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Abstract. Evaluation of the sound sources in a high Reynolds number turbulent 
ow requires time-

accurate resolution of an extremely large number of scales of motion. Direct numerical simulations will

therefore remain infeasible for the forseeable future; although current large eddy simulation methods can

resolve the largest scales of motion accurately, they must leave some scales of motion unresolved. A priori

studies show that acoustic power can be underestimated signi�cantly if the contribution of these unresolved

scales is simply neglected.

In this paper, the problem of evaluating the sound radiation properties of the unresolved, subgrid-scale

motions is approached in the spirit of the simplest subgrid stress models: the unresolved velocity �eld is

treated as isotropic turbulence with statistical descriptors evaluated from the resolved �eld. The theory of

isotropic turbulence is applied to derive formulas for the total power and the power spectral density of the

sound radiated by a �ltered velocity �eld. These quantities are compared with the corresponding quantities

for the un�ltered �eld for a range of �lter widths and Reynolds numbers.
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1. Introduction. The evaluation of the sound sources in high Reynolds number turbulent 
ows presents

a fundamental problem for computational aeroacoustics. At one extreme, if a turbulence transport model

is used to compute single-point single-time moments of the turbulence, the uncertainty of the turbulence

model is compounded by the uncertainty of modeling the two-point two-time statistics required to evaluate

the sound source.

At the other extreme, direct numerical simulation (DNS) requires that a large number of scales of motion

be resolved accurately in time. Typical estimates [11] are that the resolution requirements are of the order

of Re3. Since the sound source depends on time correlations, in principle the entire 
ow history must be

stored; this would impose prohibitive storage requirements even to compute the sound radiated by a model


ow like isotropic turbulence. Further di�culties are posed if the acoustic �eld is to be resolved by DNS as

well [11].

A practical compromise appears to be emerging in which the sound sources are computed by LES and

are propagated to the far �eld by an acoustic analogy [10, 5] or by solution of the linearized Euler equations

[4, 2].

If the sound source is computed by large eddy simulation (LES), then the acoustic calculation will

evaluate the sound radiated by the resolved velocity �eld alone. It can be anticipated that this will result

at least in the suppression of high-frequency sound. A priori studies [11, 14, 16] suggest that this type of

numerical sound suppression can be signi�cant and motivate the present theoretical study of the relationship

between the sound radiated by the exact velocity �eld and the sound radiated by the �ltered velocity �eld.
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This problem is addressed in the spirit of the simplest ideas used in subgrid stress modeling. Namely,

we invoke Kolmogorov's theory of the universality of the small scales of motion in turbulence [3] and assume

that the unresolved scales can be modeled as isotropic turbulence with statistical descriptors computed from

the resolved velocity �eld. Using the theory of the space-time properties of isotropic turbulence, we can

construct models of the exact and �ltered velocity �elds and compare the sound radiated by both �elds as

a function of �lter width.

A di�erent approach to subgrid-scale sound radiation is proposed by [14]. The present work di�ers from

this primarily in the emphasis on time correlation modeling.

The present analysis is closely related to another modeling method in CAA, the stochastic synthesis of

the subgrid motions [1, 4]. Like these methods, the present analysis depends on a model for the two-point

two-time properties of the subgrid motions. Thus, our model (Eqs. (2.7) and (2.8) below), could be used as

the statistical descriptor required to synthesize the subgrid sound sources.

Precise comparisons with existing a priori studies [11, 14, 16] are hampered by the very low Reynolds

numbers of the direct simulations; the present analysis is appropriate when a Kolmogorov inertial range

exists. Comparisons based on the non-universal spectra obtained in low Reynolds number simulations is

possible, but less tractable analytically. This issue is discussed later.

2. The exact and �ltered sound source. Denote the exact 
uctuating velocity �eld by u(x; t), and

the �ltered �eld by �u(x; t). Only the sharp Fourier cuto� �lter will be treated explicitly here, for which the

space Fourier transform of the resolved velocity �eld is

�u(k; t) =

(
u(k; t) if k � kL

0 if k � kL
(2.1)

where

kL = �=�(2.2)

and � equals the physical space �lter size. Extension of the analysis to other �lters would be straightforward.

Lighthill's [10] formula for the acoustic pressure 
uctuations in the far-�eld is

p(x; t) =
1

4�c2
xixj
x3

Z
V

dy �Tij(y; t�
j x� y j

c
)(2.3)

where the form of the Lighthill tensor for sound radiation by subsonic 
ow

Tij(y; t) = �ui(y; t)uj(y; t)(2.4)

is used. In Eqs. (2.3) and (2.4), V denotes the source region, � is the mean density, c is the speed of sound

in the far-�eld, and the vector x connects the measurement point to some representative point in the source

region.

The sound radiated by the �ltered velocity �eld has the same form as Eq. (2.3), but with the Lighthill

tensor computed from the resolved, rather than the exact velocity:

�Tij(y; t) = ��ui(y; t)�uj(y; t)(2.5)

Kraichnan [7] gave the far-�eld acoustic power spectral density as

p(!) = �(!4=2c8)hj ninjTij(!n=c; !) j
2i(2.6)
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where n is the unit vector in the direction of x, ! is the frequency of the radiated sound, and Tij(k; !) is

the space-time Fourier transform of the 
uctuating quantity Tij(x; t). Tij(k; !) can be written in terms of

the space-time Fourier transform of the velocity �eld as

Tij(k; !) = �

Z
�(k� p� q)dpdq

Z
1

1

d!0 ui(p; ! � !0)uj(q; !
0)(2.7)

It is necessary to express the result of Eq. (2.6) in terms of statistics of the velocity �eld. To this

end, replace Tij in Eq. (2.6) by result in Eq. (2.7). Close the resulting fourth-order velocity moment by

quasinormality, and use the correlation function for isotropic turbulence

Qij(k; !) =
1

4�k2
E(k)R(k; !)[�ij � kikjk

�2](2.8)

where E(k) is the energy spectrum and R(k; !) is the time correlation function.

It can be shown [13] that Eq. (2.6) implies that sound is radiated only by interactions between incom-

pressible modes nearly of the type ui(k; t) and uj(�k; t). This approximation treats the sound waves as

in�nitely long; equivalently, it ignores the so-called retarded time e�ect. Introducing this approximation, the

result [12] is

p(!) = C
!4

V c5

Z
1

0

dk E(k)2k�3R̂(k; !)(2.9)

where R̂ denotes the frequency convolution

R̂(k; !) =

Z
1

�1

d!0 R(k; ! � !0)R(k; !0)(2.10)

3. Sound radiation by the �ltered velocity �eld. To complete the calculation of the far-�eld

acoustic power spectral density function using Eq. (2.9), models for the energy spectrum E(k) and the time

correlation function R(k; !) are needed. Since these will describe the unresolved motions, it is necessary to

assume that these motions can be described reasonably well by some universal properties; for this description,

we will apply the Kolmogorov theory of the inertial range [3].

Our previous work [12] discusses the issue of time correlations in detail. It is concluded that sound

radiation is determined by Eulerian time correlations, for which turbulence theory [9, 15, 6] demonstrates

the similarity form

R(k; !) = R(
!

V k
)(3.1)

for inertial range scales, where V is the rms of the 
uctuating velocity. A similar formula is proposed by

Bailly and Juv�e [2], although this work treats the frequencies corresponding to each wavevector as random

variables.

Replacing R̂ by the similarity form corresponding to Eq. (3.1),

p(!) = C
!4

V c5

Z
1

0

dk E(k)2k�3R̂(
!

V k
)(3.2)

Next, let E(k) be the Kolmogorov spectrum

E(k) = CK"
2=3k�5=3(3.3)

In reality, this form only applies to a �nite range of scales k0 < k < kd, where k0 is the inverse integral

scale, and kd is proportional to the inverse Kolmogorov scale. But the subsequent calculation will show that
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the exact form of the spectrum in the region of large scales k � k0 is not important for the calculation of

subgrid sound. Similarly, the spectrum in the dissipation range with k � kd can be neglected because of its

insigni�cant energy content. Substituting Eq. (3.3) in Eq. (3.2),

p(!) = C
"4=3

c5
!4
Z
1

0

dk k�19=3R̂(
!

V k
)(3.4)

If the time correlation function R̂ decays su�ciently rapidly at 1, this integral is �nite for k near 0;

consequently, as noted earlier, the precise form of E(k) for small k is not needed for this calculation.

Regardless of the functional form of R̂, power counting shows that for large !,

p(!) � C
V 13=3"4=3

c5
!�4=3(3.5)

Next, consider the sound radiated by the �ltered velocity �eld. Denote its power spectral density by

pL(!) to indicate the dependence on the �lter scale kL. We noted in the previous section that ignoring

the retarded time e�ect means that only mode pairs of the form ui(�k; t) interact to radiate sound [13].

If so, the sound radiated by the �ltered velocity �eld �ui(k; t) is found from Eq. (3.4) by restricting the k

integration to the resolved scales:

pL(!) = C
!4

V c5

Z kL

0

dk E(k)2k�3R̂(
!

V k
)(3.6)

with the obvious analog of Eq. (3.6) for the Kolmogorov spectrum

pL(!) = C
"4=3

c5
!4
Z kL

0

dk k�19=3R̂(
!

V k
)(3.7)

Analytical results will require assuming a speci�c functional form for the time correlation function. We

note three forms:

1. Kraichnan's [8] result

R(x) =
J1(x)

x
(3.8)

2. the Markovian approximation

R(x) = exp(� j x j)(3.9)

3. the Gaussian approximation

R(x) = exp(�x2)(3.10)

where x is the similarity variable

x = �
!

V k
(3.11)

The constant � should be chosen to match the second order Taylor coe�cient of Eqs. (3.8){(3.11) to the

short-time expansion of the Navier-Stokes equations following the analysis of Kaneda [6].

The analytically most convenient form is the Gaussian of Eq. (3.10), which is tentatively adopted here in

order to illustrate the derivation of a theory of subgrid-scale sound. Regardless of which of Eqs. (3.8)-(3.10)

is used, the �nal result can be written in the form

�pL(!) = C
"4=3V 13=3

c5
!�4=3F (

!

V kL
)(3.12)
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Fig. 3.1. E�ect of �lter size on acoustic power spectral density.

For Eq. (3.10), the function F can be expressed as an incomplete gamma function.

The e�ect of �lter width on the spectrum of sound radiated by a �ltered velocity �eld is shown in

Figure 3.1 in which the dimensionless power spectrum is plotted as a function of normalized frequency !=!0

where !0 is the frequency integral scale. The �lter width is converted to a frequency !L through the relation

!L = V kL(3.13)

and the spectrum in Eq. (3.12) is plotted for the values !0=!L = k0=kL = :94 � 0:43; :98 � 0:18; :916 �

0:08; :932 � 0:03 ranging from extremely coarse to very �ne resolution of the 
uctuating �eld. The most

conspicuous e�ect of coarsening the resolution is suppression of high frequency sound, although there is some

e�ect at all frequencies.

In Figure 3.1, it is assumed that the inertial range extends over all scales and consequently that sound

is radiated at all frequencies. But if it is assumed instead that the dissipation range spectrum is simply

zero, then the acoustic spectrum would have the form of Eq. (3.12) with the �lter scale kL replaced by the

dissipation scale kd. In this case, comparison between two curves in Figure 3.1 shows the e�ect of �ltering

a velocity �eld with a �nite kd.

Perhaps more immediately important is the e�ect of �lter width on the computed total acoustic power.

The exact total acoustic power is

P =

Z
1

0

d! p(!)(3.14)

and the total power radiated by the resolved scales is

PL =

Z
1

0

d! pL(!)(3.15)
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Fig. 3.2. E�ect of �ltering on total power.

Using Eq. (3.12), the ratio of resolved to total acoustic power is

PL
P

=
1

3F (0)

Z !L=!0

1

d~!(~!)�4=3F (~!
!0
!L

)(3.16)

This function is shown in Figure 3.2 as a function of the variable !L=!0 = kL=k0, the ratio of the integral

scale to the �lter size. Since the inertial range extends over all scales, even the largest value shown, which

corresponds to a �lter width of 0.001 times the integral scale, is only within about 1 dB of the total power.

For �lter widths less than 0.01 times the integral scale, the resolved power rises rapidly: at 0.01 times the

integral scale, the resolved power is within about 3 dB of the total.

As before, the ratio PL=Pd where Pd is the power in a Kolmogorov spectrum cut o� sharply at scale kd,

is a good approximation for the ratio of resolved to total power for a �nite Reynolds number 
ow. Figure 3.2

therefore provides a single curve showing the combined e�ects of Reynolds number and resolution.

By setting kd=k0 = 100:, we obtain a Reynolds number of about 460. The ratio of resolved to theoretical

total power PL=Pd is plotted for this case in Figure 3.3, together with the same ratio in the in�nite Reynolds

number limit. The \resolution" is the ratio of the integral scale to the �lter size: although it might be more

natural to de�ne resolution as the ratio of the �lter size to the Kolmogorov scale, the results for di�erent

Reynolds numbers could not be compared directly since the Kolmogorov scales corresponding to the two

di�erent Reynolds numbers would be unequal. As expected, the unresolved power in the in�nite Reynolds

number limit always exceeds the unresolved power in the �nite Reynolds number 
ow. In both cases, the

subgrid power drops sharply as the resolution is increased over low values, but tends to drop slowly at higher

resolution.

All of these estimates of the acoustic power in the subgrid scales must be considered preliminary because

of the assumption of the Gaussian time correlation function which has been chosen largely for analytical

convenience.
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Fig. 3.3. Power loss due to �ltering: E�ect of Reynolds number.

The problem of acoustic power radiated by subgrid scales has been addressed in a priori studies by

Piomelli et al. [11] for the model problem of channel 
ow and by Witkowska et al. [16] for the problem

considered here of isotropic turbulence. The latter study considers both forced, steady turbulence and the

more commonly studied problem of decaying turbulence. Comparison with these results requires some care

because of the limited Reynolds numbers of the simulations. This comparison must be based on results like

Eq. (3.6) expressed in terms of a numerically given spectrum E(k) instead of the Kolmogorov spectrum used

here.

4. Conclusions. The present work is a �rst step to an analytical theory of the subgrid contribution to

radiated sound. It shows how the theory of isotropic turbulence can be applied to derive a theory of subgrid-

scale sound radiation. Re�nement of this model will require closer investigation of the time correlation

function, which is the key ingredient of our analysis.

The close connection of this work to the method of stochastic synthesis advanced by Bailly et al. [1, 2]

and by B�echara et al. [4] was noted earlier. Although this application has not been developed explicitly

here, the present theory is based on a two-point two-time model of the subgrid scales which could also be

used to synthesize the subgrid-scale motions.
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