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DEPENDENT TYPES AND EXPLICIT SUBSTITUTIONS

CÉSAR MUÑOZ∗

Abstract. We present a dependent-type system for a λ-calculus with explicit substitutions. In this
system, meta-variables, as well as substitutions, are first-class objects. We show that the system enjoys
properties like type uniqueness, subject reduction, soundness, confluence and weak normalization.
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1. Introduction. Since the λσ-calculus of explicit substitutions was introduced in [1], several other
variants of explicit substitution calculi have been proposed; among others [38, 27, 20, 4, 28, 7, 24, 31, 10, 33].
By using substitutions as first-class objects, and de Bruijn indices notation for variables, the λσ-calculus
allows a first-order encoding of the λ-calculus. In consequence, technical nuisances due to higher-order
aspects of the λ-calculus, for example α-conversion, can be minimized or eliminated in explicit substitution
calculi. For instance, higher-order unification problems have been reformulated in a first-order setting via
some variants of λσ [8, 9, 25, 5].

However, explicit substitutions are not free of difficulties. Typed versions of these calculi lead to unex-
pected problems. It is well known now that λσ does not preserve strong normalization [30], that is, well-typed
terms may not terminate in λσ. Furthermore, as a rewrite system, λσ is not confluent on open terms [7].

In constructive logic, explicit substitutions and open terms form a framework to represent incomplete
proofs, i.e., proofs under development [29, 32]. In this approach, meta-variables are place-holders in a
proof-term, and an explicit substitution notation is necessary to delay the application of substitutions to
meta-variables waiting to be instantiated. Meta-variables have also been used as unification variables in the
higher-order unification methods presented in [8, 9, 25].

In order to apply explicit substitution techniques in a dependent-type framework, we develop a λ-calculus
of explicit substitutions, called λΠL, with dependent types and support for meta-variables.

The rest of this section gives an overview of the dependent-type theory in which we are interested, and
to the simply-typed version of λσ. We finish the section with a discussion about the main difficulties to
set the λσ-calculus in a dependent-type theory. In Section 2 we present the λΠL-calculus. Just as the
λ-calculus extended with the η-rule, which is not confluent on terms with type annotations (not necessarily
well-typed), λΠL is not confluent due to type annotations on substitutions. However, using a technique
proposed by Geuvers in [11], we prove that it is confluent on well-typed expressions. We show how to adapt
Geuvers’ technique to λΠL in Section 3. In Section 4 we show the elementary typing properties of λΠL: sort
soundness, type uniqueness, subject reduction and soundness. In Section 5 we prove the main properties
on well-typed λΠL-expressions: weak normalization, Church-Rosser, and confluence. In the last section we
discuss related work and summarize our work.
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1.1. Dependent types. The Dependent Type theory, namely λΠ [18], is a conservative extension of
the simply-typed λ-calculus. It allows a finer stratification of terms by generalizing the function space type.
In fact, in λΠ, the type of a function λx:A.M is Πx:A.B where B (the type of M) may depend on x. Hence,
the type A → B of the simply-typed λ-calculus is just a notation in λΠ for the product Πx:A.B where x

does not appear free in B.
From a logical point of view, the λΠ-calculus allows representation of proofs in the first-order intu-

itionistic logic using universal quantification. Via the types-as-proofs principle, a term of type Πx:A.B is a
proof-term of the proposition ∀x:A.B.

Terms in λΠ can be variables x, y, . . ., applications (M N), abstractions λx:A.M , products Πx:A.B,
or one of the sorts Type,Kind.1 Notice that terms and types belong to the same syntactical category.
Thus, Πx:A.B is a term, as well as λx:A.M . However, terms are stratified in several levels according to
a type discipline. For instance, given an appropriate context of variable declarations, λx:A..M : Πx:A..B,
Πx:A..B : Type, and Type : Kind. The term Kind cannot be typed in any context, but it is necessary since
a circular typing as Type : Type leads to the Girard’s paradox [15].

Typing judgments in λΠ have the form

Γ ` M : A

where Γ is a context of variable declarations, that is, a set of type assignments for free variables. We use the
Greek letters Γ, ∆ to range over contexts. Since types may be ill-typed, typing judgments for valid contexts
are also necessary. The notation

` Γ

captures that types in Γ are well-typed. The λΠ-type system is given in Fig. 1.1.
In a higher-order logic, as λΠ, it may happen that two syntactically different types become identical via

β-conversion. Rule (Conv) uses the equivalence relation ≡β which is defined as the reflexive and transitive
closure of the relation induced by the β-rule: (λx:A.M N) - M [N/x]. We recall that M [N/x] is just
a notation for the atomic substitution of the free occurrences of x in M by N , with renaming of bound
variables in M when necessary.

1.2. Explicit substitutions and simple types. The λσ-calculus [1] is a first-order rewrite system
with two sorts of expressions: terms and substitutions.

Simple types are generated from a denumerable set of basic types a, b, . . . and their functional closure,
i.e., if A,B are simple types, then A → B is also a simple type. Well-formed expressions in the simply-typed
λσ-calculus are defined by the following grammar:

Terms M, N ::= 1 | (M N) | λA.M | M [S]
Substitutions S, T ::= id | ↑ | M · S | S ◦ T

Types A, B ::= a, b, . . . | A → B

In λσ, free and bound variables are represented by de Bruijn indices. They are encoded by means of the

constant 1 and the substitution ↑. We write ↑n as a shorthand for

n-times︷ ︸︸ ︷
↑ ◦ . . . ◦ ↑. We overload the notation i to

1The names Type and Kind are not standard, other couples of names used in the literature are: (Set, Type), (Prop, Type)

and (∗,tu).
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(Empty)` {}

Γ ` A : s

s ∈ {Kind,Type}
x is a fresh variable

(Var-Decl)` Γ ∪ {x : A}

` Γ
(Type)Γ ` Type : Kind

` Γ
(x : A) ∈ Γ

(Var)Γ ` x : A

Γ ` A : Type
x does not appear in Γ

Γ ∪ {x : A} ` B : s

s ∈ {Kind,Type}
(Prod)Γ ` Πx:A.B : s

Γ ` A : Type
x does not appear in Γ
Γ ∪ {x : A} ` M : B

Γ ∪ {x : A} ` B : s

s ∈ {Kind,Type}
(Abs)Γ ` λx:A.M : Πx:A.B

Γ ` M : Πx:A.B

Γ ` N : A
(Appl)Γ ` (M N) : A[N/x]

Γ ` M : A

Γ ` B : s

s ∈ {Kind,Type}
A ≡β B

(Conv)Γ ` M : B

Fig. 1.1. The λΠ-system

represent the λσ-term corresponding to the index i, i.e.,

i =

{
1 if i = 1
1[↑n] if i = n + 1.

An explicit substitution denotes a mapping from indices to terms. Thus, id maps each index i to the
term i, ↑ maps each index i to the term i + 1, S ◦ T is the composition of the mapping denoted by T with
the mapping denoted by S (notice that the composition of substitution follows a reverse order with respect
to the usual notation of function composition), and finally, M · S maps the index 1 to the term M , and
recursively, the index i + 1 to the term mapped by the substitution S on the index i.

A context in λσ is a list of types. The empty context is written ε. A context with head A and rest Γ is
written A.Γ. In that case, A is the type of the index 1, the head of Γ (if Γ is not empty) is the type of the
index 2, and so on.

The type of a substitution is a context. This choice seems natural since substitutions denote mapping
from indices to terms, and contexts are list of types. In fact, if the type of a substitution S is the context
A.∆, the type of the term mapped by the substitution S on the index 1 is A, and so for the rest of indices.
Typing judgment for substitutions in λσ have the form:

Γ ` S . ∆.

The λσ-calculus and its typing rules are presented in Fig. 1.2. When meta-variables of terms are
considered, an additional typing rule is necessary to state that each meta-variable is typed in a unique
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(λA.M N) −→ M [N · id] (Beta)
(M N)[S] −→ (M [S] N [S]) (Application)
(λA.M)[S] −→ λA.M [1 · (S ◦ ↑)] (Lambda)
M [S][T ] −→ M [S ◦ T ] (Clos)
1[M · S] −→ M (VarCons)
M [id] −→ M (Id)
(S1 ◦ S2) ◦ T −→ S1 ◦ (S2 ◦ T ) (Ass)
(M · S) ◦ T −→ M [T ] · (S ◦ T ) (Map)
id ◦ S −→ S (Idl)
S ◦ id −→ S (Idr)
↑ ◦ (M · S) −→ S (ShiftCons)
1 · ↑ −→ id (VarShift)
1[S] · (↑ ◦ S) −→ S (SCons)

(Var)
A.Γ ` 1 : A

A.Γ ` M : B
(Abs)Γ ` λA.M : A → B

Γ ` M : A → B Γ ` N : A
(Appl)Γ ` (M N) : B

Γ ` S . ∆ ∆ ` M : A
(Clos)Γ ` M [S] : A

(Id)Γ ` id . Γ (Shift)
A.Γ ` ↑ . Γ

Γ ` S . ∆1 ∆1 ` T . ∆2 (Comp)Γ ` T ◦ S . ∆2

Γ ` M : A Γ ` S . ∆
(Cons)Γ ` M · S . A.∆

Fig. 1.2. The simply-typed λσ-calculus [1]

context by a unique type [8]:

(MetaX).ΓX ` X : AX

The simply-typed λσ-calculus with meta-variables of terms is confluent [38] and weakly normalizing
[17, 33].

1.3. Dependent types and explicit substitutions. A dependent-type system for λΠL is not a simple
extension of the simply-typed λσ-calculus. First of all, it is not clear how to type expressions containing
meta-variables. Notice that in a dependent-type theory with de Bruijn indices, the order in which variables
are declared in a context is important. In fact, in the context A.Γ, the indices in A are relative to Γ. But,
how is the dependence regarding meta-variables?

Even without considering meta-variables, setting λσ in a dependent-type theory presents difficulties.
Take, for example, the typing rule for simultaneous substitutions, the (Cons)-rule:

Γ ` M : A Γ ` S . ∆
(Cons).

Γ ` M · S . A.∆

4



A dependent-typed version of this rule has the form

Γ ` M : A[S] Γ ` S . ∆ ∆ ` A : Type
(ConsΠ).

Γ ` M · S . A.∆

First notice that the type given to M in the premises of the rule is A[S] (up to conversion). The application
of the substitution S to the type A is necessary to take into account possible dependencies of variables in A

with terms in S. Hence, a type inference algorithm should use a higher-order unification procedure to infer
the type of M · S which depends on A.

Another drawback of (ConsΠ) is that it is not sound with respect to the usual typing properties. In
particular, a substitution can be typed with two contexts that are not convertible, i.e., types are not unique
modulo conversion. For example, consider the context2

Γ = 0:nat. l:(Πn:nat.(T n)). T :nat → Type. nat:Type

and the valid typing judgments

Γ ` [x := 0 · id] . x:nat. Γ(1.1)

Γ ` (l 0) : (T x)[x := 0 · id].(1.2)

Since (T x)[x := 0 · id] and (T 0)[x := 0 · id] are convertible via λσ, and (T 0)[x := 0 · id] is a valid type,
we also have:

Γ ` (l 0) : (T 0)[x := 0 · id].(1.3)

Using (ConsΠ) with (Eq. 1.1) and (Eq. 1.2), we get:

Γ ` [y := (l 0) · x := 0 · id] . y:(T 0). x:nat. Γ(1.4)

and with (Eq. 1.1) and (Eq. 1.3):

Γ ` [y := (l 0) · x := 0 · id] . y:(T x). x:nat. Γ.(1.5)

However, (T 0) and (T x) are not convertible, and then, the substitution [y := (l 0) · x := 0 · id] has two
types, y:(T 0). x:nat. Γ and y:(T x). x:nat. Γ, which are not convertible.

To solve these problems, we use type annotations in substitutions, in a similar way as the Church style
λ-calculus —as opposed to the Curry style— annotates binder variables in abstractions. The final version
of (ConsΠ) has the form:

Γ ` M : A[S] Γ ` S . ∆ ∆ ` A : Type
(ConsΠ).

Γ ` M ·A S . A.∆

Annotations in substitutions act as reminders of types, and they must be introduced and maintained by the
calculus of substitutions. In our previous example, substitutions in Eq. 1.4 and Eq. 1.5 should be annotated
with different types.

2For readability, we use named variables when discussing examples. Nevertheless, as we have said, λσ uses a de Bruijn

nameless notation of variables.
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A different solution proposed by Bloo in [2] is to introduce substitutions in contexts and to deal with
these extended contexts via additional typing rules. This approach is similar to type systems with definitions
[41, 3], where closures are typeable, but substitutions are not considered as typeable objects. We discuss
this approach in the last section.

When we consider annotated substitutions, the system may lose the subject reduction property due to
the non-left-linear rule (SCons): 1[S] ·A (↑ ◦ S) - S. For instance, take the context

Γ = m:(T 0) → nat. 0:nat. l:(Πn:nat.(T n)). T :nat → Type. nat:Type

and the substitution

S = [y := (l 0) ·(T 0) x := 0 ·nat id].

We verify that the following typing judgments are valid:

Γ ` S . y:(T 0). x:nat. Γ

Γ ` 1[S] ·(T x) (↑ ◦ S) . y:(T x). x:nat. Γ.

But also, 1[S] ·(T x) (↑ ◦ S)
(SCons)- S. However, since (T 0) and (T x) are not convertible, Γ 6`

S . y:(T x). x:nat. Γ. Therefore, the type of 1[S] ·(T x) (↑ ◦ S) is not preserved by rule (SCons).
The problem here is not the type system but the substitution calculus. Non-left-linear rules —like

(SCons)— are not only harmful for typing, but are also usually responsible for non-confluence problems
[26, 7].

Nadathur [35] has remarked that in λσ with meta-variables of terms, but without meta-variables of
substitutions, rule (SCons) is admissible when the following scheme of rule is added to the system: 1[↑n] ·
↑n+1 - ↑n. Since ↑n is a shorthand, an infinite set of rules is represented by this scheme. Following
Nadathur’s idea, we present in [33] a variant of λσ, namely λL, which has the same general features as λσ,
i.e., simple, finite, and first-order presentation, but without rule (SCons) of λσ.

In this paper, we propose the λΠL-calculus, which is based on λL, and show that λΠL is a suitable
calculus for our purpose: explicit substitutions, dependent types and support for meta-variables.

2. λΠL-Calculus. As usual in explicit substitution calculi, expressions of λΠL are structured in terms
and substitutions. Since we use the left-linear variant of λσ, the λL-calculus, we add the sort of natural
numbers. The λΠL-calculus admits meta-variables only on the sort of terms.

The set of well-formed expressions in λΠL is defined by the following grammar:

Natural numbers n ::= 0 | n + 1
Meta-variables χ ::= X | Y | . . .

Terms A, B,M, N ::= Kind | Type | 1 | ΠA.B | λA.M | (M N) |
M [S] | χ

Substitutions S, T ::= ↑n | M ·A S | S ◦ T

The equivalence relation ≡λΠL is defined as the symmetric and transitive closure of the relation induced
by the rewrite system in Fig. 2.1.

The system ΠL is obtained by dropping rule (Beta) from λΠL. As shown by Zantema [47], the ΠL-
calculus is strongly normalizing.
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(λA.M N) −→ M [N ·A ↑0] (Beta)
(λA.M)[S] −→ λA[S].M [1 ·A (S ◦ ↑1)] (Lambda)
(ΠA.B)[S] −→ ΠA[S].B[1 ·A (S ◦ ↑1)] (Pi)
(M N)[S] −→ (M [S] N [S]) (Application)
M [S][T ] −→ M [S ◦ T ] (Clos)
1[M ·A S] −→ M (VarCons)
M [↑0] −→ M (Id)
(M ·A S) ◦ T −→ M [T ] ·A (S ◦ T ) (Map)
↑0 ◦ S −→ S (IdS)
↑n+1 ◦ (M ·A S) −→ ↑n ◦ S (ShiftCons)
↑n+1 ◦ ↑m −→ ↑n ◦ ↑m+1 (ShiftShift)
1 ·A ↑1 −→ ↑0 (Shift0)
1[↑n] ·A ↑n+1 −→ ↑n (ShiftS)
Type[S] −→ Type (Type)

Fig. 2.1. The λΠL-rewrite system

Lemma 2.1. The ΠL-calculus is terminating.

Proof. See [34]. The proof uses the semantic labeling technique [46].

The λΠL-calculus, just as λσ, uses the composition operation to achieve confluence on terms with
meta-variables. Rules (Idr) and (Ass) of λσ are not necessary in λΠL.

We adopt the notation i as a shorthand for 1[↑n] for i = n + 1. In contrast to λσ, ↑n is not a shorthand
but an explicit substitution in λΠL. Indeed, ↑0 replaces id and ↑1 replaces ↑. In general, ↑n denotes the
mapping of each index i to the term i + n. Using ↑n, the scheme of rule proposed by Nadathur can be
encoded in a first-order rewrite system. Notice that we do not assume any meta-theoretical property on
natural numbers. They are constructed with 0 and n + 1. Arithmetic calculations on indices are embedded
in the rewrite system.

2.1. Meta-variables in λΠL. As we have said, meta-variables are first-class objects in λΠL. Just as
variables, they have to be declared in order to keep track of possible dependencies between terms and types.

A meta-variable declaration has the form (X: ΓA), where Γ and A are, respectively, a context and a type
assigned to the meta-variable X. The pair (Γ, A) is unique (modulo ≡λΠL) for each meta-variable. This
requirement is enforced by the type system.

A list of meta-variable declarations is called a signature. We use the Greek letter Σ to range over
signatures. The empty signature is written ε. A signature with head (X: ΓA) and rest Σ is written (X: ΓA). Σ.
We overload the notation Σ1. Σ2 to write the concatenation of the signatures Σ1 and Σ2.

The order of the meta-variable declarations is important. In a signature (X1: Γ1A1). . . . (Xn: Γn
An), the

type Ai and the context Γi, 0 < i ≤ n, may depend only on meta-variables Xj , i < j ≤ n. The indices in Ai

are relative to the context Γi.

The main operation on meta-variables is instantiation. The instantiation of a meta-variable X with a
term M in an expression y (where y is a term or a substitution), denoted by y{|X 7→ M |}, replaces all the
occurrences of X in y by M . Application of an instantiation to a context Γ (signature Σ) is denoted by
Γ{|X 7→ M |} (Σ{|X 7→ M |}). It is defined in the obvious way.
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In contrast to substitutions of variables, instantiations of meta-variables allow capturing of variables.
Instantiations are not first-class objects, i.e., the application of an instantiation is atomic and external to
the λΠL-calculus.

2.2. The λΠL-type system. In λΠL, we consider typing assertions having one of the following forms:

` Σ; Γ

to capture that the context Γ is valid in the signature Σ,

Σ; Γ ` M : A

to capture that the term M has type A (the type M has the kind A) in Σ; Γ, and

Σ; Γ ` S . ∆

to capture that the substitution S has the context type ∆ in Σ; Γ.
The scoping rules for variables and meta-variables in the above type assertions are as follows. Contexts

Γ, ∆, and expressions M,A, S may depend on any meta-variable declared in the respective signature Σ.
Indices in M , A, and S are relative to their respective context Γ.

Typing rules for signatures, contexts, terms, and substitutions are all mutually dependent. They are
given in Fig. 2.2.

In the following, we use ` Σ, ` Γ, Γ ` M : A, and Γ ` S . ∆ as shorthands for ` Σ; ε, ` ε; Γ, ε; Γ ` M : A,
and ε; Γ ` S . ∆, respectively.

Since there are no typing rules for Kind, the term Kind does not occur as a sub-term of a well-typed
expression.

The λΠL-system types at least as many terms as λΠ. In other words, λΠL is a conservative extension
of λΠ.

Lemma 2.2 (Conservative extension). Let M, A be ground terms in λΠL, and Γ a ground context such
that M, A, Γ do not contain explicit substitutions, then Γ ` M : A in λΠL if and only if Γ ` M : A in λΠ
(modulo de Bruijn indices translation).

Proof. By induction on the typing derivation.
The following lemma states the conditions that guarantee the soundness of instantiation of meta-variables

in λΠL.
Lemma 2.3 (Instantiation soundness). Let M be a term such that Σ1; Γ ` M : A, and Σ a signature

having the form Σ2. (X: ΓA). Σ1,
1. if ` Σ; ∆, then ` Σ{|X 7→ M |}; ∆{|X 7→ M |},
2. if Σ; ∆ ` N : B, then

Σ{|X 7→ M |}; ∆{|X 7→ M |} ` N{|X 7→ M |} : B{|X 7→ M |}, and
3. if Σ; ∆1 ` S . ∆2, then Σ{|X 7→ M |}; ∆1{|X 7→ M |} ` S{|X 7→ M |} . ∆2{|X 7→ M |}.

Proof. By induction on the typing derivation.

2.3. Type annotations. Type annotations in substitutions are introduced with rules (Beta), (Lambda),
and (Pi), and then propagated with rule (Map). They can also be eliminated with rules (VarCons), (Shift-
Cons), and (Shift0). Notice that the type annotation propagated by rule (Map): (M ·A S) ◦T - M [T ] ·A
(S ◦ T ) is A, not A[T ].

Consider the following example.
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(Empty)` ε; ε

Σ; Γ ` A : s

s ∈ {Kind,Type}
X is a fresh meta-variable

(Metavar-Decl)` (X: ΓA). Σ

Σ; Γ ` A : s

s ∈ {Kind,Type}
(Var-Decl)` Σ; A.Γ

` Σ; Γ
(Type)Σ; Γ ` Type : Kind

` Σ; A.Γ
(Var)

Σ; A.Γ ` 1 : A[↑1]

Σ; Γ ` A : Type
Σ; A.Γ ` B : s

s ∈ {Kind,Type}
(Prod)Σ; Γ ` ΠA.B : s

Σ; Γ ` A : Type
Σ; A.Γ ` M : B

Σ; Γ ` ΠA.B : s

s ∈ {Kind,Type}
(Abs)Σ; Γ ` λA.M : ΠA.B

Σ; Γ ` M : ΠA.B

Σ; Γ ` N : A
(Appl)

Σ; Γ ` (M N) : B[N ·A ↑0]

Σ; Γ ` S . ∆
Σ; ∆ ` M : A

Σ; ∆ ` A : s

s ∈ {Kind,Type}
(Clos)Σ; Γ ` M [S] : A[S]

Σ; Γ ` S . ∆
Σ; ∆ ` A : Kind

(Clos-Kind)Σ; Γ ` A[S] : Kind

` Σ; Γ
(X: ∆A) ∈ Σ
∆ ≡λΠL Γ

(Metavar)Σ; Γ ` X : A

Σ; Γ ` M : A

Σ; Γ ` B : s

s ∈ {Kind,Type}
A ≡λΠL B

(Conv)Σ; Γ ` M : B

Σ; Γ ` S . ∆1

` Σ; ∆2

∆1 ≡λΠL ∆2
(Conv-Subs)Σ; Γ ` S . ∆2

` Σ; Γ
(Id)

Σ; Γ ` ↑0 . Γ

` Σ; A.Γ
Σ; Γ ` ↑n . ∆

(Shift)
Σ; A.Γ ` ↑n+1 . ∆

Σ; Γ ` S . ∆1

Σ; ∆1 ` T . ∆2
(Comp)Σ; Γ ` T ◦ S . ∆2

Σ; Γ ` M : A[S]
Σ; Γ ` S . ∆

Σ; ∆ ` A : Type
(Cons)Σ; Γ ` M ·A S . A.∆

Fig. 2.2. The λΠL-type system
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Let Γ = z:nat. T :nat → Type. nat:Type. We verify that

Γ ` (λx:nat.λf :((T x) → nat).λy:(T x).(f y) z) : ((T z) → nat) → ((T z) → nat).(2.1)

Reducing the (Beta)-redex and distributing the substitution inside the abstraction, we get

(λx:nat.λf :((T x) → nat).λy:(T x).(f y) z)
(Beta)-

(λf :((T x) → nat).λy:(T x).(f y))[x := z ·nat ↑0]
ΠL

∗
-

λf :((T z) → nat).((λy:(T x).(f y))[f := f ·(T x)→nat x := z ·nat ↑1]).

We will check that the type in Eq. 2.1 is preserved by the reduction.
Thanks to the rewrite rule (Lambda), the type annotation for f in the substitution [f := f ·(T x)→nat

x := z ·nat ↑1] is (T x) → nat, that is, the type of the variable f before the distribution of the substitution
[x := z ·nat ↑0] in the abstraction λf :((T x) → nat).λy:(T x).(f y).

The typing rules for substitutions install the right context of variables. For example, the expression
λy:(T x).(f y) will be typed in a context where the variable declaration f : (T z) → nat has been replaced
by f : (T x) → nat. In fact, we verify

f :(T z) → nat. Γ ` [f := f ·(T x)→nat x := z ·nat ↑1] . f :(T x) → nat. x:nat. Γ(2.2)

f :(T x) → nat. x:nat. Γ ` λy:(T x).(f y) : (T x) → nat(2.3)

hence, by rule (Clos) applied to Eq. 2.2 and Eq. 2.3:

f :(T z) → nat. Γ ` (λy:(T x).(f y))[f := f ·(T x)→nat x := z ·nat ↑1] : (T z) → nat(2.4)

and by rule (Abs) applied to Eq. 2.4:

Γ ` λf :((T z) → nat).(λy:(T x).(f y))[f := f ·(T x)→nat x := z ·nat ↑1] :
((T z) → nat) → ((T z) → nat).

The above example is due to Geuvers and Bloo [13], and it happens to be a counter-example for subject
reduction in calculi of explicit substitutions with dependent types where substitutions do not keep track of
typing information. The use of annotated substitutions in λΠL keeps the right type when a substitution is
propagated under an abstraction or a product. In fact, as we will show below, subject reduction holds in
λΠL.

However, annotated substitutions raise a technical problem: the λΠL-rewrite system is not confluent.
The problem even exists if we only consider local confluence on ground terms. In fact, the following critical
pair is not joinable in the general case, e.g., assume A and B to be different ground λΠL-normal forms:

(1 ·A ↑1) ◦ (M ·B S)

	��
�(Shift0);(IdS) @@@

(Map);(VarCons);(ShiftCons);(IdS)
R

M ·B S M ·A S

This problem is similar to the one pointed out by Nederpelt for the λ-calculus extended with the η-
rule [36]. In that case, the confluence property holds on terms without type annotations in abstractions
(λ-calculus in the Curry style), but does not on terms with annotated abstractions (λ-calculus in the Church
style). In [11], Geuvers proposes a method to prove confluence for the βη-reduction on well-typed λ-terms
written in the Church style. In the next section we adapt this technique in order to prove the confluence
property on well-typed λΠL expressions.
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(λA.M N) −→ M [N · ↑0] (Beta)
(λA.M)[S] −→ λA[S].M [1 · (S ◦ ↑1)] (Lambda)
(ΠA.B)[S] −→ ΠA[S].B[1 · (S ◦ ↑1)] (Pi)
1[M · S] −→ M (VarCons)
(M · S) ◦ T −→ M [T ] · (S ◦ T ) (Map)
↑n+1 ◦ (M · S) −→ ↑n ◦ S (ShiftCons)
1 · ↑1 −→ ↑0 (Shift0)
1[↑n] · ↑n+1 −→ ↑n (ShiftS)

Fig. 3.1. Modified rules in the λΠtuL-rewrite system

3. Geuvers’ Lemma. Geuvers’ lemma is a weak form of the Church-Rosser property which suffices
to prove the main typing properties in systems where confluence on terms with type annotations —i.e., in
the Church style— is not available. Geuvers’ technique uses a positive reformulation of the counter-example
of non-confluence, and the fact that the underlying calculus without typing annotations —i.e., in the Curry
style— is confluent.

The underlying Curry style of λΠL is called λΠtu
L. In this calculus, substitutions do not have type

annotations (but abstractions do keep their type annotations). The set of well-formed terms in λΠtu
L are the

same as in λΠL, but substitutions have the following grammar:

Substitutions S, T ::= ↑n | M · S | S ◦ T.

As in the case of λΠL, only meta-variables of terms are enabled in λΠtu
L. The λΠtu

L-calculus is obtained
by affecting the reduction system λΠL as shown in Fig. 3.1. As expected, we define the Πtu

L-calculus as λΠtu
L

without rule (Beta).
The positive reformulation of the confluence counter-example in λΠL states that if two terms are equal

without type annotations, then they are convertible via ≡λΠL .
Definition 3.1. The erasing mapping |.| : λΠL → λΠtu

L is defined as follows:

|x| = x if x ∈ {1,Type,Kind} or x is a meta-variable
|ΠA.B| = Π|A|.|B|
|λA.B| = λ|A|.|M |
|(M N)| = (|M | |N |)
|M [S]| = |M |[|S|]
| ↑n | = ↑n

|S ◦ T | = |S| ◦ |T |
|M ·A S| = |M | · |S|

The following are useful properties of the erasing mapping.
Lemma 3.2 (Erasing properties). Let x and y be expressions in λΠL, w be an expression in λΠtu

L, R

one of the rewrite systems λΠL or ΠL, and Rtu the corresponding rewrite system without type annotations,
i.e., λΠtu

L or Πtu
L, then

1. if x
R- y, then |x| Rtu

- |y| or |x| = |y|,

11



2. if |x| Rtu
- w, then there exists w′ in λΠL such that x

R- w′ and |w′| = w, and
3. if x is an R-normal form, then |x| is an Rtu-normal form.

Proof. Properties (1) and (2) are proved by structural induction on x. Property (3) is a consequence of
(2).

Lemma 3.3 (Positive counter-example). Let x and y be expressions in λΠL, if |x| = |y|, then x ≡ΠL y,
and therefore, x ≡λΠL y.

Proof. Since |x| = |y|, x and y have the same principal constructor. We proceed by structural induction
on x. If x = λA.M , y = λB.N , and |x| = |y|, then by definition, λ|A|.|M | = λ|B|.|N | and thus, |A| = |B|
and |M | = |N |. By induction hypothesis, A ≡ΠL B and M ≡ΠL N , and thus, λA.M ≡ΠL λB.N . In fact,
the only interesting case is x = M ·A S and y = N ·B T . We get by induction hypothesis:

M ≡ΠL N(3.1)

S ≡ΠL T(3.2)

Since the function |.| erases type annotations from substitutions, we do not have by induction hypothesis
A ≡ΠL B. However, by using the counter-example, we have

M ·B S �
ΠL

∗

(1 ·A ↑1) ◦ (M ·B S)
ΠL

∗
- M ·A S.

We conclude with Eq. 3.1 and Eq. 3.2 that x = M ·A S ≡ΠL M ·B S ≡ΠL N ·B T = y.
A consequence of the reformulation of the counter-example is that, if we erase the type annotations of

a term M and then annotate it again with an arbitrary term, we get a term N which is equivalent to M

modulo ≡λΠL .
Definition 3.4. Let A be a term in λΠL, the annotation mapping (.)A : λΠtu

L → λΠL is defined as
follows:

xA = x if x ∈ {1,Type,Kind} or x is a meta-variable
(ΠB1 .B2)A = Π

B
A

1
.B

A
2

(λB .M)A = λBA .MA

(M N)A = (MA NA)
(M [S])A = MA[SA]
(↑n)A = ↑n

(S ◦ T )A = SA ◦ TA

(M · S)A = MA ·A SA

Lemma 3.5 (Erasing inverse). Let x be an expression in λΠL and A be a term in λΠL, x ≡λΠL |x|A.
Proof. It is not difficult to show that if w is an expression in λΠtu

L, then w = |wA|. Let w = |x|, by
Lemma 3.3, x ≡λΠL |x|A.

We use the next lemma in the proof of Geuvers’ lemma.
Lemma 3.6. Let x and y be expressions in λΠtu

L and A be a term in λΠL, if x
λΠtuL- y, then xA ≡λΠL yA.

Therefore, if x
λΠtuL

∗
- y, then xA ≡λΠL yA.

Proof. By induction on the depth of the λΠtu
L-redex reduced in x.

The proof of Geuvers’ lemma uses a confluence property on the calculus without type annotations. We
left the proof of that property (confluence of λΠtu

L) for the last part of this section.
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Theorem 3.7 (Confluence of λΠtu
L). The λΠtu

L-calculus is confluent.
Theorem 3.8 (Geuvers’ lemma). Let A1, B1, A2, B2, M,N be terms in λΠL,

1. if ΠA1 .B1 ≡λΠL ΠA2 .B2, then A1 ≡λΠL A2 and B1 ≡λΠL B2, and
2. if M ≡λΠL N , where N is a λΠL-normal form, then there exists M ′ in λΠL such that M

λΠL
∗
- M ′

and |M ′| = |N |.
Proof. We show only the first case. The second case is similar. By Lemma 3.2(1) and the definition of

|.|, we have Π|A1|.|B1| ≡λΠtuL
Π|A2|.|B2|. Since λΠtu

L is confluent (Theorem 3.7), there exists M in λΠtu
L such

that Π|A1|.|B1|
λΠtuL

∗
- M and Π|A2|.|B2|

λΠtuL
∗
- M . But there is no λΠtu

L-redex with a product as the main

constructor, so M has the form ΠA.B where |A1|
λΠtuL

∗
- A, |B1|

λΠtuL
∗
- B, |A2|

λΠtuL
∗
- A, and |B2|

λΠtuL
∗
- B.

By Lemma 3.5 and Lemma 3.6, for any λΠL-term N , A1 ≡λΠL |A1|N ≡λΠL AN , B1 ≡λΠL |B1|N ≡λΠL BN ,
A2 ≡λΠL |A2|N ≡λΠL AN , and B2 ≡λΠL |B2|N ≡λΠL BN . Therefore, A1 ≡λΠL A2 and B1 ≡λΠL B2.

The rest of this section addresses the proof of confluence of the λΠtu
L-calculus (Theorem 3.7).

First, we prove that the Πtu
L-calculus —λΠtu

L without (Beta)— is terminating and confluent.
Lemma 3.9 (Termination of Πtu

L). Πtu
L is a terminating rewrite system.

Proof. Since any reduction in Πtu
L can be properly simulated in ΠL (Lemma 3.2(2)), any infinite reduction

in Πtu
L corresponds to some infinite reduction in ΠL. But ΠL is terminating (Lemma 2.1), thus Πtu

L is
terminating.

Lemma 3.10 (Confluence of Πtu
L). The Πtu

L-calculus is confluent.
Proof. We mechanically check, e.g., by using the RRL system [23], that the Πtu

L-rewrite system has the
following critical pairs:

• (Id)-(Clos)

M [S] �
ΠtuL

+

M [S][↑0]
ΠtuL

+
- M [S ◦ ↑0]

• (Clos)-(Clos)

M [(S1 ◦ S2) ◦ T ] �
ΠtuL

+

M [S1][S2][T ]
ΠtuL

+
- M [S1 ◦ (S2 ◦ T )]

• (Shift0)-(Map)

S �Π
tu
L

+

(1 · ↑1) ◦ S
ΠtuL- 1[S] · (↑1 ◦ S)

• (ShiftS)-(Map)

↑n ◦ S �Π
tu
L (1[↑n] · ↑n+1) ◦ S

ΠtuL
+
- 1[↑n ◦ S] · (↑n+1 ◦ S)

• (Lambda)-(Clos) and (Pi)-(Clos)
Let S1 = 1 · ((S ◦ ↑1) ◦ (1 · (T ◦ ↑1))) and S2 = 1 · ((S ◦ T ) ◦ ↑1),

λA[S◦T ].M [S1] �
ΠtuL

+

(λA.M)[S][T ]
ΠtuL

+
- λA[S◦T ].M [S2]

ΠA[S◦T ].B[S1] �
ΠtuL

+

(ΠA.B)[S][T ]
ΠtuL

+
- ΠA[S◦T ].B[S2]

These critical pairs are Πtu
L-joinable (we recall that only meta-variables of terms are admitted). Using

an extension to the Critical Pair lemma proposed in [33] (based on similar extensions originally presented in
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(Refl‖)x - x
A - B M - N (Lambda‖)λA.M - λB .N

A1
- B1 A2

- B2 (Pi‖)ΠA1 .B1
- ΠA2 .B2

M - N S - T (Clos‖)M [S] - N [T ]

M1
- M2 N1

- N2 (Application‖)(M1 N1) - (M2 N2)
M - N S - T (Cons‖)M · S - N · T

S1
- S2 T1

- T2 (Comp‖)S1 ◦ T1
- S2 ◦ T2

M1
- M2 N1

- N2 (Beta‖)(λA.M1 N1) - M2[N2 · ↑0]

Fig. 3.2. The parallelization of (Beta)

[22, 40]), we conclude that Πtu
L is locally confluent. Therefore, by Newman’s lemma and Lemma 3.9, Πtu

L is
confluent.

The confluence proof of the λΠtu
L-calculus uses a general method proposed in [45] to prove confluence of

abstract relations: the Yokouchi-Hikita’s lemma. This method shows to be suitable for left-linear calculi of
explicit substitutions [7, 37, 33].

Lemma 3.11 (Yokouchi-Hikita’s lemma). Let R and S be two relations defined on a set X such that: 1)
R is confluent and terminating, 2) S is strongly confluent, and 3) S and R commute in the following way:
for any x, y, z ∈ X, if x

R- y and x
S- z, then there exists w ∈ X such that y

R∗SR∗
- w and z

R∗
- w.

Then the relation R∗SR∗ is confluent.

Proof. See [7].

We take the set of λΠtu
L-expressions as X, Πtu

L as R and B‖ as S, where B‖ is the parallelization of (Beta)
defined in Fig. 3.2.

Lemma 3.12. Πtu
L commutes over B‖, i.e., if x reduces in one Πtu

L-step to y, and in one B‖-step to z,

then there exists w such that y
ΠtuL

∗B‖Π
tu
L
∗
- w and z

ΠtuL
∗
- w.

Proof. By case analysis on the redex reduced in x.

We are now ready to prove the confluence property of λΠtu
L.

Theorem 3.7. The λΠtu
L-calculus is confluent.

Proof. We verify that Πtu
L and B‖ satisfy the conditions of Yokouchi-Hikita’s lemma, that is,

1. Πtu
L is terminating and confluent (Lemma 3.9 and Lemma 3.10),

2. B‖ is strongly confluent, since (Beta) by itself is a left linear system with no critical pairs (c.f. [19]),
and

3. Πtu
L commutes over B‖ (Lemma 3.12).

Therefore, Πtu
L
∗
B‖Πtu

L
∗ is confluent.

Note that λΠtu
L ⊆ Πtu

L
∗
B‖Πtu

L
∗ ⊆ λΠtu

L
∗. Let x be an expression in λΠtu

L. If x
λΠtuL

∗
- y and x

λΠtuL
∗
- z, then

there exists w such that y
(ΠtuL

∗B‖Π
tu
L
∗)∗- w and z

(ΠtuL
∗B‖Π

tu
L
∗)∗- w. So, y

λΠtuL
∗
- w and z

λΠtuL
∗
- w.

4. Elementary Typing Properties. The elementary typing properties of λΠL are

• Sort soundness: the type of a term is a valid sort.
• Type uniqueness: the type of a term is unique module ≡λΠL .
• Subject reduction: the λΠL-rewrite system preserves typing.
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• Soundness: there always exists a path of well-typed terms between equivalent well-typed terms.

We use Geuvers’ lemma to prove the last two of the above properties.

Theorem 4.1 (Sort soundness).

1. If Σ; Γ ` M : A, then A = Kind or Σ; Γ ` A : s, s ∈ {Kind,Type}, and
2. if Σ; Γ ` S . ∆ then Σ; ∆.

Proof. By induction on the typing derivation.

Theorem 4.2 (Type uniqueness). Let Γ1 and Γ2 be such that Γ1 ≡λΠL Γ2,

1. if Σ; Γ1 ` M : A and Σ; Γ2 ` M : B, then A ≡λΠL B, and
2. if Σ; Γ1 ` S . ∆1 and Σ; Γ2 ` S . ∆2, then ∆1 ≡λΠL ∆2.

Proof. By simultaneous structural induction on M and S.

Theorem 4.3 (Subject reduction). The λΠL-calculus preserves typing, if x
λΠL

∗
- y, for an expression

x, then

1. if x is a term and Σ; Γ ` x : A, then Σ; Γ ` y : A, and
2. if x is a substitution and Σ; Γ ` x . ∆, then Σ; Γ ` y . ∆.

Proof. We show that typing is preserved for one-step reductions (i.e.,
λΠL- ), and therefore, it is also

for the reflexive and transitive closure (i.e.,
λΠL

∗
- ). Let x

λΠL- y be a one-step reduction. We proceed by
induction on the depth of the redex reduced in x.

In the initial case, x is reduced at the top level, and we proceed by case analysis. We show the case of
rule (Beta):

Let Σ; Γ ` (λA.M N) : B. We show Σ; Γ ` M [N ·A ↑0] : B.

We have:

1. (a) Σ; Γ ` λA.M : ΠA1 .B1, (b) Σ; Γ ` N : A1, and (c) B ≡λΠL B1[N ·A1 ↑0], by inversion of rule
(Appl) applied to the hypothesis.

2. (a) Σ; Γ ` A : Type, (b) Σ;A.Γ ` M : B2, (c) Σ; A.Γ ` B2 : s2, s2 ∈ {Kind,Type}, and (d)
ΠA.B2 ≡λΠL ΠA1 .B1, by inversion of rule (Abs) applied to (1-a).

3. (a) A ≡λΠL A1 and (b) B2 ≡λΠL B1, by Geuvers’ lemma (Theorem 3.8) applied to (2-d).
4. Σ; Γ ` N : A, by rule (Conv) applied to (1-b), (2-a), and (3-a).
5. Σ; Γ ` N ·A ↑0 . A.Γ, by rule (Cons) applied to (4), (2-a), and Σ; Γ ` ↑0 . Γ.
6. B2[N ·A ↑0] ≡λΠL B1[N ·A ↑0] ≡λΠL B1[N ·A1 ↑0] ≡λΠL B, by (1-c) and (3).
7. Σ; Γ ` B : s1, s1 ∈ {Kind,Type}, by sort soundness (Theorem 4.1) applied to the hypothesis. Note

that the case s = Kind is not possible.

Therefore, we have the derivation

Σ; A.Γ ` M : B2 (2-b)
Σ; A.Γ ` B2 : s2 (2-c)

Σ; Γ ` N ·A ↑0 . A.Γ (5)
(Clos)

Σ; Γ ` M [N ·A ↑0] : B2[N ·A ↑0] (6) (7)
(Conv)

Σ; Γ ` M [N ·A ↑0] : B

The other cases are similar. The induction step cases do not present any difficulty.
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Sometimes the conversion rule (Conv) is expressed as [14]:

Γ ` M : A

Γ ` B : s

s ∈ {Kind,Type}
A - B or B - A

(Conv’)
Γ ` M : B

Rule (Conv) seems to be more general than rule (Conv’). In fact, the latter one allows conversions of
types only via a path of well-typed terms. Geuvers and Werner [14] define a type system to be sound if the
convertibility of terms remains in the set of well-typed terms. In sound systems, rules (Conv) and (Conv’)
are equivalent.

We use the following lemma in the soundness proof of the λΠL-system.
Lemma 4.4. Let x, y be λΠL-expressions in ΠL-normal form such that |x| = |y|, if x and y are well-typed

expressions, then they are convertible via a path of well-typed expressions.
Proof. By structural induction on x and y.
Theorem 4.5 (Soundness). If Σ; Γ ` M : A, Σ; Γ ` N : B and M ≡λΠL N , then M and N are

convertible via a path of well-typed terms.
Proof. From Lemma 3.2(1), we have |M | ≡λΠL |N |. The confluence property of λΠtu

L states that there

exists x ∈ λΠtu
L such that |M | λΠtuL

∗
- x and |N | λΠtuL

∗
- x. By Lemma 3.2(2), there exist M1, N1 in λΠL

such that M
λΠL

∗
- M1, N

λΠL
∗
- N1, and |M1| = |N1| = x. Since ΠL is terminating (Lemma 2.1), there

exist M2, N2 ΠL-normal forms such that M1
ΠL

∗
- M2, N1

ΠL
∗
- N2. By the subject reduction property

(Theorem 4.3), Σ; Γ ` M2 : A and Σ; Γ ` N2 : B, and all the terms in both reductions are well-typed.
Now, from Lemma 3.2(1), we have x

ΠtuL
∗
- |M2| and x

ΠtuL
∗
- |N2|. But M2 and N2 are ΠL-normal

forms, thus, by Lemma 3.2(3), |M2| and |N ′
2| are Πtu

L-normal forms. Since Πtu
L is confluent, |M2| = |N2|. By

Lemma 4.4, M2 and N2 are convertible via a path of well-typed terms. Therefore, M and N are convertible
via a path of well-typed terms.

A direct consequence of typing soundness and subject reduction is the following property.
Lemma 4.6. If Σ; Γ ` M1 : A1, Σ; Γ ` M2 : A2, and M1 ≡λΠL M2, then A1 ≡λΠL A2.
Proof. By induction on the length of the paths of well-typed expressions converting M1 to M2.

5. The Main Properties: Weak Normalization and Confluence. In this section we address the
proof of the main properties of λΠL on well-typed expressions: weak normalization and confluence.

5.1. Weak normalization. The λΠL-calculus does not preserve strong normalization of λΠ. In fact,
the counterexample shown in [30] for λσ may be reproduced in λΠL with some minor modifications.

Nevertheless, we prove that λΠL is weakly normalizing on well-typed expressions, i.e., there exists a
strategy to find λΠL-normal forms on well-typed expressions. In particular, we propose a proof of strong
normalization of the strategy that performs one step of (Beta) followed by a ΠL-normalization.

We use the standard technique of reducibility, originally due to Tait for the simply-typed λ-calculus
[42], and then extended by Girard to the system F (the λ-calculus of second-order) [15]. From the diverse
proofs of termination using a reducibility notion, we follow the presentation given in [12] for the Calculus of
Constructions, which is based on saturated sets. We adapt this proof for the λΠL-calculus. In order to avoid
some technical problems due to the non-confluence of the calculus with type annotations (not necessarily
well-typed), we define saturated sets in a slightly different way. However, the structure of the proofs is the
same.
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We use (x)↓ΠL as a shorthand for the set of ΠL-normal forms of x. The set containing all the ΠL-normal
forms of λΠL is denoted by NF .

Definition 5.1. Let x, y ∈ NF , we say that x βΠL-reduces to y, denoted by x
βΠL- y, if x

(Beta)- w

and y ∈ (w)↓ΠL . Notice that the set of βΠL-normal forms is equal to the set of λΠL-normal forms, and

that x
βΠL- y implies x

λΠL
∗
- y. In fact, we will show that βΠL is strongly normalizing on well-typed

expressions, and therefore, λΠL is weakly normalizing on well-typed expressions.
We denote by SN the set of βΠL-strongly normalizing expressions of NF .
Definition 5.2. Let M be a term in NF . The term M is neutral if it does not have the form λA.N .

The set of neutral terms is denoted by NT .
Definition 5.3. Let x be in NF . The set of annotations of x, denoted by ℵ(x), is defined inductively

as follows:

ℵ(x) = ∅ if x ∈ {Kind,Type, 1} or x =↑n or x is a meta-variable
ℵ(ΠA.B) = ℵ(A) ∪ ℵ(B)
ℵ(λA.M) = ℵ(A) ∪ ℵ(M)
ℵ(M N) = ℵ(M) ∪ ℵ(N)
ℵ(M [S]) = ℵ(M) ∪ ℵ(S)
ℵ(S ◦ T ) = ℵ(S) ∪ ℵ(T )
ℵ(M ·A S) = {A} ∪ ℵ(M) ∪ ℵ(S)

Definition 5.4. A set of terms Λ ⊆ NF is saturated if
1. Λ ⊆ SN ,
2. if M ∈ Λ and M

βΠL- N , then N ∈ Λ,
3. if M ∈ NT , and whenever the reduction of a βΠL-redex of M leads to a term N ∈ Λ, then M ∈ Λ,

and
4. if M ∈ Λ, |M | = |N |, and ℵ(N) ⊆ SN , then N ∈ Λ.

The set of saturated sets is denoted by SAT.
The following corollary is a trivial consequence of Def. 5.4(3).
Corollary 5.5. Let M ∈ NT such that M is a βΠL-normal form, for any Λ ∈ SAT, M ∈ Λ.
The following lemmas show particular cases of terms that are in saturated sets.
Lemma 5.6. For any Λ ∈ SAT, substitution S ∈ SN , and meta-variable X, we have (X[S])↓ΠL ⊆ Λ.
Proof. Let Λ ∈ SAT and M ∈ (X[S])↓ΠL . Since M is neutral it suffices to consider the reductions of M

(Def. 5.4(3)). We reason by induction on ν(S)3. Only two reductions are possible:
• M

βΠL- X, and by Corollary 5.5, X ∈ Λ.
• M

βΠL- X[T ] where S
βΠL- T . By hypothesis, T ∈ SN , and ν(S) > ν(T ), so by induction

hypothesis, (X[T ])↓ΠL ⊆ Λ.
In both cases, M reduces to terms in Λ, thus, M ∈ Λ.

Lemma 5.7. For any Λ ∈ SAT, and terms A, B ∈ SN , ΠA.B ∈ Λ.
Proof. The term ΠA.B is neutral. By Def. 5.4(3) it suffices to consider the reductions of ΠA.B. We

reason by induction on ν(A) + ν(B).
Lemma 5.8. SN ∈ SAT.
Proof. We verify the following conditions (Def. 5.4).

3“If x is strongly normalizing, ν(x) is a number which bounds the length of every normalization sequence beginning with

x” [16].
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1. SN ⊆ SN .
2. If M ∈ SN and M

βΠL- N , then N ∈ SN .
3. If M ∈ NT , and whenever the reduction of a βΠL-redex of M leads to a term N ∈ SN , then

M ∈ SN .
4. If M ∈ SN , |M | = |N |, and ℵ(N) ⊆ SN , then N ∈ SN .

Definition 5.9. If Λ, Λ′ ∈ SAT, we define the set

Λ → Λ′ = {M ∈ NF | ∀N ∈ Λ, (M N) ∈ Λ′}.

Lemma 5.10. SAT is closed under function spaces, i.e., if Λ, Λ′ ∈ SAT, then Λ → Λ′ ∈ SAT.

Proof. We verify the conditions in Def. 5.4:

1. Λ → Λ′ ⊆ SN .
Let M be in Λ → Λ′. By Def. 5.9 and Def. 5.4(1), (M N) ∈ Λ′ ⊆ SN for all N ∈ Λ. Thus, M ∈ SN .

2. If M ∈ Λ → Λ′ and M
βΠL- N , then N ∈ Λ → Λ′.

Let N1 be in Λ. We show that (N N1) ∈ Λ′. By hypothesis, (M N1) ∈ Λ′ and (M N1)
βΠL- (N N1).

Thus, (N N1) ∈ Λ′ by Def. 5.4(2).
3. If M ∈ NT , and whenever the reduction of a βΠL-redex of M leads to a term N ∈ Λ → Λ′, then

M ∈ Λ → Λ′.
Let N1 be in Λ, we show that (M N1) ∈ Λ′. Since (M N1) ∈ NT , it suffices by Def. 5.4(3) to prove
that if (M N1)

βΠL- N2, then N2 ∈ Λ′. We have N1 ∈ Λ ⊆ SN . We reason by induction on ν(N1).
Since M ∈ NT , (M N1) βΠL-reduces in one step to
• (M1 N1), with M

βΠL- M1. By hypotheses, M1 ∈ Λ → Λ′ and N1 ∈ Λ, thus (M1 N1) ∈ Λ′.
• (M N2), with N1

βΠL- N2. By Def. 5.4(2), N2 ∈ Λ and ν(N2) < ν(N1), thus, by induction
hypothesis, (M N2) ∈ Λ′.

In both cases, (M N1) reduces to terms in Λ′. Hence, (M N1) ∈ Λ′

4. If M ∈ Λ → Λ′, |M | = |N |, and ℵ(N) ⊆ SN , then N ∈ Λ → Λ′.
Let N1 be in Λ. We show that (N N1) ∈ Λ′. By hypothesis, (M N1) ∈ Λ′, but also, |(M N1)| =
|(N N1)|. By Def. 5.4(4), it suffices to show that ℵ(N N1) ⊆ SN . Since N1 ∈ Λ ⊆ SN , we have
ℵ(N1) ⊆ SN . Therefore, ℵ(N N1) = ℵ(N) ∪ ℵ(N1) ⊆ SN .

The next step in the proof is the interpretation of types.

Definition 5.11. The type interpretation function of terms in λΠL is defined inductively as follows:

[[x]] = SN if x ∈ {Kind,Type, 1} or x is a meta-variable
[[M [S]]] = [[M ]]
[[(M N)]] = [[M ]]
[[λA.B]] = [[B]]
[[ΠA.B]] = [[A]] → [[B]]

We have the following corollary of Lemma 5.10.

Corollary 5.12. For any term M , [[M ]] ∈ SAT.

Lists of types, i.e., contexts, are interpreted by a set of explicit substitutions.
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Definition 5.13. The valuations of Γ, denoted by [[Γ]], is a set of substitutions in NF defined
inductively on Γ as follows:

[[ε]] = {↑n | for any natural n}
[[A.∆]] = [[ε]] ∪ {M ·B S ∈ NF | M ∈ [[B]], S ∈ [[∆]], B ∈ SN , [[A]] = [[B]]}

Lemma 5.14. For any Γ, [[Γ]] ⊆ SN .

Proof. We show by structural induction on S that if S ∈ [[Γ]], then S ∈ SN .

Definition 5.15. Let M be a term in NF and S be a substitution in NF . We define

1. Γ satisfies that M is of type A, denoted by Γ |= M : A, if and only if (M [T ])↓ΠL ⊆ [[A]] for any
T ∈ [[Γ]].

2. Γ satisfies that S is of type ∆, denoted by Γ |= S . ∆, if and only if (S ◦ T )↓ΠL ⊆ [[∆]] for any
T ∈ [[Γ]].

We are almost ready to prove the key property which leads to the strong normalization property of βΠL.
It states that if Γ |= M : A, then Γ ` M : A. Before that, we need some more technical lemmas.

Lemma 5.16. Let A be a term in SN . For all substitutions S ∈ [[Γ]] and term M ∈ [[A]], (M ·A S)↓ΠL ⊆
[[A.Γ]].

Proof. Note that M ·A S is not necessarily in NF . But there are two cases: (M ·A S)↓ΠL = {M ·A S}
or (M ·A S)↓ΠL = {↑n}. In both cases we verify that (M ·A S)↓ΠL ⊆ [[A.Γ]].

Lemma 5.17. Let M a term in NF , if Σ; Γ ` M : A and Σ; Γ ` A : Type, then [[M ]] = SN .

Proof. By structural induction on M . We show the case where M = (M1 M2), the other cases are
similar. We have:

1. (a) Σ; Γ ` M1 : ΠA1 .B1, (b) Σ; Γ ` (M1 M2) : B1[M2 ·A1 ↑0], and (c) A ≡λΠL B1[M2 ·A1 ↑0], by
inversion of rule (Appl) applied to the hypothesis.

2. (a) Σ; Γ ` A1 : Type and (b) Σ; A1.Γ ` B1 : s1, s1 ∈ {Kind,Type}, by inversion of rule (Prod)
applied to (1-a).

3. Σ; Γ ` B1[M2 ·A1 ↑0] : s2, s2 ∈ {Kind,Type}, by sort soundness (Theorem 4.1) applied to (1-b).
4. s2 ≡λΠL Type, by Lemma 4.6 applied to Σ; Γ ` A : Type, (1-c), and (3).
5. s2 = Type, by Geuvers’ lemma (Theorem 3.8) applied to (4).
6. s1 = Type, by (2-b), (3), and (5).

Then, applying rule (Prod) to (2) and (6), we get Σ; Γ ` ΠA1 .B1 : Type. By Def. 5.11 and induction
hypothesis, [[(M1 M2)]] = [[M1]] = SN .

Lemma 5.18. Let M be a term in NF and S a substitution in NT ,

1. if Σ; Γ ` M : A and Σ; Γ ` M : B, then [[A]] = [[B]], and
2. if Σ; Γ ` S . ∆1 and Σ; Γ ` S . ∆2, then [[∆1]] = [[∆2]].

Proof. We only show the first case. The second case is proved by structural induction on ∆1. By type
uniqueness (Theorem 4.2), we have A ≡λΠL B, and by sort soundness (Theorem 4.1), A = B = Kind or
(Σ; Γ ` A : s1, Σ; Γ ` B : s2, and s1, s2 ∈ {Kind,Type}). The first case is trivial. For the second one, we use
soundness of λΠL (Theorem 4.5) to conclude that A and B are convertible via a path of well-typed terms.
Hence, it suffices to prove that for any well-typed term N1, if N1

βΠL- N2, then [[N1]] = [[N2]]. We prove
this by induction on the depth of the βΠL-redex reduced in N1. The only interesting case is (VarCons), i.e.,
1[M1 ·A1 S] - M1. We show that [[1[M1 ·A1 S]]] = [[M1]].

• From Def. 5.11, [[1[M1 ·A1 S]]] = [[1]] = SN .
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• If 1[M1 ·A1 S] is well-typed in Σ; Γ, then by inversion of rule (Cons), we have Σ; Γ ` M1 : A1[S] and
Σ; Γ ` A1[S] : Type. Therefore, by Lemma 5.17, [[M1]] = SN .

So, [[1[M1 ·A1 S]]] = [[M1]] = SN .

Lemma 5.19. Let A1 ∈ SN , and M, A2, B ∈ NF , if for all N ∈ [[A2]], (M [N ·A1 ↑0])↓ΠL ⊆ [[B]], then
λA1 .M ∈ [[A2]] → [[B]].

Proof. Let N ∈ [[A2]]. We want to show (λA1 .M N) ∈ [[B]]. Since (λA1 .M N) ∈ NT and [[B]] ⊆ SAT,
it suffices to prove that if (λA1 .M N)

βΠL- M ′, then M ′ ∈ [[B]]. By hypotheses, for all N ∈ [[A2]],
(M [N ·A1 ↑0])↓ΠL ⊆ [[B]] ⊆ SN ; in particular, (M [1 ·A1 ↑0])↓ΠL ⊆ SN . But, M ∈ (M [1 ·A1 ↑0])↓ΠL , and
thus, M ∈ SN . We also have N ∈ [[A2]] ⊆ SN and A1 ∈ SN . Thus, we can reason by induction on
ν(M) + ν(N) + ν(A1). In one step (λA1 .M N) βΠL-reduces to:

• (M [N ·A1 ↑0])↓ΠL . By hypothesis, (M [N ·A1 ↑0])↓ΠL ⊆ [[B]].

• (λA1 .M N1), with N
βΠL- N1. By Def. 5.4(2), N1 ∈ [[A2]], then by hypothesis, (M [N1 ·A1 ↑0])↓ΠL ⊆

[[B]]. But also, ν(N1) < ν(N), thus, by induction hypothesis, (λA1 .M N1) ∈ [[B]].
• (λA.M N), with A1

βΠL- A. But A ∈ SN , since A1 ∈ SN , therefore, for any M1 ∈ (M [N ·A ↑0])↓ΠL ,
ℵ(M1) ⊆ SN . We have, |(M [N ·A1 ↑0])↓ΠL | = |(M [N ·A ↑0])↓ΠL |

4. By Def. 5.4(4), (M [N ·A ↑0])↓ΠL ⊆
[[B]]. But also ν(A) < ν(A1), thus, by induction hypothesis, (λA.M N) ∈ [[B]].

• (λA1 .M1 N), with M
βΠL- M1. Using the properties of λΠL and λΠtu

L, if N1 ∈ (M [N ·A1 ↑0])↓ΠL ,

then N1
βΠL- N2, where |N2| = |(M1[N ·A1 ↑0])↓ΠL |. By hypothesis, N1 ∈ [[B]], thus, by Def. 5.4(2),

N2 ∈ [[B]]. Since M1 and A1 are in SN , for any M2 ∈ (M1[N ·A1 ↑0])↓ΠL , ℵ(M2) ⊆ SN . We obtain
(M1[N ·A1 ↑0])↓ΠL ⊆ [[B]] by Def. 5.4(4). But also ν(M1) < ν(M), thus, by induction hypothesis,
(λA1 .M1 N) ∈ [[B]].

In any case, (λA1 .M N) reduces to a term in [[B]] and, therefore, (λA1 .M N) ∈ [[B]].

We are ready to prove the key lemma, the soundness of |= with respect to `.

Lemma 5.20 (Soundness of |=). Let M, S ∈ NF ,

1. if Σ; Γ ` M : A, then Γ |= M : A, and
2. if Σ; Γ ` S . ∆, then Γ |= S . ∆.

Proof. Let T ∈ [[Γ]]. We proceed by simultaneous structural induction on M and S. We show the main
cases. In the proof, ⇑A(S) is a shorthand for 1 ·A (S ◦ ↑1).

• M = X (X is a meta-variable). We show that (X[T ])↓ΠL ⊆ [[A]].
There are two cases:

– T =↑0. Therefore, (X[T ])↓ΠL = {X}. But also, X is a neutral βΠL-normal form. Hence by
Corollary 5.5, X ∈ [[A]].

– T 6=↑0. Therefore, (X[T ])↓ΠL = {X[T ]}. By Lemma 5.14, T ∈ SN . Hence by Lemma 5.6,
X[T ] ∈ [[A]].

• M = ΠA1 .B1. We show that (ΠA1 .B1[T ])↓ΠL ⊆ [[A]].
By inversion of rule (Prod), Σ; Γ ` A1 : Type and Σ; A1.Γ ` B1 : s, s ∈ {Kind,Type}. Note that if
M1 ∈ ((ΠA1 .B1)[T ])↓ΠL , then M1 = ΠA2 .B2, where A2 ∈ (A1[T ])↓ΠL and B2 ∈ (B1[⇑A1

(T )])↓ΠL .
By induction hypothesis on A1, (A1[T1])↓ΠL ⊆ [[Type]] = SN holds for all T1 ∈ [[Γ]]. Assuming
T1 = T , we conclude A2 ∈ SN , and assuming T1 =↑0, we conclude A1 ∈ SN .
Let T2 ∈ (⇑A1

(T ))↓ΠL . We have |B2| = |(B1[T2])↓ΠL | and T2 ∈ [[A.Γ]]. By induction hypothesis on
B1, (B1[T2])↓ΠL ⊆ [[s]] = SN holds. But, ℵ(B2) ⊆ SN . Hence by Def. 5.4(4), B2 ∈ [[s]] = SN .

4Since the ΠtuL-calculus (ΠL without annotations of types in substitutions) is confluent (Lemma 3.10), we use the following

property: for any M1, M2 ∈ (M)↓ΠL , |M1| = |M2|.

20



Since A2, B2 are both in SN , we have ΠA2 .B2 ∈ [[A]] (Lemma 5.7).
• M = λA1 .M1. We show that (λA1 .M1[T ])↓ΠL ⊆ [[A]].

By inversion of rule (Abs), Σ; Γ ` A1 : Type, Σ; A1.Γ ` M1 : B and Σ; Γ ` λA1 .M1 : ΠA1 .B.
By Lemma 5.18, [[A]] = [[ΠA1 .B]] = [[A1]] → [[B]]. Note that if N ∈ ((λA1 .M1)[T ])↓ΠL , then
N = λA2 .M2, where A2 ∈ (A1[T ])↓ΠL and M2 ∈ (M1[⇑A1

(T )])↓ΠL . By induction hypothesis on A1,
(A1[T1])↓ΠL ⊆ [[Type]] = SN holds for all T1 ∈ [[Γ]]. Assuming T1 = T , we conclude A2 ∈ SN , and
assuming T1 =↑0, we conclude A1 ∈ SN .
Now we prove that λA2 .M2 ∈ [[A1]] → [[B]]. From Lemma 5.19, it suffices to prove that for any N1 ∈
[[A1]], (M2[N1 ·A2 ↑0])↓ΠL ⊆ [[B]]. Let N2 ∈ (M2[N1 ·A2 ↑0])↓ΠL and T2 ∈ (⇑A1

(T ) ◦ (N1 ·A2 ↑0))↓ΠL .
We verify that |N2| = |(M1[T2])↓ΠL | and T2 ∈ [[A1.Γ]]. Therefore, by induction hypothesis on M1,
(M1[T2])↓ΠL ⊆ [[B]]. But ℵ(N2) ⊆ SN , thus, N2 ∈ [[B]] by Def. 5.4(4).

Now, we show that βΠL is strongly normalizing.

Lemma 5.21 (Strong normalization of βΠL). Let M be a term in NF and S be a substitution in NF .

1. If Σ; Γ ` M : A, then M ∈ SN , and
2. if Σ; Γ ` S . ∆, then S ∈ SN .

Proof. By Def. 5.13, ↑0∈ [[Γ]].

1. By Lemma 5.20, M ∈ (M [↑0])↓ΠL ⊆ [[A]]. By Corollary 5.12 and Def. 5.4(1), [[A]] ⊆ SN .
2. By Lemma 5.20, S ∈ (S ◦ ↑0)↓ΠL ⊆ [[∆]], and by Lemma 5.14, [[∆]] ⊆ SN .

Finally, we prove weak normalization on well-typed λΠL-expressions.

Theorem 5.22 (Weak normalization). Let M be a term in λΠL and S a substitution in λΠL.

1. If Σ; Γ ` M : A, then M is weakly normalizing, and
2. if Σ; Γ ` S . ∆, then S is weakly normalizing.

Therefore, M and S have λΠL-normal forms.

Proof. By Lemma 2.1 there exist M1, S1 ∈ NF such that M
ΠL

∗
- M1 and S

ΠL
∗
- S1. The subject

reduction theorem (Theorem 4.3) states that typing is preserved under reductions. Hence, Σ; Γ ` M1 : A

and Σ; Γ ` S1 . ∆. Therefore, by Lemma 5.21, M1 and S1 are both in SN . Finally, note that βΠL-normal
forms in NF are λΠL-normal forms, too.

5.2. Confluence. The Church-Rosser property states that if two well-typed expressions are convertible,
then they are joinable. The confluence property states that all the reductions of a well-typed expression are
joinable.

We need the following lemma coined in [44].

Lemma 5.23. Let x and y be λΠL-normal forms such that x ≡λΠL y. Then, x = y if

• x is a term, Σ; Γ1 ` x : A and Σ; Γ2 ` y : B, or
• x is a substitution, Σ; Γ1 ` x . ∆1, Σ; Γ2 ` y . ∆2, and ∆1 ≡λΠL ∆2.

Proof. By Lemma 3.2(3), |x| and |y| are λΠtu
L-normal forms, and by Lemma 3.2(1), |x| ≡λΠtuL

|y|. Since
λΠtu

L is confluent (Theorem 3.7), |x| = |y| holds. Finally, we proceed by structural induction on x. We use
the fact that sub-terms of well-typed normal forms are well-typed normal forms. The only interesting case
is x = M [T ]. Since x is a λΠL-normal form, only two cases are possible:

• M = 1 and T =↑n+1. This case is trivial, since by Def. 3.1, 1[↑n+1] = |1[↑n+1]|. Therefore, x = y.
• M = X, where X is a meta-variable and T 6=↑0. By hypothesis, y = X[T1] where |T | = |T1|. By

Lemma 3.3, T ≡λΠL T1. Let ∆ be the type of T and ∆1 the type of T1. By the inversion of rule
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(Clos) applied to x and y, it holds that X is well-typed in both contexts ∆ and ∆1. By inversion of
rule (Metavar), ∆ ≡λΠL ∆1. Thus, by induction hypothesis, T = T1, and thus, x = y.

The above property is not valid when ∆1 6≡λΠL ∆2. Take, for example, the context

Γ = m:(T 0) → nat. 0:nat. l:(Πn:nat.(T n)). T :nat → Type. nat:Type

and the two substitutions

S1 = [y := (l 0) ·(T x) x := 0 ·nat ↑0]

and

S2 = [y := (l 0) ·(T 0) x := 0 ·nat ↑0].

By Lemma 3.3, S1 ≡λΠL S2. Also,

Γ ` S1 . y:(T x). x:nat. Γ

and

Γ ` S2 . y:(T 0). x:nat. Γ.

In this case, the well-typed substitutions S1 and S2 are ≡λΠL-convertible, but they are not identical.

Theorem 5.24 (Church-Rosser). Let x and y be such that x ≡λΠL y. Then, x and y are λΠL-joinable,
i.e., there exists w such that x

λΠL
∗
- w and y

λΠL
∗
- w, if

1. x is a term, Σ; Γ1 ` x : A and Σ; Γ2 ` y : B, or
2. x is a substitution, Σ; Γ1 ` x . ∆1, Σ; Γ2 ` y . ∆2, and ∆1 ≡λΠL ∆2.

Proof. By weak normalization theorem (Theorem 5.22), there exists λΠL-normal forms x′ and y′ such
that x

λΠL
∗
- x′ and y

λΠL
∗
- y′. It suffices to show that x′ = y′, which is a consequence of subject reduction

theorem (Theorem 4.3) and Lemma 5.23.

Confluence of λΠL is a consequence of the Church-Rosser property (Theorem 5.24) and subject reduction
(Theorem 4.3).

Corollary 5.25 (Confluence). Let x be an arbitrary well-typed expression. If x
λΠL

∗
- y and x

λΠL
∗
- z

for some y, z, then there exists w such that y
λΠL

∗
- w and z

λΠL
∗
- w.

Since λΠL enjoys both Church-Rosser and weak normalization, we have that λΠL-normal forms on well-
typed terms always exist and they are unique. Thus, the equivalence on well-typed expressions is decidable.

Corollary 5.26 (Decidability). The equivalence x ≡λΠL y is decidable if

• x is a term, Σ; Γ1 ` x : A and Σ; Γ2 ` y : B, or
• x is a substitution, Σ; Γ1 ` x . ∆, Σ; Γ2 ` y . ∆.

6. Related Work and Conclusion. Explicit substitutions and the let-in constructor of functional
ML-style programming languages have similar characteristics. In both mechanisms the application of a
substitution to a term can be delayed. For example, let x := 0 in λy:A.x will be unfolded to λy:A.0, in the
same way that (λy:A.x)[x := 0] reduces to λy:A.0. In their simply-typed versions, explicit substitutions and
let-in constructors act in the same way. However, in dependent-type systems, the relationship between
both mechanisms is not immediate.
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To illustrate this, let us take the typing rule for closures —explicit applications of substitutions to
terms— in a dependent-type system:

Γ ` S . ∆ ∆ ` M : A . . .
(ClosΠ).

Γ ` M [S] : A[S]

Consider the context

Γ = m:(T 0) → nat. 0:nat. l:(Πn:nat.(T n)). T :nat → Type. nat:Type.

Using the above typing rule, the term (m (l x))[x := 0] is ill-typed. This is because the information that the
variable x will be substituted by 0 in (m (l x)) is not taken into account by rule (ClosΠ). Therefore, the
type of (l x) is (T x), but not (T 0) as expected by m. On the other hand, the same term can be written
using the let-in notation as: let x := 0 in (m (l x)). This term is well-typed because x has the value 0 in
(m (l x)), and thus let x := 0 in (m (l x)) is going to be typed as (m (l 0)).

The unfolding of definitions before typing is not sufficient when we admit meta-variables. The reason is
that substitutions and meta-variables may appear in normal forms. In this case, we cannot avoid having a
(ClosΠ)’s like rule. The approach we have taken is to consider explicit substitutions different from the let-in
mechanism. The explicit substitution technique allows substitutions to be part of the formal language by
means of special constructors and reduction rules. In this way, the term (m (l x))[x := 0] is ill-typed, just
as the term (λx:nat.(m (l x)) 0) is. The let-in structure has a more complex behavior. It provides a
mechanism for definitions in the language. Formal presentations of type systems with definitions are given
in [41, 3].

Some type theories extended with explicit substitutions have been proposed: The Simple Type Theory
[1, 27, 8, 21, 6], the Second-Order Type Theory [1], the Martin Löf Type Theory [43], the Calculus of
Constructions [39], and Pure Type Systems [2]. Except for the simply-typed version of λσ in [8], neither of
them considers terms with meta-variables as first-class objects.

Our main contribution is the complete meta-theoretical development of a dependent-type system with
explicit substitutions which handles explicitly open expressions (i.e., expressions with meta-variables). The
system enjoys the usual typing properties: type uniqueness, subject reduction, weak normalization, and
confluence. Applications of such a calculus are frameworks for the representation of incomplete proofs, and
first-order settings for higher-order unification problems.

In this paper, we have presented the λΠ-theory. Although full polymorphism or inductive definitions are
not considered in this theory, the main difficulties, due to the mutual dependence between terms and types,
already arise in λΠ. Other theories, such as the Calculus of Constructions, can be considered as the logical
framework for λΠL [34]. Note also, that λΠL does not handle the η-rule. Extensional versions of explicit
substitution calculi have been studied for ground terms [24]. However, work is necessary to understand the
interaction with dependent types and meta-variables.
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Göteborg University, Jan. 1995.

[30] P. A. Mellies, Typed lambda-calculi with explicit substitutions may not terminate, LNCS, 902 (1995),
pp. 328–338.
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[45] H. Yokouchi and T. Hikita, A rewriting system for categorical combinators with multiple arguments,

SIAM Journal on Computing, 19 (1990), pp. 78–97.
[46] H. Zantema, Termination of term rewriting by semantic labelling, Fundamenta Informaticae, 24 (1995),

pp. 89–105.
[47] , Termination of φ and Πφ by semantic labeling, personal communication, 1996.

26


