kutta method. However, for the experiments in this paper we shall use the same leapfrog

method for both schemes.

3.3. Spatial Accuracy. There are several ways of constructing fourth order methods. We can use

either a staggered mesh or locate all the variables at the same mesh point. In addition we can either use a

�ve point stencil in each direction to approximate the �rst derivative or else use a three point stencil with

an implicit matrix inversion. De�ne the following operators:

� D0u =
uj+1=2�uj�1=2

h
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� D1u =
(uj�3=2�uj+3=2)+27(uj+1=2�uj�1=2)

24h

� (D2u)j+1+(D4u)j�1
24 + 11

12 (D4u)j =
uj+1=2�uj�1=2

h

We de�ne the truncation error as T = Du� du
dx = �h4. By a Taylor series expansion we get

� �1 =
3
640 � :0046875

� �2 =
17
5760 � :00295

Kreiss and Oliger [3] give a simple analysis, for semi-discrete approximations, to calculate the number

of points per wavelength needed to resolve a wave with speed a and given accuracy �. Let ! be the wave

number (u(x; t) = ei!x�at). We consider the solution over q periods so that t = 2�q
!a . They �nd that the

number of points per wavelenth, M , needed for accuracy � is given by

M = 2�(2��)1=p
�q
�

�1=p
;

where p is the order of the scheme.

If we choose � = :01, one percent error, then we get

� M0 � 32:15q1=2

� M1 � 8:23q1=4

� M2 � 7:33q1=4

As seen from the formulas of Kreiss and Oliger the bene�ts of a fourth order method, compared with a second

order method, improve as one demands higher accuracy (e.g. 0.1 %) and with longer times of integration.

We conclude that either staggering or a compact implicit method gives substantial improvement over the

simplest fourth order accurate method. Combining staggering with an implicit method gives a little more

improvement (see also [5]). We stress that staggering also helps in the imposition of the boundary conditions.

In addition using the Yee placement of the variables simpli�es the conversion of an existing code to fourth

order accuracy.

If one assumes a uniform grid-spacing, i.e, �x = �y = h, and de�nes the number of points per wavelength

to be N = 2�
kh , then the numerical wave speed c� can be written as:

c�Y ee =
N

�

�
sin2(

� cos(�)

N
) + sin2(

� sin(�)

N
)

�1=2

c�explicit =
N

24�
(

�
27 sin(

� cos(�)

N
)� sin(

3� cos(�)

N
)

�2

+

�
27 sin(

� sin(�)

N
)� sin(

3� cos(�)

N
)

�2
)1=2

Shown in Fig. 3.1 are the polar diagrams of the numerical phase speed for N = 1; 2; 4; 8 and 16 for the two

schemes. A comparison of the numerical phase speed for N = 20 is given in Fig. 3.2. The numerical phase

speed in the two schemes experiences a phase lag. The lag decreases as N increases. The lag decreases for

the explicit scheme. In other words, for a given grid-spacing, the error (1� c�) for high frequency modes is

greater than that for low frequency modes. For a �xed N, the error using Yee's scheme is greater than The

explicit. The two �gures also demonstrate the anisotropy inherent in the discretizations.

One observes that the error is the greatest along the axes (� = 0; �=2; � and 3�=2) and the least along the

diagonals (� = �=4; 3�=4; 5�=4 and 7�=4). An important quantity to measure is the isotropy error de�ned

as the di�erence of the maximum and the minimum values of the numerical phase speed. For N=20, as

shown in Fig. 3.2 the isotropy errors are 0:2% for the Yee scheme and 0:0034% in for the explicit scheme.
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Expanding c� one obtains the error:

1� c�Y ee =
�2

N2
(
1

8
+

1

24
cos(4�))

1� c�explicit =
3�4

320N4
(5 + 3cos(4�))

The above equation shows that the leading dispersive errors in Yee's scheme is inversely proportional to N2

and in the explicit scheme is inversely proportional to N4. This, of course, is just a re
ection that Yee's

scheme is second order accurate in space while the explicit scheme is fourth order accurate in space. It also

shows that the leading dispersive error is a function of the wave propagation direction � on each grid.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1

2

4

16

Fig. 3.1. Polar diagram of the numerical phase speed. Yee:��, explicit(2,4):�.

0 1 2 3 4 5 6 7
0.9955

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

1.0005

Yee

Explicit

Fig. 3.2. Comparison of numerical phase speed, 0 � � � 2�.

3.4. Numerical Errors of Spatial and Time Discretization. We have discussed spatial and time

errors individually in the previous sections. In this section we will investigate the numerical errors from the
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combined discretization. These errors can be determined from the eigenvalues of the ampli�cation matrix.

In Fig. 3.3 the curves labeled 'exact' are the normalized phase shift using the exact time integration. The

di�erence between these curves and the value 1 is the spatial phase error, which can have either a phase lag

or a phase lead. The other curves are the normalized phase shift using the staggered leapfrog (with Yee and

the explicit(2,4)) with CFL = 1
2 . For the Yee scheme the di�erence between each curve and the exact curve

is an additional phase error due to time discretization. Leapfrog has a larger error and a phase lead and so

moves the curve away from 1. Except for a very small contribution due to the nonlinear relation between �

and �, the time discretization does not reduce the isotropy error introduced by the spatial discretization.

0 1 2 3 4 5 6 7
0.98

0.985

0.99

0.995

1

1.005

LF−Explicit+

LF−Yee+

exact−Yee

exact−Explicit

Fig. 3.3. Comparison of phase shifts for complete discretization.

4. Computational Results. In this section we compare three di�erent schemes: the standard Yee

scheme, the explicit(2,4) scheme as extended herein, and the Ty(2,4) [2] scheme. All schemes are advanced

in time by the leapfrog method. For all computations we choose Z = 1. For the numerical examples that are

posed in an open domain we use a PML method in the far �eld. In all cases the error is measured against

the exact Ez in the L2 norm. All numerical examples herein test the accuracy and stability of the one-sided

di�erencing and extrapolation operators introduced in Section 2 and in the present Section.

We �rst consider a test case with the following initial and boundary conditions:

Ez = sin(3�x) sin(4�y)

Hy = (3=5) cos(3�x) sin(4�y) sin(
5��t

2
)

Hx = �(4=5) sin(3�x) cos(4�y) sin(5��t
2

)

The exact solution in this case is:

Ez = sin(3�x) sin(4�y) cos(5�t)

For the three schemes we choose uniform grid spacing. For the Yee, the explicit(2,4) and the Ty(2,4) schemes

we take: h = �x = �y = 1=20; 1=40; 1=80. For the Yee scheme we set �t = 2h=3, while for the explicit(2,4)

and Ty(2,4) schemes we set �t = h2. Figures 4.1a-4.1c show the actual logarithmic errors as a function of

time. Figure 4.1d shows the convergence rate of the L2 spatial error in the maximum norm over the time

interval [0; 10]. The slope of the line for the Yee scheme converges to 2, and the slope of the lines for both

the explicit(2,4) and Ty(2,4) schemes converge to 4. This can also be seen in Table 4.1.
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0 1 2 3 4 5 6 7 8 9 10
−8
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−6

−5
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−3
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−1

0

1

TIME
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g 10

(||
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r||
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h=1/40
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Fig. 4.1a. log
10
(jjerrorjjL2) For the Yee scheme.

0 1 2 3 4 5 6 7 8 9 10
−6
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−5

−4.5

−4

−3.5

−3
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−2

−1.5

−1

TIME

lo
g 10

(||
er

ro
r||

L 2)

h=1/20
h=1/40
h=1/80

Fig. 4.1b. log
10
(jjerrorjjL2) for the explicit(2,4)

scheme.

0 1 2 3 4 5 6 7 8 9 10

−6

−5

−4

−3

−2

−1

TIME

lo
g 10

(||
er

ro
r||

L 2)

h=1/20
h=1/40
h=1/80

Fig. 4.1c. log
10
(jjerrorjjL2) for the Ty(2,4) scheme.

−2 −1.9 −1.8 −1.7 −1.6 −1.5 −1.4 −1.3 −1.2
−6

−5

−4

−3

−2

−1

0

log
10

(h)

lo
g 10

(M
A

X
||e

rr
or

|| L 2)
Yee          
explicit(2,4)
Ty(2,4)      

Fig. 4.1d. Log10(jjerrorjjL2) as a function of

Log10(h) For the Yee, the explicit(2,4) and theTy(2,4)

schemes.

Table 4.1

The maximal errors in L2 norm for each mesh size

scheme h �t Max(jjerrorjjL2
) rate

0 � t � 10

explicit(2; 4) 1
20

1
400 0:014

explicit(2; 4) 1
40

1
1600 1:43� 10�4 6.60

explicit(2; 4) 1
80

1
3200 4:76� 10�6 4.9152

Ty(2; 4) 1
20

1
400 0:0224

Ty(2; 4) 1
40

1
1440 7:07� 10�5 8.306

Ty(2; 4) 1
80

1
3440 2:12� 10�6 5.0589

Y ee 1
20

1
35 0:189

Y ee 1
40

1
70 0:0475 1.99

Y ee 1
80

1
140 0:0118 2.003

We next consider the simplest mode of propagation in a rectangular cross section wave guide. We take
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the walls to be perfect conductors. We take the following boundary and initial conditions:

Ez(x; y; 0) = sin(3�x) sin(4�y)

Hy(x; y;
�t

2
) = �3

5
sin(3�x� 5��t

2
) sin(4�y)

Hx(x; y;
�t

2
) = �4

5
cos(3�x� 5��t

2
) sin(4�y)

Ez(0; y; t) = � sin(5�t) sin(4�y)

Ez(1; y; t) = sin(3� � 5�t) sin(4�y)

Ez(x; 0; t) = 0

Ez(x; 1; t) = 0

The solution is then:

Ez(x; y; t) = sin(3�x� 5�t) sin(4�y):

For the three schemes we choose uniform grid spacing. For the Yee, the explicit(2,4), and the Ty(2,4) schemes

we again take: h = �x = �y = 1=20; 1=40; 1=80. The CFL numbers are chosen as before. In the �gure 4.2d

we draw the error as a function of the mesh size. For this test problem too the slope for the Yee scheme

converges to 2 while that for the explicit(2,4) converges to 4. In table 4.2 we present the errors in L2 norm

for the Yee and the explicit(2,4) scheme. In both cases the errors are almost linear in time. However as the

mesh is re�ned the Yee scheme yields second order accuracy while the explicit(2,4) yields between fourth

and �fth order accuracy.
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Fig. 4.2a. log10(jjerrorjjL2) For the Yee scheme.
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Fig. 4.2c. log
10
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scheme.
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Fig. 4.2d. Log10(jjerrorjjL2) as a function of

Log10(h) For the Yee, the explicit(2,4) and theTy(2,4)

schemes.

Table 4.2

The maximal errors in L2 norm.

scheme h �t Max(jjerrorjjL2
) rate

0 � t � 10

explicit(2; 4) 1
20

1
400 0:014

explicit(2; 4) 1
40

1
1600 1:9316� 10�4 6.2

explicit(2; 4) 1
80

1
3200 6:48� 10�6 4.896

Ty(2; 4) 1
20

1
400 0:0242

Ty(2; 4) 1
40

1
1440 7:9304� 10�5 8.15

Ty(2; 4) 1
80

1
3440 2:329� 10�6 5.089

Y ee 1
20

1
30 0:1889

Y ee 1
40

1
60 0:0476 1.9885

Y ee 1
80

1
120 0:0119 2.0032

We next consider the treatment of a domain which contains air and a lossless dielectric with a relative

permittivity of �2 as shown in Figure 4.3.

ε1 ε

 1

2 ε1

-1 -1/2 1/2

Fig. 4.3. The computational domain
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Since Ez is continuous while its second derivatives are discontinuous we use the following fourth-order

explicit interpolation to implement the discontinuous dielectric properties in the explicit(2,4) scheme. De�ne

Aint =
1

16

2
6666666664

5 15 �5 1 0 : 0

�1 9 9 �1 : : 0

0 �1 9 9 �1 : 0

: : : :

0 : : �1 9 9 �1
0 : : 1 �5 15 5

3
7777777775
:(4.1)

Then 2
6666664

�1

�2

:

�p�2

�p�1

3
7777775

= Aint

2
6666664

�1=2

�3=2

:

:

�p�1=2

3
7777775
:

In two dimensions this is replaced by:

[�i;j ] =
1

2

�
Aint[�i+1=2;j ] + [�i;j+1=2]A

t
int

�
:

For the Yee scheme we take �interface =
�1+�2
2 . An exact solution in this case is:

Ez =

(
2 cos( 2�3 X) cos(!t) sin(KyY ) jX j � 1

2 0 � Y � 1

exp(�
p
3

3 ) exp(� 2�
p
3

3 jX j) cos(!t) sin(KyY ) jX j � 1
2 0 � Y � 1

Hy =

8>><
>>:
�p�2 � �1 sin(

2�
3 X) sin(!t) sin(KyY ) jX j � 1

2 0 � Y � 1

�
p
3(�2��1)

2 exp(�
p
3

3 ) exp(� 2�
p
3

3 X) sin(!t) sin(KyY ) X � 1
2 0 � Y � 1p

3(�2��1)
2 exp(�

p
3

3 ) exp( 2�
p
3

3 X) sin(!t) sin(KyY ) X � � 1
2 0 � Y � 1

Hx =

(
�p�1 + 3�2 cos(

2�
3 X) sin(!t) cos(KyY ) jX j � 1

2 0 � Y � 1

�
p
�1+3�2
2 exp(�

p
3

3 ) exp(� 2�
p
3

3 jX j) sin(!t) cos(KyY ) jX j � 1
2 0 � Y � 1

where Ky =
2�
3

q
�1+3�2
�2��1 and ! = 4�

3
p
�2��1 . Here we choose �1 = 1 and �2 = 2; 4. We use the same mesh sizes

as before. In Figures 4.4 and 4.5 we draw the errors as a function of the mesh size for various �2.
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Fig. 4.4. The maximal errors in L2 norm as a

function of the mesh size with �2 = 2.
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Fig. 4.5. The maximal errors in L2 norm as a

function of the mesh size with �2 = 4.
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Although we get only second order accuracy for the explicit(2,4) scheme we still get much better results

Table 4.3

The maximal errors in L2 norm with �2 = 2.

scheme h �t Max(jjerrorjjL2
) rate

0 � t � 10

explicit(2; 4) 1
20

1
400 0:0019

explicit(2; 4) 1
40

1
1600 5:7585� 10�4 1.715

explicit(2; 4) 1
80

1
3200 1:4909� 10�4 1.94

Ty(2; 4) 1
20

1
400 0:00196

Ty(2; 4) 1
40

1
1600 5:7721� 10�4 1.763

Ty(2; 4) 1
80

1
6400 1:4955� 10�4 1.948

Y ee 1
20

1
30 0:0363

Y ee 1
40

1
60 0:0089 2.028

Y ee 1
80

1
120 0:00222 2.003

Table 4.4

The maximal errors in L2 norm with �2 = 4.

scheme h �t Max(jjerrorjjL2
) rate

0 � t � 10

explicit(2; 4) 1
20

1
400 0:0014

explicit(2; 4) 1
40

1
1600 3:765� 10�4 1.894

explicit(2; 4) 1
80

1
3200 9:7748� 10�5 1.945

Ty(2; 4) 1
20

1
400 0:00139

Ty(2; 4) 1
40

1
1600 3:756� 10�4 1.887

Ty(2; 4) 1
80

1
6400 9:7579� 10�5 1.944

Y ee 1
20

1
30 0:0095

Y ee 1
40

1
60 0:00237 2.003

Y ee 1
80

1
120 5:9442� 10�4 1.9953

than the ones we get employing the Yee scheme. However, we are using a fourth-order scheme and the loss

of two orders of convergence in the presence of heterogeneous dielectrics is undesirable.

An innovative approach to handle heterogeneous dielectrics for the Yee scheme is presented in [6]-[7].

We have extended this approach to include heterogeneous piecewise constant dielectric properties in the

explicit(2,4) scheme. As we see below, the fourth-order convergence is recovered globally. We divide the

computational domain into three subdomains. Two contain air and the third one contains the lossless

dielectric. On the interfaces both the electric and magnetic �elds are approximated as follows. Suppose the

interfaces are located at i = I1 and i = I2, and � = �2 for I1 < i < I2 while � = �1 for i > I2 and i < I1. We

approximate Hy at i = I1 and i = I2 by using the following �fth-order extrapolation:

Hn+1=2
yI1;j

=
315

128
Hn+1=2
yI1�1=2;j

� 105

32
Hn+1=2
yI1�3=2;j

+
189

64
Hn+1=2
yI1�5=2;j

� 45

32
Hn+1=2
yI1�7=2;j

+
35

128
Hn+1=2
yI1�9=2;j

Hn+1=2
yI2;j

=
315

128
Hn+1=2
yI2+1=2;j

� 105

32
Hn+1=2
yI2+3=2;j

+
189

64
Hn+1=2
yI2+5=2;j

� 45

32
Hn+1=2
yI2+7=2;j

+
35

128
Hn+1=2
yI2+9=2;j
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H
n+1=2
yI1;j can be extarpolated by using the points to the left of I1, or by using the points to the right of

I2 because Hy is a continuous function. Once Hy is approximated on the interface we approximate the

x-derivative of Hy using HyI1;j
and HyI2;j

as follows:

@

@x
Hn+1=2
yI1;j

� 352

105
HyI1;j

� 35

8
HyI1+1=2

+
35

24
HyI1+3=2;j

� 21

40
HyI1+5=2;j

+
5

46
HyI1+7=2;j

@

@x
Hn+1=2
yI2;j

� �352

105
HyI2;j

+
35

8
HyI2�1=2

� 35

24
HyI2�3=2;j

+
21

40
HyI2�5=2;j

� 5

46
HyI2�7=2;j

Since we discretize the time we want to lose as little information as possible. Therefore, we approximate
@
@xH

n+1=2
yI1;j

where Ez moves more slowly, i.e. where � = �2. Once
@
@xH

n+1=2
yI1;j

and @
@xH

n+1=2
yI2;j

are calculated we

can evaluate EZn+1
I1;j

and EZn+1
I2;j

the following way:

EZn+1
I1;j

= EZn
I1;j �

�t

24�y

�
HxI1;j�3=2

� 27HxI1;j�1=2
+ 27HxI1;j+1=2

�HxI1;j+3=2

�

+
�t

�x

�
352

105
Hn+1=2
yI1;j

� 35

8
Hn+1=2
yI1+1=2;j

+
35

24
Hn+1=2
yI1+3=2;j

� 21

40
Hn+1=2
yI1+5=2;j

+
5

46
Hn+1=2
yI1+7=2;j

�

Since @
@xH

n+1=2
yI1;j

and @
@xH

n+1=2
yI1;j

are approximated where � = �2 we set � = �2 at i = I1 and i = I2.
@
@xH

n+1=2
yI1;j

is approximated by using points, which are on the right-hand side of I1. This is done because the velocity

of the waves is
q

1
�2

which is smaller than the velocity on the left-hand side of I1.

In Figures 4.6a-4.6c we draw the error of the three schemes for various mesh sizes with �2 = 2 and in

Fig 4.7a-4.7c we draw the error of the three schemes for various mesh sizes with �2 = 4. In Fig 4.6d and

4.7d we draw the errors as a function of the mesh size. The slope of the Yee scheme is 2 and the slope

of the Ty(2,4) scheme and the explicit(2,4) converges to 4 as can also be seen in table 4.5 and table 4.6.
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Fig. 4.6a. log10(jjerrorjjL2) For the Yee scheme.
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Fig. 4.6b. log10(jjerrorjjL2) for the explicit(2,4)

scheme.

14



0 1 2 3 4 5 6 7 8 9 10
−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

TIME

lo
g 10

(||
er

ro
r||

L 2)

h=1/20
h=1/40
h=1/80

Fig. 4.6c. log
10
(jjerrorjjL2) for the Ty(2,4) scheme.
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Fig. 4.6d. Log10(jjerrorjjL2) as a function of

Log10(h) For the Yee, the explicit(2,4) and theTy(2,4)

schemes.

Table 4.5

The maximal errors in L2 norm with �2 = 2.

scheme h �t Max(jjerrorjjL2
) rate

0 � t � 10

explicit(2; 4) 1
20

1
400 3:1829� 10�4

explicit(2; 4) 1
40

1
1600 4:9839� 10�6 5.996

explicit(2; 4) 1
80

1
3200 2:6518� 10�7 4.23

Ty(2; 4) 1
20

1
400 1:978� 10�4

Ty(2; 4) 1
40

1
1600 2:3593� 10�6 6.389

Ty(2; 4) 1
80

1
6400 4:4066� 10�7 2.420

Y ee 1
20

1
30 0:0363

Y ee 1
40

1
60 0:0089 2.028

Y ee 1
80

1
120 0:00222 2.003
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Fig. 4.7a. log10(jjerrorjjL2) For the Yee scheme.
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Fig. 4.7b. log10(jjerrorjjL2) for the explicit(2,4)

scheme.
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Fig. 4.7c. log
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(jjerrorjjL2) for the Ty(2,4) scheme.
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Fig. 4.7d. Log10(jjerrorjjL2) as a function of

Log10(h) For the Yee, the explicit(2,4) and theTy(2,4)

schemes.

Table 4.6

The maximal errors in L2 norm with �2 = 4.

scheme h �t Max(jjerrorjjL2
) rate

0 � t � 10

explicit(2; 4) 1
20

1
400 6:9239� 10�5

explicit(2; 4) 1
40

1
1600 3:5486� 10�6 4.286

explicit(2; 4) 1
80

1
3200 2:0112� 10�7 4.141

Ty(2; 4) 1
20

1
400 2:7043� 10�5

Ty(2; 4) 1
40

1
1600 1:4233� 10�6 4.249

Ty(2; 4) 1
80

1
6400 1:1040� 10�7 3.688

Y ee 1
20

1
30 0:0095

Y ee 1
40

1
60 0:00237 2.003

Y ee 1
80

1
120 5:9442� 10�4 1.9953

Next, we look at a coated perfect conductor with a dielectric layer. The coating thickness is 1
2 with a

relative permittivity of �2 as shown in Fig 4.8 .

ε1 conductor2ε

1/2 5/4

1

x

y

perfect
conductor

perfect

Fig. 4.8. The computational domain
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We take �2 = 2 and �1 = 1. An exact solution in this case can be:

Ez =

(
sin(a1X) sin(!t) sin(bY ) 0 � X � 1

2 0 � Y � 1

cos(a2X) sin(!t) sin(bY ) 1
2 � X � 5

4 0 � Y � 1

Hy =

(
�a1

! cos(a1X) cos(!t) sin(bY ) 0 � X � 1
2 0 � Y � 1

a2
! cos(a2X) cos(!t) sin(bY ) 1

2 � X � 5
4 0 � Y � 1

Hx =

(
b
! sin(a1X) cos(!t) cos(bY ) 0 � X � 1

2 0 � Y � 1
b
! sin(a2X) cos(!t) cos(bY ) 1

2 � X � 5
4 0 � Y � 1

where

a21 + b2 = �2!
2

a22 + b2 = �1!
2

x = 1
2 : sin(a12 ) = cos(a22 )

x = 5
4 : cos( 5a24 ) = 0

We choose:

�1 = 1

�2 = 2

a1 = 3�

a2 = 2�

b = �

! =
p
5�

On the interface between the air and the dielectric we use the same technique we used in the previous ex-

ample. In Figures 4.9a-4.9c we draw the errors for various mesh sizes. In Figure 4.9d we draw the errors as

a function of the mesh size. For the Yee scheme we get second order accurcy and for the Ty(2,4) and the

explicit(2,4) the accurcy converges to 4, which can also be seen in Table 4.7.
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Fig. 4.9a. log10(jjerrorjjL2) For the Yee scheme.
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Fig. 4.9b. log10(jjerrorjjL2) for the explicit(2,4)

scheme.
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Fig. 4.9c. log10(jjerrorjjL2) for the Ty(2,4) scheme.
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Fig. 4.9d. Log10(jjerrorjjL2) as a function of

Log10(h) For the Yee, the explicit(2,4) and theTy(2,4)

schemes.

Table 4.7

The maximal errors in L2 norm .

scheme h �t Max(jjerrorjjL2
) rate

0 � t � 10

explicit(2; 4) 1
20

1
400 0:00398

explicit(2; 4) 1
40

1
1600 2:4868� 10�4 4.001

explicit(2; 4) 1
80

1
3200 1:0889� 10�5 4.513

Ty(2; 4) 1
20

1
400 0:0063

Ty(2; 4) 1
40

1
1600 1:609� 10�4 5.308

Ty(2; 4) 1
80

1
6400 1:7820� 10�6 6.497

Y ee 1
20

1
30 0:1498

Y ee 1
40

1
60 0:037 2.004

Y ee 1
80

1
120 0:0093 2.0026

To our knowledge, this is the �rst fourth-order scheme that preserves its convergence rate when discon-

tinuities in the coe�cients are present.

Next we consider a monochromatic isotropic point source of wavelength 0.25, that is switched on at

t = 0 and radiates in free-space. The domain is 0 � x; y � 1. For Yee's scheme we choose h= 1
40 , �t=

2h
3 ,

for the explicit(2,4) and theTy(2,4) scheme h= 1
40 , �t=h2. The point source is modeled by adding a term

representing a current Iz(t) = 0:01 sin(8�t)�(t) at (x; y) = ( 14 ;
1
4 ) where �(t) denotes the Heaviside unit-step

function. For the pulse under consideration, the radiated �eld is the solution of

@2xEz + @2yEz � @2tEz = Z@tIz(t)�(r � rs)(4.2)

r � rs = (x� 1
4 ; y � 1

4 ). The solution consists of rotationally symmetric outgoing waves. The exact solution

is

Ez(r; t) = � Z

2�

Z 1

0

@tIz(t�
pj(r � rsj2 + �2))pj(r � rsj2 + �2

d�

In Fig. 4.10 we plot the errors, in the L2 norm, for the various approximate solutions.
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Fig. 4.10. The errors in L2 norm between the numerical solution and the exact solution of 4.2.
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Fig. 4.11. The contours of the Yee scheme and

the exact solution at t = 8. The Yee scheme is drawn

by �� and the exact solution is drawn by a solid line
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Fig. 4.12. The contours of the explicit(2,4)

scheme and the exact solution at t = 8. The ex-

plicit(2,4) scheme is drawn by �� and the exact so-

lution is drawn by a solid line.

Next we consider a monochromatic isotropic point source of wavelength 0.25, that is switched on at t = 0

in the presence of an in�nite perfect conductor( �g 4.13). The domain is �1 � x; y � 1
2 , �1 � y � 1. For

Yee's scheme we choose h= 1
40 , �t=

2h
3 , for the explicit(2,4) and theTy(2,4) schemes h= 1

40 , �t=h2. The

point source is modeled by adding a term representing a current Iz(t) = 0:01 sin(8�t)�(t) at (x; y) = ( 14 ;
1
4 )

where �(t) denotes the Heaviside unit-step function. The equations in this case are:

@Ez

@t
= Z(

@Hy

@x
� @Hx

@y
)� ZIz(t)�(r � rs)

@Hx

@t
= � 1

Z

@Ez

@y

@Hy

@t
=

1

Z

@Ez

@x
:

With the boundary conditions:

Ez(1=2; y; t) = 0(4.3)
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CONDUCTOR

PERFECT

Fig. 4.13. The computational domain.

The exact solution can be constructed by using the exact solution for the previous case and by using the

image method.

In Figures 4.14, 4.15 and 4.16 we draw the errors in L2 norm and the contours of the exact and numerical

solutions.
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Fig. 4.14. The errors in L2 norm between the numerical solutions and the exact solution of 4.3.
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Fig. 4.15. The contours of the Yee scheme and

the exact solution at t = 5. The Yee scheme is drawn

by �� and the exact solution is drawn by a solid line

.
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Fig. 4.16. The contours of the explicit(2,4)

scheme and the exact solution at t = 5. The ex-

plicit(2,4) scheme is drawn by �� and the exact so-

lution is drawn by a solid line.

Next we consider a monochromatic pointsource in the presence of an inclined perfect conductor Fig 4.17a

. We test these three schemes by using the staircasing method. We meshure the error in L1 norm along the

dashed line which can be seen in Fig 4.17b . As can be seen from Fig 4.17c the Ty(2,4) scheme is unstable

whereas the Yee scheme and the explicit(2,4) schemes are stable. In [9] the Ty(2,4) scheme was tested as

well but there the Ty(2,4) scheme was stable.

point source

PERFECT
CONDUCTORφ=π/8

monochromatic

Fig. 4.17a. Computational domain.
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Fig. 4.17b. Location of the grid points.
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Fig. 4.17c. The jjerrorjjL1 as a function of time for the Yee, the explicit(2,4) and theTy(2,4) schemes.
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Next we test these three schemes in [0; 1=2]� [0; 1=4]� [01=2] domain. An exact solution in this case

can be [8]:

Hx = sin(!t) sin(Ax +By + Cz)

Hy = sin(!t) sin(Ax +By + Cz)

Hz = sin(!t) sin(Ax +By + Cz)

Ex =
C �B

!
cos(!t) cos(Ax +By + Cz)

Ey =
A� C

!
cos(!t) cos(Ax+By + Cz)

Ez =
B �A

!
cos(!t) cos(Ax +By + Cz)

Where

!2 = A2 +B2 + C2

0 = A+B + C

We choose:

A = �

B = �2�
C = �

! =
p
6�

In table 4.8, we can see that for the explicit(2,4) and the Ty(2,4) schemes we have used �t = h2 and for

the Yee scheme we have used �t = 4h
7 . The explicit(2,4) as well as the Ty(2,4) schemes behave better than

expected and gives almost �fth order of accuracy.

For all this cases we have measured the error between the approximated electric �eld in the z direction

and the exact electric �eld in the z direction in L2 norm.

Table 4.8

Comparison of the errors in L2 norm

scheme h �t Max(jjerrorjjL2
) rate

0 � t � 10

explicit(2; 4) 1
20

1
400 5:375� 10�4

explicit(2; 4) 1
40

1
1600 2:184� 10�5 4.621

explicit(2; 4) 1
80

1
3200 9:071� 10�7 4.590

Ty(2; 4) 1
20

1
400 3:621� 10�4

Ty(2; 4) 1
40

1
1600 1:144� 10�5 4.983

Ty(2; 4) 1
80

1
6400 3:5621� 10�7 5.005

Y ee 1
20

1
35 0:0027

Y ee 1
40

1
70 7:3� 10�4 1.9028

Y ee 1
80

1
140 1:8252� 10�4 2.0015
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Fig. 4.18a. log
10
(jjerrorjjL2) for the Yee scheme.
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Fig. 4.18b. log
10
(jjerrorjjL2) for the ex-

plicit(2,4) scheme.
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Fig. 4.18c. log10(jjerrorjjL2) for the Ty(2,4)

scheme.
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Fig. 4.18d. Log10(jjerrorjjL2) as a function

of Log10(h) For the Yee, the explicit(2,4) and the

Ty(2,4) schemes.

5. Computational Cost Comparisons. In order to compare the e�ciency of the explicit(2,4), the

Ty(2,4) and Yee scheme we examine the following boundary conditions:

Ez = sin(3�x) sin(4�y)

Hy = (3=5) cos(3�x) sin(4�y) sin(
5��t

2
)

Hx = �(4=5) sin(3�x) cos(4�y) sin(5��t
2

)

The exact solution in this case is:

Ez = sin(3�x) sin(4�y) cos(5�t)

For the Ty(2,4) scheme and the explicit(2,4) scheme we use a uniform gridspacing with �x = �y = 1
30 . For

the Yee scheme we also use uniform gridspacing with �x = �y = 1
240 . We chose these mesh sizes in order

to get the same error between the exact Ez and the approximated Ez in L2 norm. The comparison is shown

in table 5.1. The programs were written in fortran and run on a Digital Alpha workstation.

The CPU time needed to achieve the same accuracy in Yee's case is more than 11 times larger than

required for the Ty(2,4) scheme and 91 times larger than required for the explicit(2,4) scheme.
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Table 5.1

CPU-time using various di�erence schemes.

scheme h �t Max(jjerrorjjL2
) CPU � time

0 � t � 10

explicit(2; 4) 1
30

1
900 1:99� 10�3 0.9 sec

Ty(2; 4) 1
30

1
900 1:25� 10�3 5.7 sec

Y ee 1
240

1
360 1:31� 10�3 91sec

6. Discussion and Conclusion. The results demonstrate that we can use a coarser mesh with the

fourth order scheme and still get the same accuracy as with the Yee scheme. This is true even in the presence

of a dielectric media.

Although this scheme is not as good as the Ty(2,4) scheme[2], it is still easier to modify an existing code

based on the Yee scheme and make it fourth order accurate, by using the explicit(2,4) scheme. This is true

because in the Ty(2,4) scheme one has to inverse a matrix by using a LU decomposition.
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