
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

NASA/CR-1999-209518
ICASE Report No. 99-34

A Parallel Compact Multi-dimensional Numerical
Algorithm with Aeroacoustics Applications

Alex Povitsky
ICASE, Hampton, Virginia

Philip J. Morris
The Pennsylvania State University, University Park, Pennsylvania

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA

Operated by Universities Space Research Association

August 1999

Prepared for Langley Research Center
under Contract NAS1-97046



A PARALLEL COMPACT MULTI-DIMENSIONAL NUMERICAL ALGORITHM WITH

AEROACOUSTICS APPLICATIONS

ALEX POVITSKY� AND PHILIP J. MORRISy

Abstract. In this study we propose a novel method to parallelize high-order compact numerical algo-

rithms for the solution of three-dimensional PDEs in a space-time domain. For this numerical integration

most of the computer time is spent in computation of spatial derivatives at each stage of the Runge-Kutta

temporal update. The most e�cient direct method to compute spatial derivatives on a serial computer is

a version of Gaussian elimination for narrow linear banded systems known as the Thomas algorithm. In a

straightforward pipelined implementation of the Thomas algorithm processors are idle due to the forward

and backward recurrences of the Thomas algorithm. To utilize processors during this time, we propose to

use them for either non-local data independent computations, solving lines in the next spatial direction, or

local data-dependent computations by the Runge-Kutta method. To achieve this goal, control of processor

communication and computations by a static schedule is adopted. Thus, our parallel code is driven by

a communication and computation schedule instead of the usual \creative programming" approach. The

obtained parallelization speed-up of the novel algorithm is about twice as much as that for the standard

pipelined algorithm and close to that for the explicit DRP algorithm.

Key words. parallel computing, high-order numerical method, compact scheme, aeroacoustics, pipelined

Thomas Algorithm, banded matrices

Subject classi�cation. Computer Science, Fluid Mechanics

1. Introduction. High order accurate numerical schemes are needed to capture multi-scale phenomena

and the long-time integration characteristics required for problems of computational wave propagation and

the direct numerical simulation of turbulence.

Implicit �nite di�erence formulas are de�ned as expressions where derivatives at di�erent mesh points

appear simultaneously [1, 2]. The price that must be paid for high order accuracy with low dissipation

and dispersion is that compact �nite di�erence schemes require the solution of a linear narrow-banded

system of equations for the unknown derivative values. For instance, one can achieve 8th and 10th orders

of accuracy solving tridiagonal and pentadiagonal systems [2], respectively. The use of implicit �lters [3]

enables implementation of compact schemes for non-linear models with non-uniform grids. The number of

arithmetic operations per grid node is approximately equal for explicit and compact formulations of the

same order [4]. Whereas e�cient parallelization of explicit central-di�erence schemes has been implemented

by several authors [5, 6] the e�cient implementation of compact schemes on parallel computers remains an

open problem.

In a multi-dimensional case the partial derivatives can be found by the solution of the banded linear

systems formed by considering each spatial partial derivative separately. The most computationally e�cient

�Sta� Scientist, ICASE, NASA Langley Research Center, Hampton, VA 23681-2199 (e-mail:aeralpo@icase.edu), this research

was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046 while the author

was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research

Center, Hampton, VA 23681
yBoeing/A. D. Welliver Professor, Department of Aerospace Engineering, The Pennsylvania State University, University

Park, PA 16802 (e-mail: pjm@psu.edu)

1



method for the solution of a linear banded system in a single processor is a version of Gaussian Elimination

known as the Thomas algorithm. For a systems with N unknowns this method requires O(N) operations.

Parallel solvers that adopt the Thomas algorithm for sets of independent banded systems are of the

pipelined type. Pipelines occur due to the recurrence of data within a loop. The main disadvantage is that

during the pipelined process processors will be idle at the beginning of the computations and when the

algorithm switches from the forward to the backward computational step. Note, that the idle stage exists

even if communications are very fast, because processors must wait for completion of computations on the

previous processors. A natural way to avoid far-�eld data-dependency is to introduce arti�cial boundary

conditions (ABC) at inter-domain interfaces. Nordstrom and Carpenter [7] have shown that multiple interface

ABC lead to a decrease of the stability range and accuracy for high-order compact schemes. Additionally,

the theoretical stability analysis is restricted to linear PDEs and uni-directional partitioning.

As an alternative to pipelining, several concurrent direct linear banded solvers have been developed (see

[8, 9] and bibliography in these references). These algorithms are based on matrix-vector multiplications

instead of forward and backward recursive steps of the Thomas algorithm. For matrices with narrow bands

these factorizations have a higher degree of parallelism than the standard pipelined Thomas algorithm. These

techniques lead to a substantial increase in the number of 
oating-point operations (a factor of 2-2.5), which

e�ectively reduces the gains obtained by parallelism [8].

Hofhaus and van de Velde [9] compared the pipelined Thomas algorithm with other direct methods

(recursive doubling, cyclic reduction, divide and conquer, and partition method) and observed that it has

the lowest 
oating-point operation count and requires the least amount of communication. However, it is

less concurrent than some other methods due to the startup time required for all processors to participate

in the computation (i.e., the pipelined nature of this algorithm).

Sun [10] developed a Parallel Diagonal Dominant (PDD) algorithm which is speci�cally designed for the

solution of Toeplitz tridiagonal systems arising from compact schemes. Taking into account the constant and

diagonally dominant nature of the coe�cients of Toeplitz matrices, Sun dropped intermediate coe�cients

and investigated the accuracy of this approximation, which is a necessary part of PDD. However, the PDD

algorithm is an approximation of the original high-order compact schemes and it has a higher computational

overhead compared to the Thomas algorithm.

Eidson and Erlebacher [11] developed a chained (pipelined) algorithm for the case of periodic boundary

conditions. For non-periodic boundary conditions, they proposed a reordering of the elements within the

array in order to avoid idle time. However, in this case the computational �eld would be partitioned in a

non- contiguous way and, therefore, the communication costs are large.

The goal in this paper is to develop a parallel compact algorithm which keeps the same computational

cost and produces exactly the same solution as its single-processor analog. The algorithm should also be

suitable for any local boundary conditions.

We recall that in the standard pipelined Thomas algorithm processors stay idle at some stages of the

solution of linear banded systems in any spatial direction. Compact schemes require the solution of data-

independent linear systems in three spatial directions. Therefore, processors can be used for computations

of derivatives in the next spatial direction while they cannot proceed with computations corresponding to

solutions of linear systems in the current direction. On the other hand, Runge-Kutta computations are local

but data-dependent, i.e. all spatial derivatives in a grid node must be computed before the temporal update.

The key feature of the proposed algorithm is that processors are used for the next computational tasks,

whereas in the standard pipelined Thomas algorithm they stay idle waiting for data from neighboring proces-

2



sors at the forward and the backward steps of the Thomas algorithm. As a result, in the proposed algorithm

processors run in a time-staggered way performing their computational tasks contiguously. In turn, the op-

timal number of lines to be solved per message becomes larger than that for the standard pipelined Thomas

algorithm. Reduction of the number of messages is especially important for processor networks where the

communication latency time is larger than that for MIMD parallel computers. Reduction of idle time and

communication latency time leads to a considerable increase in speed-up.

To make this algorithm feasible, a static schedule is used to control processor activities. To assign

this schedule before the execution of numerical computations, Povitsky [12] recently developed a recursive

scheduling algorithm for a one-dimensional pipeline of processors. Here we adopt this algorithm to obtain

an idle-less 3-D high-order parallel method.

The paper contains four sections. In Section 2, we describe compact numerical schemes and the Thomas

algorithm in a serial case. In Section 3, we describe our parallelization method for compact solvers. In

Section 4, we describe a test case and compare the parallelization e�ciency for our algorithm, the standard

pipelined Thomas Algorithm and an explicit scheme.

2. Compact numerical scheme. Consider a multi-dimensional �rst-order partial di�erential equation

(PDE):

dU

dt
=
X
k

Sk
@U

@xk
(1)

where t is the time, k = 1; 2; 3 are spatial coordinates. The mixed derivatives are not taken into consideration,

to allow a directionally split compact numerical scheme to be used for the solution of above equation.

The �rst derivative terms, such as @U=@x1; are approximated using compact �nite di�erence schemes

[2]:

�U
0

i�2 + �U
0

i�1 + U
0

i + �U
0

i+1 + �U
0

i+2 =
a

2�x
(Ui+1 � Ui�1) +

b

2�x
(Ui+2 � Ui�2);(2)

where �x is the grid spacing and primes denote derivatives with respect to x1: Expansion to systems with

second spatial derivatives (Navier-Stokes type) is straight-forward as the compact formulation for second

derivatives and the method for their computation is similar to those for the �rst derivatives. For non-

periodic boundaries, one-side near-boundary discretizations have the form

U
0

1 + �bU
0

2 =
1

�x

X
i=1;::;Nb

abiUi;(3)

where Nb is the size of the near-boundary stencil and abi are discretized coe�cients. With this choice the

boundary schemes can be used with a tridiagonal interior scheme without increasing the bandwidth [2]. In

this study the classical Pad�e scheme (� = 0:25; a = 1:5 and � = b = 0) is taken as an example with a

tridiagonal matrix for the right and left sides of (2). The proposed method of parallelization can be easily

expanded to any compact scheme described by (2).

Equation (1) is discretized in time with an explicit Runge-Kutta (RK) scheme. The solution is advanced

from time level n to time level n+ 1 in several sub-stages [13]

HM
i =

X
k

Sk
@UM

@xk
+ aMHM�1

i ;(4)

UM+1
i = UM

i + bM+1�tHM
i ;

3



whereM = 1; :::; Q is the number of sub-stages; i = 1; ::; L denotes the unknown variables; and the coe�cients

aM and bM depend upon the order of the RK scheme.

To compute derivatives @UM=@xk; we must solve a set of independent linear banded systems of equations

where each system corresponds to one line of the numerical grid. For example, a system corresponding to a

line in the x direction has a scalar tridiagonal matrix Nx �Nx :

ak;lxk�1;l + bk;lxk;l + ck;lxk+1;l = fk;l;(5)

where k = 1; :::; Nx; l = 1; :::; Ny �Nz; ak;l; bk;l; ck;l are the coe�cients, xk;l are the unknown variables,

and Nx; Ny and Nz are the number of grid nodes in the x; y and z directions, respectively.

The �rst step of the Thomas algorithm is LU factorization

d1;l = b1;l; dk;l = bk;l � ak;l
ck�1;l
dk�1;l

; k = 2; :::; Nx;(6)

and forward substitution (FS)

g1;l =
f1;l
d1;l

; gk;l =
�ak;lgk�1;l + fk;l

dk;l
; k = 2; :::; Nx:(7)

The second step of the Thomas algorithm is backward substitution (BS)

xNx;l = gNx;l; xk;l = gk;l � xk+1;l
ck;l
dk;l

; k = Nx � 1; :::; 1:(8)

The coe�cients ak; bk and ck are constant for compact schemes; therefore, LU factorization is performed

only once and the �rst step computations include only forward substitution (7).

The serial algorithm for the compact numerical solution of the system (1) is performed as follows:

1. Compute the right-hand side of equations (2) using values of the governing variable U from the

previous time step.

2. Compute the spatial derivatives solving tridiagonal systems in all spatial directions.

3. Compute the right-hand side of equations (1) using the spatial derivatives computed on Step 2 and

update governing variables by Runge-Kutta scheme.

4. Repeat computational steps 1-3 for all Q stages of Runge-Kutta scheme.

5. Repeat computational steps 1-4 for all time steps.

3. Parallelization method.

3.1. Partitioning scheme. The computational domain is split into subdomains and each subdomain is

loaded on a processor. Steps 1 and 2 require exchange of interfacial data between neighboring processors. For

a sub-domain with a given volume (number of grid nodes per processor) and a parallelepiped shape (interface

planes parallel to coordinate planes), a cube has the minimum surface-to-volume ratio that secures the most

e�cient parallelization [15, 16].

Overlap regions on each side of the sub-domain store information that must be transferred from neigh-

boring domains, i.e, the forward-step coe�cients, the backward-step solution and the values of the main

variables to compute the right-hand sides of the compact formulations (2). For the classical Pad�e scheme,

one layer of nodes from each side should be transferred to neighboring processors. If � 6= 0 and/or b 6= 0; two

layers of nodes are required to store the transfered data. Note, that overlap regions are used only for data

storage and not for redundant computations, i.e., the computations are exactly the same as in the single

processor case.

4



To parallelize a serial code using 3-D partitioning is a di�cult task. However, an object-oriented approach

adapted in C++ makes it possible to use the same class for pipelined computations in all spatial directions.

Three-dimensional partitioning with cubic subdomains is adopted in the present study.

3.2. Parallelization of direct linear solvers. Consider the parallelization of Step 2. Suppose, a line

l in the x direction is split amongst the processors (see Figure 1). Computing its part of the lth line, the

pth processor: receives coe�cient gN(p�1)=P;l from the (p � 1)th processor and puts it in an overlap node

f0; lg; computes the forward step coe�cients gk;l; where k = N(p � 1)=P + 1; :::; Np=P ; sends coe�cients

gNp=P;l to the (p+ 1)th processor; and repeats computations (7) for the next lines until all the forward step

computations are completed. After completion of all forward step computations speci�c to a single processor,

the pth processor (except the last) has to wait for the completion of the forward step computations by all

processors ahead of it. The last outermost (P th) processor starts the backward step computations (8) �rst.

Other processors proceed with the backward step computations in a similar manner as the forward step

computations. An overlap layer of nodes N + 1 is used for backward computations.

In the literature [11, 14, 15] the parallelization penalty for the solution of sets of linear banded systems

has been reduced by sending the necessary information to neighboring processors for groups of computed

lines at the forward and backward steps of the Thomas algorithm. The optimal number of lines to be solved

per message (the size of packet) has been derived as a function of computation time per grid point and

communication time (see Eq. (9)).

Figure 2 presents the communication and computations within a pipeline in a single spatial direction.

The pipeline includes �ve processors. Lines are gathered in nine packets in the forward direction and in six

packets in the backward direction. Zeros denote the idle time that occurs at the beginning of computations

and when the algorithm switches from the forward to the backward computational step.

We de�ne the standard pipelined Thomas algorithm (PTA) to be the method described above for the

solution of sets of linear banded systems on multiple processors. If the computational domain is partitioned in

all spatial directions, computations in the next spatial direction are pipelined as well. Therefore, a processor

belongs to three pipelines. Global synchronization of processors occurs at each spatial step and processors

stay idle waiting for data from immediate neighbors.

In the proposed algorithm we avoid this idle stage by performing computations in the next spatial

direction when there is no available data to perform the Thomas algorithm computations in a current spatial

direction. In other words, we �ll idle time units of the standard pipelined algorithm with useful computations.

The Runge-Kutta computations (Step 3) are local but data-dependent because these computations use

spatial derivatives in all directions as input data. Consequently, all spatial derivatives must be computed

before RK computations can be performed for corresponding grid nodes. Thus, we cannot perform Runge-

Kutta computations (Step 3) while processors are idle between the forward and the backward steps of the

Thomas algorithm (see above). By this time spatial derivatives in the last rendered direction are not yet

computed.

The Immediate Backward Pipelined Thomas Algorithm (IB-PTA) has been developed by Povitsky [12]

and is implemented here for the computations of the spatial derivative in the last direction. The processor

schedule is shown in Figure 3. The idea behind this algorithm is that the backward step computations for

each group of lines start immediately after the completion of the forward step computations for these lines.

Each processor switches between the forward and backward steps of the Thomas algorithm for various groups

of lines. As for the standard PTA, a processor communicates with its neighbors to get the necessary data

for the beginning of either the forward or backward computations for the next group of lines.

5



The IB-PTA itself is not an idle-less algorithm. It has been shown [12] that the idle time is the same for

the IB-PTA and the standard PTA when these algorithms are used in a single direction (compare Figures 2

and 3). The advantage of the IB-PTA over the standard PTA is that processors become idle after completion

of the subset of lines, i.e, zeros appear after \-1"s in Figure 3. In the proposed algorithm, the IB-PTA is

used in such a way that the idle time units are �lled with the local Runge-Kutta computations. Obviously,

one can use the IB-PTA in the �rst two directions as well.

The two types of interplay between processor activities considered here require the use of a processor

schedule to control processor computations and communication. The reminder of this section describes

computation of the optimal number of lines solved per message (subsection 3.3), generation of the processor

schedule (subsection 3.4) and the computational schedule-driven algorithm (subsection 3.5). In subsection

3.6, we will discuss ways to create the schedule for more general domains.

3.3. Optimal size of packet of lines. For the standard PTA, the latency and the processor idle time

tradeo� for sets of linear banded systems leads to the following expression [14, 15]:

K1 =

s
N


�(Nd � 1)
; K2 =

r
N


Nd � 1
;(9)

where K1 and K2 are the numbers of lines solved per message on the forward and backward steps of the

Thomas algorithm, respectively, 
 = b0=g2 is the ratio of the communication latency and the backward

step computational time per grid node and � = g1=g2 is the ratio of the forward and the backward step

computational times.

To generate the processor schedule for the IB-PTA the number of lines solved per message in either

direction should be de�ned.

In this subsection we consider the 3-D domain with a Ntot �Ntot � Ntot numerical grid and an equal

number of subdomain partitions in each spatial direction.

For the IB-PTA, the time to perform forward step computations per portion of lines is equal to that for

backward step computations:

NK1g1 = NK2g2;(10)

where N = Ntot=Nd is the number of grid nodes in a single direction per sub-domain, Nd is the number of

partitions in one spatial direction and g1 and g2 are the computational times per grid node for the forward

and backward steps.

The �rst outermost processor in the x direction computes the forward step of the Thomas algorithm in

the y direction while this processor is waiting for the backward step solution from the second processor. The

time balance of this processor is given as follows:

K1N(Nd � 1)g1 +K2N(Nd � 1)g2 = N2 �Ng1;(11)

The left-hand side of the above equation represents the time between the beginning of the backward-step

computations and the completion of the forward-step computations of the Thomas algorithm in the x direc-

tion. The right-hand side is the time for the forward step computations in the next (y) spatial direction.

Combining Eqs (11) and (10) we obtain

K1 =
N2

2(Nd � 1)
;(12)

6



K2 = �K1:(13)

The same time balance equation is obtained for the share of processor time between computations in the y

direction and in the z direction.

The potential idle stage of the processors performing the IB-PTA in the z direction is used for local

Runge-Kutta computations. To have completed lines for RK computations, the �rst portion of lines must

be completed with backward step computations no later than the �rst outermost processor completes the

forward step computations. This leads to a time balance constraint similar to that described by Eq. (11).

3.4. Scheduling algorithm. A unit, that the proposed schedule addresses, is de�ned as the time for

the treatment of a portion of lines by either forward or backward step computations in any spatial direction.

At each time unit each processor either performs forward or backward step computations or local Runge-

Kutta computations for one packet of lines. To set up this schedule, let us de�ne the \partial schedules"

corresponding to sweeps in a spatial direction as follows:

J(p; i; dir) =

8><
>:

+1 forward step computations

0 processor is idle

�1 backward step computations,

(14)

where dir = 1; 2; 3 denotes a spatial direction, p is the number of processors in a processor row in the dir

direction and i is the number of the unit.

A recursive algorithm to compute the schedule in a single spatial direction was proposed by Povitsky

[12]:

J(p; lmin; dir) = 1 if J(p+ 1; l; dir) = 1

J(p; l + 2; dir) = �1 if J(p+ 1; l; dir) = �1

J(p; l; dir) = 0 otherwise;(15)

where lmin = min(1 � j � ljJ(p; j; dir) = 0): The corresponding valid schedule must be assigned to the last

outermost processor prior to the above recursive computations (see [12] for more details). Thus, di�erent

pipelined algorithms (for example, the IB-PTA and the standard PTA) are fully de�ned by their schedule

on the last outermost processor.

In the framework of Cartesian partitioning, a processor (I; J;K) receives the forward-step coe�cients

from its left neighbors (I-1,J,K), (I,J-1,K) and (I,J,K-1) and sends the forward-step coe�cients to its right

neighbors (I+1,J,K), (I,J+1,K) and (I,J,K+1). Performing the backward-step computations, the processor

sends results of computations to the left neighbors and receives data from the right neighbors.

For the standard PTA, a processor computes \direction-by-direction", and its activities are controlled

by the communications, i.e., a processor waits for available data. For the IB-PTA a processor receives data

from a neighbor only when it is necessary to complete the computations. Therefore, the communication

schedule is assigned by means of a computations schedule as follows. At the beginning of each time unit a

processor communicates with some of its right neighbors according to the value of the scheduling variable

C:

C(p; i; right[dir]) =

8>>>><
>>>>:

0 processors p and p+ 1 do not communicate,

1 send to processor p+ 1;

2 receive from processor p+ 1;

3 simultaneous send and receive.

(16)

7



The end of the ith time unit on the pth processor corresponds to the beginning of the ith time unit on

the (p+1)th processor in the same spatial direction. Therefore, the communication schedules in any spatial

direction are computed as described in [12]:

C(p; i+ 1; right[dir]) =

8>>>><
>>>>:

1 if J(p+ 1; i� 1; dir) 6= �1 & J(p+ 1; i; dir) = 1;

2 if J(p+ 1; i� 1; dir) = �1 & J(p+ 1; i; dir) 6= 1;

3 if J(p+ 1; i� 1; dir) = �1 & J(p+ 1; i; dir) = 1;

0 otherwise.

(17)

The de�nition of C(p; i; left[dir]) and its computation are similar to that for C(p; i; right[dir]):

The �nal computational schedule is de�ned by

T (p; i) =

8><
>:

dir FS computations in the direction dir;

�dir BS computations in the direction dir;

4 local RK computations.

(18)

Partial directional schedules must be combined to form a �nal schedule. For example, the processors

should be scheduled to execute the forward step computations in the y direction while their partial schedules

include an idle stage between the forward and the backward step computations in the x direction.

The �nal schedule is set by merging schedules in all three spatial directions, as follows:

1. Skip the idle time units

while(J(p; i; dir) = 0) flb = lb + 1; i = i+ 1g

2. Assign the partial schedule to the earliest available time unit

T (p; lmin) = J(p; i; dir)� dir; lb = lmin

where lmin = min(lb < jjT (p; j) = 0):

3. Assign communication schedule C(p; i; left[dir]) and C(p; i; right[dir]) to the time unit lmin:

4. Repeat steps 1-3 until all elapsed time units in the current direction are completed.

The �rst step ensures that the time interval between any computational activities does not become

smaller than that for a partial schedule. Otherwise, one might schedule the backward step computations

immediately after completion of the forward step computations (see Figure 1) and get an incorrect schedule.

The obtained schedule meets the following requirements of consistency: (i) each processor performs

one task per time unit; (ii) the forward step computations on the pth processor begin no earlier than the

conclusion of these computations for a current group of lines in the same direction on the (p�1)th processor

(the left neighbor); (iii) the backward step computations on the pth processor begin no earlier than conclusion

of these computations on the (p+1)th processor (the right neighbor) and (iv) the backward step computations

begin after completion of the forward step computations in the same direction for the current group of lines.

An example of a communication and computations schedule for the �rst outermost processor (1,1,1) is

shown in Table 1. Obviously, this processor communicates only with its right neighbors, (2; 1; 1); (1; 2; 1) and

(1; 1; 2). Here the IB-PTA is used in all three spatial directions.

Computations of the right-hand sides of Equation (2) requires the exchange of interfacial values of

the governing variables. A straightforward way to parallelize the algorithm includes exchange of the near-

boundary values before each time step. Each processor exchanges data with its neighbors (I-1,J,K), (I,J-1,K),

(I,J,K-1) in all three spatial directions, then waits for the completion of computational tasks by its other

neighbors (I+1,J,K), (I,J+1,K), (I,J,K+1) and �nally exchanges data with these three processors. The

\asynchronous send - synchronous receive" mode of communication is suitable for exchange of interfacial

data. The interfacial values are stored in overlap node layers \0" and \N +1": This communication leads to

8



local synchronization between processors. Additionally, exchange of boundary values with three processors

simultaneously may lead to deterioration of parallelization e�ciency. To avoid this synchronization, we

propose to transfer these values together with forward-step coe�cients in the corresponding directions by

means of the following algorithm:

1. Compute the uncompleted forward-step coe�cients gl;N for interfacial nodes, as follows:

gunl;N =
�aNgN�1;l �

a
2�xUN�1

dN

2. Transfer values gunN;l and UN to the next processor and put them in the overlap layer 0:

3. Complete computation of gN;l on the next processor:

(g0;l =) gN;l = gunN;l +
a

2�x

UN+1

dN
;

where the (N + 1)th grid node is the �rst grid node on the next processor.

4. Compute right-hand side of Eq. (2) for the �rst node on the next processor.

5. Performing the backward-step computations, transfer values gN;l back to the current processor.

This algorithm avoids local synchronization between the neighboring processors and reduces the tra�c of

messages between the processors. This leads to approximately a 25% reduction of the parallelization penalty

in comparison with the straight-forward algorithm (see above).

To sum up, the generation of processor schedule includes (i) computation of the size of packet by Eq.

(12), (ii) computation of the processor schedule for the last processor in a current direction citerep1, (iii)

recurrent computation of schedule for all processors in the pipeline by Eq. (15), (iv) computation of the

scheduling variables by Eqs. (16-18) and (v) binding of schedules in spatial directions as it was described

above.

3.5. Computational algorithm. After assignment of the processor schedule on all processors, the

computational part of the method runs on all processors by an algorithm presented in Figure 4. The static

processor schedule governs the consequence of computations and communications on each processor. At the

beginning of each unit a processor communicates with its neighbors by the schedule (variable Com) and

then performs scheduled computations (variable T: ) The proposed code style fully separates computational

routines from communication procedures that allows for easy reuse of the code.

3.6. Some extensions. Let us consider a global domainNtot;x�Ntot;y�Ntot;z; whereNtot;x 6= Ntot;y 6=

Ntot;z: In this case the number of partitions is di�erent for di�erent directions, i.e., Nd;x 6= Nd;y 6= Nd;z; and

the analog of Eq. (12) in the x direction is given by:

K1;x =
N2

2(Nd;x � 1)
:(19)

Assuming Nd;x > Nd;y > Nd;z; we round K1;y and K1;x to smaller integers in such a way that mK1;x = K1;y

and nK1;y = K1;z So doing, Eq. (11) holds for any direction and processors run idle-less. The processor

schedule addresses a packet of size K1;x as a unit. Computing the Thomas algorithm in the x direction,

processors use potential idle time for computations in the y direction as in the previous case. Here a processor

treats m packets of lines in the y direction before communication with the neighboring processor. Doing

computations in the z direction, a processor treats mn packets per communication.

To reduce further the number of processors in a pipeline, we propose to combine our scheduling algorithm

with a two-way decomposition, denoted as the TW algorithm in this study. Direct solvers for banded linear

9



systems based on two-sided Gauss Elimination were introduced by Babuska [17] and are referred to as

twisted factorization, two-way decomposition (TW), and \burn from two sides" by various authors. The

computational count per grid node for the TW algorithm is the same as for the serial Thomas algorithm.

An additional 2 � 2 system of linear equations should be solved per line. The number of processors in

the pipeline is half the number compared to the standard Thomas algorithm; therefore, the parallelization

penalty is reduced. For long chains of processors, we propose to combine our scheduling algorithm with the

two-way pipelined algorithm. The price for this improvement is programming of the Thomas algorithm in

an inversed direction.

In this case the schedule is generated for the rows of the �rst P=2 and the last P=2 processors. Then

we include exchange of the forward-step coe�cients between the (P=2)th and (P=2 + 1)th processors and

the solution of a 2� 2 system. These tasks are performed immediately after completion of the forward-step

computations for each group of lines on middle processors.

For very stretched domains the size of a cubic subdomain becomes bigger than the domain size in some

directions. In this case 1-D partitioning by stretched (non-cubic) sub-domain is proposed. Since the linear

systems need to be solved in each direction, no matter how the grid is partitioned over the processors,

there will be at least one direction in which the recurrence spans across several processors. This direction

is taken last, the proposed scheduling algorithm is used to combine the IB-PTA in this direction with the

RK computations. The Thomas algorithm computations in the other directions are trivial to solve, since

processors contain the full systems.

For practically important multi-zone situations the governing partial di�erential equations are discretized

on sets of numerical grids connecting at interfacial boundaries by ABC. In this case the number of processors

in each zone is arbitrary and can be determined to be proportional to the size of zone. Here we cannot always

partition a zone with cubic sub-domains. For example, a cubic zone is perfectly (i.e, in a load-balanced way)

covered by cubic sub-domains only in a case that the number of processors allocated to this zone is cube

of an integer number. Otherwise, a domain partitioning degrades to two- or one- dimensional partitioning

with poor surface-to-volume ratio. Our approach allows for the combination of schedules corresponding to

di�erent pipelines and, therefore, a processor can handle subsets of di�erent grids (or non-aligned pieces of

the same grid) to ensure load balance and idle-less performance.

4. Parallel computations.

4.1. Benchmark problem. As an example of a three-dimensional model problem we consider the

development of an acoustic pulse in an unbounded domain. This problem was also considered as a benchmark

case by Morris et al. [18]. The problem satis�es the linearized Euler equations with no basic 
ow and constant

thermodynamic basic properties. If the linearized Euler equations are non-dimensionalized with respect to

the basic density, the speed of sound and the grid spacing as a length scale they may be written as,

@u

@t
= �

@p

@x
;(20)

@v

@t
= �

@p

@y
;

@w

@t
= �

@p

@z
;

@p

@t
= �

@u

@x
�
@v

@y
�
@w

@z
:

10



The initial conditions are given by,

p = � exp

�
�
x2 + y2 + z2

a

�
;(21)

where � = 0:01 and a = ln(2)=9:

The analytical solution for an in�nite domain is given by

panal =
�

2r
f(r � t) exp[�a(r � t)2](22)

+ (r + t) exp[�a(r + t)2]g:

Characteristic boundary conditions are applied at @
: The computational domain is 
 = [�30 < x <

30]� [�30 < y < 30]� [�30 < z < 30]:

For comparison, the same problem has been solved using an explicit dispersion-relation-preserving (DRP)

spatial discretizations with a seven point stencil [19]. According to Colonius [4] this scheme has approximately

the same dispersion behavior and computational count as the considered 4-th order compact scheme. A

constant coe�cient sixth-order arti�cial dissipation is added to the DRP scheme [18]. The volumetric

average of the absolute error
P

i;j;k jpcomp � panalj=
 is shown in Fig. 5. As would be expected from their

dispersion properties, the error in these two cases is almost equal when t < 25: Then, for t � 25 the accuracy

is determined by the implementation of the boundary conditions and not by the interior scheme properties.

The error in the explicit scheme is dependent on the arti�cial dissipation coe�cient. Two values have been

considered: � = 0:004 and � = 0:002. As expected, the absolute error is reduced as the value of � is

decreased.

4.2. Speed-up. The CRAY T3E MIMD computer used in this study is installed in the San Diego

Supercomputer Center (SDSC) at the University of California, San Diego.

The scheduling part of the parallel code includes the computation of the optimal number of lines solved

per message (i.e., number of portions of lines) and the assignment of a communication and computation

schedule (see the previous section). The solver part, which is controlled by the static schedule, includes the

Thomas algorithm computations in the spatial directions (step 1 of the serial algorithm); local Runge-Kutta

computations (steps 2 and 3) and loops by the stages of the RK computations and by time. Exactly the

same compact numerical schemes are used for the standard PTA and the proposed algorithm. The speed-up

on an MIMD computer with P processors over a single processor solving the same problem is de�ned by

S =
Tserial
Tparallel

;(23)

where Tparallel is the actual elapsed time per processor on a MIMD computer and Tserial is the actual elapsed

time on a single processor. The parallelization penalty is de�ned as follows:

TP =
TparallelP � Tserial

Tserial
� 100% = (

P

S
� 1)� 100%:(24)

Obviously, in the ideal case S = P and TP = 0: For example, 100% parallelization penalty corresponds to

the case where a code runs on P processors and its speed-up S is equal to P=2:We recall that parallelization

penalty exceeds 100% for concurrent parallel solvers for banded matrices (see Introduction).

Parallel speed-ups for explicit and compact computations with the standard PTA algorithm and the

proposed algorithm are shown in Figure 6. Speed-up is shown as a function of the number of nodes per

processor per direction.

11



The level of parallelization penalty is 25 � 30% when the sub-domain size varies from 203 to 103:

The parallelization penalty for explicit schemes is invariant to the number of processors involved in the

computations because the only source of parallelization penalty is local communication due to exchange of

interfacial values of the governing variables. Speed-ups for the compact scheme combined with our scheduling

algorithm are similar to those obtained for explicit computations whereas speed-ups for the standard PTA

algorithm are substantially lower.

Sample computer runs on 3� 3� 3 = 27; 4� 4� 4 = 64 and 5� 5� 5 = 125 processors with 103 � 203

grid nodes per processor show that the parallel speed-up increases 1:5 � 2 times over the standard PTA

(Figure 7). The novel algorithm and the standard one are used with corresponding optimal numbers of lines

solved per message. The size of the packet is substantially larger for the proposed algorithm then that for

the standard PTA (Figure 5).

5. Conclusion. The pipelined Thomas algorithm has been applied to a multi-dimensional aeroacoustics

problem solved by a compact (implicit in space and explicit in time) numerical scheme. To achieve good

parallelization e�ciency: the computational domain is split into cubic subdomains; the number of lines solved

per message is optimal; the values of the governing variables are transfered together with the forward-step

coe�cients; and the schedule-driven computations are performed in such a way that an idle stage for the

processors is avoided. Under this schedule, the processors perform computations in the next spatial direction

while otherwise they are idle from recursive computations in the current direction. To get completed data

for the Runge-Kutta temporal update, the Immediate Backward Pipelined Thomas Algorithm is used in

the last spatial direction. Processors perform their tasks in a contiguous way. The optimal number of lines

solved per message is larger than that for the standard Thomas algorithm. The absence of idle time and the

reduced latency of the communications lead to a substantial reduction of the parallelization penalty.

Using modern MIMD computers with low communication latency (below 100�s) the parallelization

penalty of the proposed PTA is below 100% if the number of grid nodes per processor is more than 103: This

is a signi�cant improvement over alternative algorithms for implicit schemes. Thus, one can use the Thomas

algorithm \as it is" rather than program concurrent parallel solvers. On the other hand, the obtained

parallelization e�ciency is comparable to that for the explicit dispersion-relation-preserving scheme with the

same order of accuracy.

Acknowledgments. The �rst author is grateful for Dr. Mark Carpenter (NASA Langley Research

Center) for discussion about compact schemes. The authors also thank Mr. Chingwei M. Shieh (the Penn-

sylvania State University) for performing the computations using the DRP scheme.

REFERENCES

[1] Hirsch, Ch., Numerical computation of internal and external 
ows, Vol. 1: Fundamentals of numerical

discretizations, John Wiley and Sons, Chichester, 1994.

[2] Lele, S. K., \Compact Finite Di�erence Schemes with Spectral Like Resolution," Journal of Compu-

tational Physics, 103 (1992), pp. 16-42.

[3] Gaitonde, D. V. and Visbal, M. R., \Further Development of a Navier-Stokes Solution Procedure

Based on Higher-order Formulas," AIAA Paper No. 99-0557, 1999.

12



[4] Colonius, T., \Lectures on Computational Aeroacoustics," presented at the lecture series on

Aeroacoustics and Active Noise Control, von Karman Institute of Fluid Dynamics, 1997,

http://green.caltech.edu/~colonius.

[5] Shang, J. S., Camberos, J. A., White, M. D., Advances in Time-domain Computational Electro-

magnetics, AIAA Paper No. 99-3731, 1999.

[6] Lockard, D. P. and Morris, P. J., A Parallel Implementation of a Computational Aeroacoustic

Algorithm fo Airfoil Noise, Journal of Computational Acoustics, 5, No. 4 (1997), pp. 337-353.

[7] Nordstrom, J. and Carpenter, M., Boundary and Interface Conditions for High Order Finite

Di�erence Methods Applied to the Euler and Navier-Stokes Equations, ICASE Report No. 98-19,

1998.

[8] Dongarra, J. J., Duff, I. S., Sorensen, D. C. and van der Vorst, H. A., Numerical Linear

Algebra for High-performance Computers, SIAM, 1998.

[9] Hofhaus, J. and Van De Velde, E. F., \Alternating-direction Line-relaxation Methods on Multi-

computers," SIAM J. of Scienti�c Computing, 17, No. 2 (1996), pp. 454-478.

[10] Sun, X.-H, \Applications and Accuracy of the Parallel Diagonal Dominant Algorithm," ICASE Report

No. 93-6, 1993.

[11] Eidson, T. M. and Erlebacher, G., \Implementation of a Fully-balanced Periodic Tridiagonal

Solver on a Parallel Distributed Memory Architecture," ICASE Report No. 94-37, 1994.

[12] Povitsky, A., \Parallelization of the Pipelined Thomas Algorithms," ICASE Report No. 98-45, 1998

(To appear, Journal of Parallel and Distributed Computing, Sept. 1999).

[13] Wilson, R. V., Demuren A. O. and Carpenter, M., \High-order Compact Schemes for Numerical

Simulation of Incompressible Flows," ICASE Report No. 98-13, 1998.

[14] Ho, C.-T. and Johnsson, L., \Optimizing Tridiagonal Solvers for Alternating Direction Methods on

Boolean Cube Multiprocessors," SIAM Journal of Scienti�c and Statistical Computing, 11, No. 3

(1990), pp. 563-592.

[15] Naik, N. H., Naik, V. K. and Nicoules, M., \Parallelization of a Class of Implicit Finite Di�erence

Schemes in Computational Fluid Dynamics," International Journal of High Speed Computing, 5

(1993) pp. 1-50.

[16] Hatay, F., Jespersen, D. C., Guruswamy, G. P., et al., \A multi-level parallelization concept

for high-�delity multi-block solvers," paper presented in SC97: High Performance Networking and

Computing, San Jose, California, November 1997.

[17] Babuska, I., \Numerical stability in problems of linear algebra," SIAM Journal of Numerical Analysis,

9 (1972), pp. 53-77.

[18] Morris, P. J., Long, L. N., Bangalore, A. and Wang, Q., \A Parallel Three-dimensional Compu-

tational Aeroacoustics Method Using Nonlinear Disturbance Equations," Journal of Computational

Physics, 133 (1997), pp. 56-74.

[19] Tam, C. K. W. and Webb, J. C., \Dispersion-relation-preserving Finite Di�erence Schemes for Compu-

tational Acoustics," Journal of Computational Physics, 107 (1993), pp. 262-281.

13



BS BS

FS FS

0 1 N N+1

Line 

Fig. 1. Data tra�c in a single direction

Table 1

Schedule of communication and computations for the �rst outermost processor (1,1,1), where i is the number of time unit,

T denotes type of computations, (2; 1; 1); (1; 2; 1) and (1; 1; 2) denote communication with corresponding neighbors

i T (2; 1; 1) (1; 2; 1) (1; 1; 2)

1 1 0 0 0

2 1 1 0 0

3 1 1 0 0

4 1 1 0 0

5 1 1 0 0

6 1 1 0 0

7 1 0 0 0

8 -1 3 0 0

9 2 0 0 0

10 -1 3 0 0

11 2 0 1 0

12 -1 2 0 0

13 2 0 1 0

14 -1 2 0 0

15 2 0 1 0

16 -1 2 0 0

17 2 0 1 0

18 -1 2 0 0

19 2 0 1 0

20 -1 2 0 0

21 2 0 0 0

22 -2 0 3 0

23 3 0 0 0

24 -2 0 3 0

25 3 0 0 1

26 -2 0 2 0

i T (2; 1; 1) (1; 2; 1) (1; 1; 2)

27 3 0 0 1

28 -2 0 2 0

29 3 0 0 1

30 -2 0 2 0

31 3 0 0 1

32 -2 0 2 0

33 3 0 0 1

34 -2 0 2 0

35 3 0 0 0

36 -3 0 0 3

37 4 0 0 0

38 -3 0 0 3

39 4 0 0 0

40 -3 0 0 2

41 4 0 0 0

42 -3 0 0 2

43 4 0 0 0

44 -3 0 0 2

45 4 0 0 0

46 -3 0 0 2

47 4 0 0 0

48 -3 0 0 2

49 4 0 0 0

50 4 0 0 0

51 4 0 0 0

52 4 0 0 0

53 4 0 0 0

14



1 0 0 0 0

--->

1 1 0 0 0

---> --->

1 1 1 0 0

---> ---> --->

1 1 1 1 0

---> ---> ---> --->

1 1 1 1 1

---> ---> ---> --->

1 1 1 1 1

---> ---> ---> --->

1 1 1 1 1

---> ---> ---> --->

1 1 1 1 1

---> ---> ---> --->

1 1 1 1 1

---> ---> ---> --->

0 1 1 1 1

---> ---> --->

0 0 1 1 1

---> --->

0 0 0 1 1

--->

0 0 0 0 1

0 0 0 0 -1

<---

0 0 0 -1 -1

<--- <---

0 0 -1 -1 -1

<--- <--- <---

0 -1 -1 -1 -1

<--- <--- <--- <---

-1 -1 -1 -1 -1

<--- <--- <--- <---

-1 -1 -1 -1 -1

<--- <--- <--- <---

-1 -1 -1 -1 0

<--- <--- <---

-1 -1 -1 0 0

<--- <---

-1 -1 0 0 0

<---

-1 0 0 0 0

Fig. 2. Schedule of processors for the PTA in a single direction. Here each column corresponds to a processor, \0",\1"

and \-1" denote idle stage, forward and backward computations; arrows � � � >, < � � � denote the send and receive

communications.

15



1 0 0 0 0

--->

1 1 0 0 0

---> --->

1 1 1 0 0

---> ---> --->

1 1 1 1 0

---> ---> ---> --->

1 1 1 1 1

---> ---> ---> --->

1 1 1 1 1

---> ---> --->

1 1 1 1 -1

---> ---> <-->

1 1 1 -1 1

---> <-->

1 1 -1 1 -1

<--> <-->

0 -1 1 -1 1

<--> <--> --->

-1 1 -1 1 1

<--> --->

0 -1 1 1 -1

<--- ---> <-->

-1 0 1 -1 1

<-->

0 0 -1 1 -1

<--- <-->

0 -1 0 -1 1

<--- <--> --->

-1 0 -1 1 1

<---

0 -1 0 0 -1

<--- <-->

-1 0 0 -1 1

<---

0 0 -1 0 -1

<--- <---

0 -1 0 -1 0

<--- <---

-1 0 -1 0 0

<---

0 -1 0 0 0

<---

-1 0 0 0 0

Fig. 3. Schedule of processors for the IB-PTA. The legend is the same as in the previous Figure, < �� > denote the

send-receive communications. 16



for i=1,...,I

f

for dir=1,3

f

if (Com(p; i; right[dir]) = 1) send FS coe�cients to right processor;

if (Com(p; i; right[dir]) = 3) send FS coe�cients to right processor

and receive BS solution right processor;

if (Com(p; i; left[dir]) = 1) send BS solution to left processor;

if (Com(p; i; left[dir]) = 3) send BS solution to left processor

and receive FS coe�cients from left processor;

if (Com(p; i; right[dir]) = 2) receive BS solution for line lb from right processor;

if (Com(p; i; left[dir]) = 2) receive FS coe�cients from left processor;

g

for dir=1,3

f

if (T(p; i) = dir) do FS computations

if (T(p; i) = �dir) do BS computations

g

if (T(p; i) = 4) do RK computations

g

Fig. 4. Schedule-governed banded linear solver, where right = p + 1 and left = p � 1 denote left and right neighbors,

dir = 1; 2; 3 corresponds to x; y; and z spatial directions, T governs computations, Com controls communication with

neighboring processors, p is the processor number, and i is the number of group of lines (number of time unit).

Time, t
0 10 20 30

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

Averaged Pressure Modulus
Averaged Absolute Error (Compact)
Averaged Absolute Error (Explicit: µ =0.002)
Averaged Absolute Error (Explicit: µ = 0.004)

Fig. 5. Temporal behavior of absolute error for explicit DRP and compact schemes

17



10 12 14 16 18 20
N

15

20

25

S
pe

ed
-u

p

27 processors

1

2

3

0

100

P
en

al
ty

,%

50

25

Fig. 6. Speed-up (S) and parallelization penalty TP for explicit and compact schemes, (1)-explicit scheme;(2)-proposed

algorithm and (3)-standard PTA

a.
10 12 14 16 18 20

N
20

25

30

35

40

45

50

S
pe

ed
-u

p

64 processors
2

1

220

28

100

50

T
p,

%

b.
10 12 14 16 18

Number of Nodes

20

30

40

50

60

70

80

90

S
pe

ed
-u

p

125 processors 2

1

500

100

50

T
p,

%

Fig. 7. Speed-up and parallelization penalty for (a) 4� 4� 4 = 64 and (b) 5� 5� 5 = 125 processors. (1)-standard PTA,

and (2)-proposed algorithm

18



10 12 14 16 18 20
Number of Nodes

10

20

30

40

50

L
in

es
p

er
M

es
sa

ge

64 processors

1

2

Fig. 8. Number of lines solved per message, (1)-standard PTA, and (2)-proposed algorithm

19


