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DIRECT-NUMERICAL AND LARGE-EDDY SIMULATIONS OF A NON-EQUILIBRIUM

TURBULENT KOLMOGOROV FLOW�

S.L. WOODRUFFy, J.V. SHEBALINz, AND M.Y. HUSSAINIx

Abstract. A non-equilibrium form of turbulent Kolmogorov 
ow is set up by making an instantaneous

change in the amplitude of the spatially-periodic forcing. It is found that the response of the 
ow to

this instantaneous change becomes more dramatic as the wavenumber of the forcing is increased, and, at the

same time, that the faithfulness with which the large-eddy-simulation results agree with the direct-numerical

results decreases.
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1. Introduction. How, and by how much, one must modify present steady-state sub-grid models in

order to perform large-eddy simulations of non-equilibrium turbulent 
ows is very much an open question.

The ever-growing computational resources at our disposal provide the opportunity for applying large-eddy

simulations to non-equilibrium as well as other increasingly-complex 
ows, but there is no guarantee that the

sub-grid models currently in use will be up to the task of adequately representing the e�ect of the sub-grid

scales on the resolved 
ow. In the case of the non-equilibrium 
ows of interest here, for which the statistical

state of the turbulence varies with time, there is clearly a failure of a steady-state model | one which bases

its prediction of the Reynolds stress on the current, instantaneous, resolved velocity �eld | to re
ect the

�nite time lag inherent in the reaction of the actual sub-grid dynamics to temporal changes in the resolved

�eld. The extent to which this e�ect actually a�ects the large-eddy simulation results is another question,

and clearly one strongly in
uenced by the rapidity of the resolved-�eld variations. The present investigation

seeks to answer this question for one simple 
ow.

The choice of a turbulent 
ow to use in the study of this question is not a trivial one, given our desire

to work with a 
ow whose computation does not require too much computer time, whose numerical analysis

does not require especially-sophisticated numerical techniques and whose physics bears the closeset possible

relationship to turbulent 
ows of real technological interest. Homogeneous, isotropic, turbulence is the

simplest choice, but the applicability of results for this 
ow to real 
ows is problematic, at best. Homogeneous

shear 
ow is a possibility, but the additional complexity of the numerical techniques required to deal with

the cumulative shearing (i.e., regridding, [8, 2, 9, 11]) make it an unappealing one. Simulations of even the

simplest of those turbulent 
ows realizable in the laboratory, such as channel 
ow, are both computationally

intensive and require special attention near walls, both to the numerics and to the modelling.

Shebalin and Woodru� [14] have advocated the study of turbulent Kolmogorov 
ow as a way to learn

about turbulent shear 
ows without the excessive numerical di�culties and computational expense of the


ows referred to above. This 
ow, in which 
uid in an in�nite domain is driven by a periodic body force,
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was proposed by Kolmogorov as a model problem for the study of stability issues, and a signi�cant body

of literature addresses the stability aspects of this 
ow (see, for example, [16], and the references therein).

Additionally, there has been some work in the numerical simulation of turbulent Kolmogorov 
ow in two

dimensions [13, 12] and in three dimensions [14].

In addition to the computational and numerical advantages a�orded by the Kolmogorov 
ow, it has

a further advantage for the testing of turbulence models in that there is the potential for allowing many

di�erent turbulent 
ow features to be studied, due to the freedom to choose the body force as one pleases.

In the present work, use is made of this freedom to investigate the response of the 
ow to instantaneous

changes in the amplitude of the forcing at di�erent shear magnitudes.

A number of approaches have been proposed for the development of time-dependent models for non-

equilibrium 
ows. Yakhot and Smith [15] presented a time-dependent eddy viscosity for k�� models; a more

general expression of the idea behind this model provided the basis for the stress-relaxation model of Yakhot

et al. [18]. The two-scale Direct Interaction Approximation approach to the development of turbulence

models proposed by Yoshizawa [20] was employed by Yoshizawa and Nisizima [21] to derive a time-dependent

model; Rubinstein [10] also used Kraichnan's DIA [4], to motivate time-evolution equations for the Reynolds

stresses. The general approach to developing turbulence models examined in [17], based on the fundamental

idea behind Yoshizawa's work, was used to derive a history-integral model for non-equilibrium turbulent


ows, independently of any time-scale-separation assumptions. Two simpli�ed versions of this model were

tested numerically in large-eddy simulations of plane-channel 
ow by Nwafor and Woodru� [6]; they found

that the large-eddy simulations with the Smagorinsky model did in fact fail to reproduce the DNS results,

and the new models did improve the results in several respects.

Reported in this paper are results of a comparison test for Kolmogorov 
ow similar to that of Nwafor

and Woodru�. Simulations for Kolmogorov 
ows with spatially-sinusoidal forcing at three di�erent wave

numbers are set up and run until a steady state is reached; then the forcing amplitude is doubled and the

relaxation of the 
ow to a new steady state is examined. These three non-equilibrium turbulent Kolmogorov


ows were solved by direct numerical simulation and large-eddy simulation with the plane-averaged history-

integral model (a simpli�ed model proposed in [6]), with the dynamic sug-grid scale model [7] and with the

Smagorinsky model using two values of the Smagorinsky constant: one consistent with the predictions of the

history-integral model (Ch) and the other consistent with the predictions of the dynamic model (Cd). (The

latter is di�erent for the three values of forcing wave number, the former is not.)

In contrast to the �ndings of [6], it was found that there was little di�erence between the results of the

LES with the new model and those of the LES with the Smagorinsky model employing Ch. What di�erences

there were increased as the wavenumber of the forcing increased. The LES reproduced the DNS results fairly

well at the lowest wave-number forcing, but became progressively worse as the wave number of the forcing

increased. The dynamic model was an improvement over the Smagorinsky model with Ch and the history-

integral model at the higher-wave-number forcings, but it, too, exhibited discrepancies when compared with

the DNS. The Smagorinsky model with Cd did nearly as well as the dynamic model, indicating that the

primary advantage of the dynamic model in this application is its automatic initial determination of the

Smagorinsky constant; once the constant has been determined near the beginning of the simulation, there

seems to be little advantage gained from the dynamical model's ability to further modify the constant in

time or space.

The speci�cs of the physical problem to be solved are given in the following section. Section 3 gives

information about the models employed in the large-eddy simulations and Section 4 is concerned with
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numerical details, in particular, details of the implementation of the new model. The results are described

in Section 5 and the implications of these results for the modelling of non-equilibrium turbulent 
ows are

discussed in Section 6.

2. Description of the Flow and Its Properties. The Kolmogorov 
ow to be considered in this work

is contained within a periodic box whose sides are of length 2�. Energy is input by an external, arti�cial,

deterministic, body force which is introduced into the equations on the right-hand side. We use a Cartesian

coordinate system, with axes x, y and z.

The external forces to be used throughout this work involve a single non-zero component in the x direction

which depends only on the z coordinate. As a result, the 
ows to be examined are parallel, as are Couette

and Poiseuille 
ow, in the sense that the mean motion is in one direction and varies in a perpendicular

direction. The 
ow corresponds to Kolmogorov 
ow if the non-zero component of the force is sinusoidal in z

and we shall here consider only sinusoidal forcing at various wavenumbers. We are thus interested in solving

the Navier-Stokes equations with a force of the form f = kfv
2
0 sin kfz {̂ inserted on the right-hand side. The

characteristic velocity v0 and the forcing wavenumber kf may be used to nondimensionalize the equations

of motion:

Du

Dt
= �rp+

1

Re
r2u+ sin z {̂;(2.1)

the Reynolds number Re is v0=kf�.

In addition to the parallel nature of the 
ow, we may conclude from the fact that nothing depends on

the y coordinate that the 
ow properties must not vary under an inversion of the y coordinate (y ! �y;

the origin is at the midplane of the box.) This implies, for example, that all Reynolds averages involving

the y component of velocity must be zero. The only nonzero o�-diagonal term of the Reynolds stress tensor

is thus the < uw > term, and consequently this term is the one which produces energy for the turbulent

velocity �eld.

3. Description of the Models. In this section, we brie
y review the reasoning behind the Smagorin-

sky model, examine the issue of whether a time-dependent model is necessary for large-eddy simulations of

non-equilibrium turbulent 
ows, and review the derivations of the history-integral model [5] and the plane-

averaged history-integral model [6], a simpli�cation which allows us to incorporate the history integral into

a calculation in a computationally-feasible manner. Finally, we describe the application of the dynamic

sub-grid scale model to this 
ow.

The well-known Smagorinsky model may be motivated by an appeal to the isotropy of the modeled

subgrid scales, which leads to the form

Rij =
2

3
k�ij + �eSij ;(3.1)

k being the kinetic energy of the subgrid scales, �e the turbulent eddy viscosity and Sij the rate-of-strain

tensor of the resolved velocity �eld Ui:

Sij =
1

2

�
@Ui

@xj
+

@Uj

@xi

�
:(3.2)

One then has to determine the form of the eddy viscosity, �e, and dimensional analysis tells us that once

we have chosen to assume that the modeled subgrid scales depend only on the dissipation rate (following

Kolmogorov's analysis [3]) the eddy viscosity must have the form �e = const. �2=3. The dissipation rate for

the subgrid scales is determined by assuming that the energy balance for the subgrid scales is dominated by
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the local production RijSij and the local dissipation �. If this assumption is valid, then the kinetic energy

equation for the subgrid scales reduces to a statement of the equality of the local production and the local

dissipation. This relation may be used along with the Smagorinsky model itself (3.1) to eliminate �, giving

an expression in terms of the rate-of-strain tensor only:

Rij =
2

3
k�ij + (Cs�)

2(SmnSmn)
1=2Sij(3.3)

Here � is a length scale characterizing the grid size employed in the calculation and the constant is determined

empirically by �tting with experiments or direct-numerical simulation data; its value is typically taken to be

0:1.

The crucial point about the Smagorinsky model for the present discussion is that it is based on scale-

separation assumptions, both in space and in time. Gradient-transport models in general result from scale-

separation assumptions: for example, the Newtonian-
uid viscous-stress relation is derived in the Chapman-

Enskog formulation by taking advantage of the large separation in scales between the continuous 
uid motion

and the discrete molecular motion. Formal derivations of the Smagorinsky model also employ such a scale

assumption (see, for example, [20, 17]).

Since there is in turbulence no spectral gap | a range of scales between the largest and the smallest in

which the energy is neglegible | the scale-separation assumption is fundamentally not valid and we have to

ask whether it should be removed. Certainly the success of the Smagorinsky model in simulations of many

di�erent types of 
ows suggests that it at least provides a useful formula, independently of the invalidity

of the scale-separation assumption. The question of concern is really whether or not there are 
ows which

are simulated better by a model which does not embody this scale separation assumption then they are

simulated by the Smagorinsky model.

A model which removes the temporal scale-separation assumption has been derived by Woodru� [17],

and has been applied to the non-equilibrium turbulent 
ow problem of accelerated plane-channel 
ow by

Nwafor and Woodru� [6]. There it was found that there are in fact signi�cant features of that 
ow which

compare better with direct numerical simulatioins when simulated with the new model than when simulated

with the Smagorinsky mdoel. Thus, there is some evidence that, from a purely practical standpoint, there

are situations for which a time-dependent model does improve the results of large-eddy simulations of non-

equilibrium turbulent 
ows. In the present paper, we examine whether this is true for Kolmogorov 
ow.

The time-dependent model used in the present investigation was derived in [17], by employing a fairly

general technique for the derivation of turbulence models using ideas from the analytical theory of turbulence.

The fundamental idea behind the approach goes back to Yoshizawa [20] and even further to Crow [1] and is a

sort of rheological approach to turbulence wherein one separates the motion into the modeled portion and the

resolved portion and treats those portions as distinct entities. A solution is derived for the modeled portion

which involves functions characterizing the resolved portion; this solution may be used to give expressions for

the modeled contributions to the resolved portions of the 
ow. Speci�cally, for the modelling of turbulence

we divide the 
ow into the resolved portion and the subgrid, modeled, portion and derive a perturbative

solution for the subgrid velocities, substitute that perturbative solution into the de�nition of the Reynolds

stress and so derive an expression for the Reynolds stress which may be inserted into the Reynolds-averaged

equations (or, in the case of large-eddy simulations, the �ltered equations). The particular approximate

solution for the subgrid velocities used in [17] was based on the assumption that if the commonly held

assumptions about the universality of turbulence at the small scales are valid, we can approximate the sub-

grid scale velocities in terms of a dominant part which is the contribution to the velocity from the universal
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component and depends (according to the assumption of universality) only on a small number of descriptors

of the resolved 
ow, such as the dissipation rate. Corrections to this dominant term arise from more speci�c

details of the resolved 
ow, such as the rate-of-strain tensor. Thus, we have what is essentially an expansion

in the magnitude of the rate of strain. The terms in this expansion may in principle be computed by any

means that is available and convenient, using the theory of turbulence, or even using numerical or laboratory

experiments. The models developed in the examples of Woodru� [17] were derived on the basis of turbulence

approximations derivable from the Direct Interaction Aproximation of Kraichnan [4]. The one employed in

the present numerical calculations, as well as the calculations of Nwafor and Woodru� [6], is based on the

�-expansion renormalization-group results of Yakhot and Orszag [19]. In fact, any speci�c theory used to

make a computation along these lines would lead to a history-integral model of the type discussed below,

the only di�erences would be in the details of the kernal function and it is likely that these di�erences would

not a�ect the results of a tubulence model calculation drastically. The reader is referred to [17] for details

of this derivation.

It is helpful in understanding the assumptions underlying this new model to sketch a more intuitive

derivation. In this derivation, we make several assumptions and then ask what is the most general form an

expression for the Reynolds stress may take consistent with those assumptions. The assumptions are that the

Reynolds stress is linear in the strain rate, that the model is isotropic and and that the model is, spatially, a

gradient transport model. The consequences of these three assumptions are that the proposed model must

be identical in form to the Smagorinsky model, as far as the spatial dependence goes. The di�erence lies in

the temporal dependence, which may be represented without loss of generality as a linear integral operator:

Rij(t) =
2

3
k�ij +

Z t

0

K(t; s) Sij(s) ds;(3.4)

for clarity, we have shown explicitly only the time dependence of Rij and Sij .

The kernal K(t; s) is determined by the analysis of [17] in terms of the response function and correlation

function of the modeled subgrid velocity �eld and the expressions derived there will be used in the calculations

to follow. It is, however, possible to argue from dimensional considerations that the kernal has the form

K(t; s) = ��2c k�2c F

�
t� s

�c

�
(3.5)

where kc is the wavenumber of the smallest resolved eddies in the numerical calculation and �c is the

corresponding eddy turn-over time. It is natural to expect that more recent history is more important than

less recent history, so the non-dimensional function F should be a monotonically decreasing function of its

argument. The analysis of [17] gives

F (x) = x

Z
1

x

dz � z�2e�2z = e�2x + 2xEi(�2x);(3.6)

and this expression will be used in the present calculations.

If the history-integral model were simpli�ed on the basis of a scale-separation assumption in time, it

would reduce to the Smagorinsky model as a sort of steady-state limit. (That is, the rate-of-strain tensor

is assumed to be essentially constant as far as the evaluation of the history-integral is concerned.) This

calculation was performed in [17], where the predicted value of the Smagorinsky constant was found to be

quite close to the value traditionally used in channel 
ows.

The computations required to actually compute this history-integral expression for the Reynolds stress

in the course of a numerical calculation would be quite extensive, and certainly prohibitive for a practical
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calculation. For this reason, we choose to take advantage of the homogeneity of the Kolmogorov 
ow under

consideration here in the x and y directions to consider the possibility that most of the history e�ects may

be captured by considering only the time history of the rate-of-strain tensor averaged over x � y planes.

This approach was also employed in the plane-channel calculations of Nwafor and Woodru� [6]. Such a

plane-averaged approach may not be implemented rigorously, because it is not possible to rewrite equation

(3.4) in terms of only plane-averaged quantities without breaking up some averages of products of quantities

into products of averages. Once this is agreed to, however, and once the basic Smagorinsky model is added

and subtracted from the history-integral model, the plane-averaged form of the history-integral model may

be written

Rij �
2

3
k�ij � �(t)Sij +

�Z t

0

dt0 Kp(t� t0) < Sij(t
0) >p � < �(t) >p< Sij >p

�
(3.7)

(The notation < � >p indicates plane averaging and the subscript on the kernal indicates that the kernal

is computed using the plane-averaged dissipation rate.) This expression has been speci�cally constructed

so as to be the basic Smagorinsky model plus a history-integral correction term, to aid in the numerical

implementation of the model. The implementation will be sketched in the following section.

The dynamic sub-grid scale model is implemented following [7]. A test �lter is de�ned which �lters the

resolved velocity �eld such that the smallest resolved length and time scales are eliminated. One then seeks a

value for the Smagorinsky constant which yields the same values for the modeled Reynolds stress from both

the resolved velocity �eld and the test-�ltered velocity �eld. Given that there are six independent components

of the stress tensor and but one Smagorinsky constant, this requirement leads to an overdetermined system

of equations; of the several approaches to �nding the \best" value for the Smagorinsky constant under these

constraints [7], that proposed by Lilly [5], where the square of the residual error is minimized, is employed

here. Additionally, as is common in this sort of parallel-
ow shear-layer problem, the computation of the

Smagorinsky model is performed with quantities averaged over x � y planes in order to ensure numerical

stability.

4. Numerical Considerations. The DNS code used in the present work is that of Shebalin and

Woodru� [14]. The code is spectral with Fourier modes in all three spatial directions and incorporates

the viscous term implicitly in time-stepping based on a predictor-corrector algorithm. The nonlinear terms

are handled by fast-Fourier transforming back into physical space, multiplying and then transforming into

Fourier space. It was found that a resolution of 643 was su�cient for an accurately-resolved solution for the

parameters employed in this study.

In order to perform large-eddy simulations of the Kolmogorov 
ow, subroutines were added to the DNS

code which compute the Reynolds stress based on the Smagorinsky model, the dynamic model and the

plane-averaged history integral model. For the runs described here, the original time-stepping of the DNS

code was retained, where only the (molecular) viscous terms are treated implicitly; the entire Reynolds stress

term is treated explicitly. Some experimentation was done with a time-stepping algorithm incorporating the

eddy viscosity averaged over x � y planes into the implicit part of the computation, but the second-order

di�erences employed in the z direction in this altered algorithm were found to degrade the accuracy of the

calculation over long times at higher values of shear and this algorithm was abandoned.

The Reynolds stress for the Smagorinsky model is computed by calculating the rate-of-strain tensor for

the resolved velocity �eld and then computing the Smagorinsky approximation for the stress according to

(3.3). The dynamic model is computed similarly, with the addition of the computation of the Smagorinsky

constant itself.
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Implementation of the plane-averaged history integral model is of course more complex, since it is

necessary to store the history of the rate-of-strain tensor and compute its integral. As described in Section

3, we implement the plane-averaged history integral model by inserting it as a correction factor to the

Smagorinsky model so the routines described above for the Smagorinsky model remain intact. In addition,

we add routines to calculate the plane-averaged rate of strain tensor, the kernal of the history integral and the

history integral itself. The dissipation for use in the computation of the history integral kernal is computed

according to the local production | local dissipation equivalence discussed in Section 3.

5. Results. We present results for the response of the Kolmogorov 
ow to an instantaneous change in

the amplitude of the forcing at three di�erent wave numbers. In each case, four runs were made: a direct

numerical simulation, a large-eddy simulation with the Smagorinsky model with a value for the Smagorinsky

constant consistent with that predicted by the history-integral model (Ch), a large-eddy simulation with

the plane-averaged history-integral model, a large-eddy simulation with the dynamic model and, �nally, a

large-eddy simulation with the Smagorinsky model employing a value for the constant (Cd) consistent with

that predicted by the dynamic model for each case. The direct-numerical simulations were performed with

a resolution of 643 and the large-eddy simulations were performed with a resolution of 323.

The reason for two separate Smagorinsky-model simulations at each of the forcing wave numbers is our

desire to make the truest possible comparison between the Smagorinsky model and the two more sophisticated

models considered. Thus, the history-integral-model simulation is most appropriately compared with a

Smagorinsky-model simulation performed with a Smagorinsky constant equal to that attained by the history-

integral model in the steady-state limit. Similarly, in view of the circumstance that the Smagorinsky constant

predicted by the dynamic model varies little in time, it is most appropriate to compare the dynamic-model

predictions with those of the Smagorinsky model using a value for the Smagorinsky constant �tted as best

one can to the time-history of the Smagorinsky constant generated by the dynamic model. This ambivalence

in the Smagorinsky model, with its arbitrary constant, is, of course, one of its more signi�cant weaknesses,

and the fact cannot be ignored that it was by using the results of the dynamic-model calculation that an

appropriate value of the Smagorinsky model was determined without the expensive trial-and-error searching

of parameter space that would otherwise be necessary.

In attempting to compare turbulence simulations of di�erent types with di�erent resolutions, it is nec-

essary to choose a method of making all simulations start at the same state. This initial state should not be

too far in advance of the step change in forcing amplitude whose response we want to look at, given the in-

evitable deviations of the large-eddy simulations from the direct-numerical simulations even for steady-state

turbulence, and yet, if we take a 323 velocity �eld from the large-eddy simulations and use it to start the

643 direct numerical simulations (or vice versa), there is bound to be some period of adjustment while the

velocity �eld orients itself to the new resolution. Both starting the DNS with LES data and starting the

LES with DNS data was tried in the course of this work and it was found that the DNS started with LES

data continued the steady state with almost no discernible adjustment period, but the LES started with the

DNS data experienced an almost 20% drop in turbulent kinetic energy as soon as the simulation began. As

a result of these tests, all comparisons reported in this paper were made by attaining a steady state with

the LES code and using the velocity �eld from this run as the initial state for both LES and DNS runs.

The data to be examined in comparing the runs are global quantities of the 
ow: the kinetic energy, the

dissipation (resolved and subgrid, in the case of the large-eddy simulations) and the work done by the force

on the 
uid. The three elements of the overall energy balance are the kinetic energy, k = 1=2
R
box(u

2+ v2+
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Fig. 5.1. Case 1: Energy k versus time. DNS, thin solid line; Smagorinsky LES with history-integral-model constant,

dashed line; history-integral LES, dash-dot line; Smagorinsky LES with constant generated by dynamic model, thick solid line;

dynamic-model LES, dotted line.
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Fig. 5.2. Case 1: Work done by external force versus time. Line types as in Figure 5.1.

w2)dx, the dissipation, �, and the work done by the force, wf = Re�1k3f
R 2�
0

< u >p sin(kfz) dz:

dk

dt
= wf � �:(5.1)

In the case of the large-eddy simulations, both the dissipation of the resolved-scale motion and the dissipation

of the sub-grid scales (computed in the course of computing the modeled Reynolds stresses) will be examined.

In Case 1, the forcing wave number is kf = 1 and the initial turbulent state corresponds to Re = 28:2.

Doubling the amplitude corresponded to changing the Reynolds number to R = 39:9, and it may be seen

from Figures 5.1{5.4 that the time histories of the observed global quantities are a�ected fairly gradually by
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Fig. 5.3. Case 1: Super-grid dissipation versus time. Line types as in Figure 5.1.
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Fig. 5.4. Case 1: Sub-grid dissipation versus time. Line types as in Figure 5.1.

the abrupt change in forcing. (The exception is the work done, which jumps simply because it is computed

directly from the force.) All the LES runs follow the DNS results fairly closely until t � 6 or 7, after which

the runs with the dynamic model and with the Smagorinsky model with the constant suggested by the

dynamic-model run continue to represent the DNS results tolerably well, but the history-integral model and

the Smagorinsky run with Ch deviate signi�cantly from the DNS results.

In Case 2, the forcing wave number is kf = 4 and the initial and �nal Reynolds numbers are Re = 28:0

and Re = 39:6. In this case, the response of the measured global quantities (Figures 5.5{5.8) is more abrupt:

there is a rapid rise in most of the plotted quantities when the forcing is changed. We begin to see more

serious discrepancies between the LES and DNS runs, and the discrepancies appear earlier. For example,
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Fig. 5.5. Case 2: Energy k versus time. Line types as in Figure 5.1.
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Fig. 5.6. Case 2: Work done by external force versus time. Line types as in Figure 5.1.

the history-integral-model run and the associated Smagorinsky-model run fail to attain the proper level of

kinetic energy very early in the run. The dynamic-model run and its associated Smagorinsky run do correctly

predict the initial peak in the kinetic energy, but begin to deviate from the DNS results fairly soon afterward.

The other plotted quantities show similar deviations.

Case 3 is for a wave number kf = 6. The initial and �nal Reynolds numbers are Re = 28:1 and Re = 39:7.

Figures 5.9{5.12 show that the deviations noted in Case 2 become even more pronounced in this case: the

history-integral-model run and its associated Smagorinsky run underestimate the kinetic energy throughout

the run; the dynamic-model run and its associated Smagorinsky-model run overestimate the kinetic energy

for most of the run, overshooting the initial peak signi�cantly, as well.
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Fig. 5.7. Case 2: Super-grid dissipation versus time. Line types as in Figure 5.1.
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Fig. 5.8. Case 2: Sub-grid dissipation versus time. Line types as in Figure 5.1.

These results indicate strongly that the plane-averaged history-integral model provides no signi�cant

improvement over the Smagorinsky model for this problem. The dynamic model does predict the time his-

tories of global quantities studied here signi�cantly better than the history-integral model and its associated

Smagorinsky model, but signi�cant deviations from the direct-numerical simulations are still present, par-

ticularly for the higher-wavenumber forcing. However, the Smagorinsky-model run whose constant was �xed

at the dynamic-model level did nearly as well; this would seem to indicate that the strength of the dynamic

model for this problem is its ability to automatically choose a good value for the Smagorinsky constant,

rather than its ability to accomodate spatial and temporal variations in that \constant."
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Fig. 5.9. Case 3: Energy k versus time. Line types as in Figure 5.1.

50 100
t

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

w
o

rk
d

o
n

e

Fig. 5.10. Case 3: Work done by external force versus time. Line types as in Figure 5.1.

6. Conclusion. The purpose of this �nal section is to make some progress towards understanding

the results of the previous section and their consequences for the large-eddy simulation of non-equilibrium

turbulent 
ows. Contrasts with the analogous investigation of Nwafor and Woodru� [6] for accelerated plane

channel 
ow will also be discussed.

We are concerned with two basic questions. The more fundamental question is the extent to which, and

under what conditions, a steady-state model like the Smagorinsky model breaks down for non-equilibrium

turbulent 
ows. The secondary question is whether or not the time-dependent history-integral model pro-

posed in [6] represents any improvement over the Smagorinsky model.

Considering these questions in turn, it is clear from the results of the previous section that the agreement
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Fig. 5.11. Case 3: Super-grid dissipation versus time. Line types as in Figure 5.1.
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Fig. 5.12. Case 3: Sub-grid dissipation versus time. Line types as in Figure 5.1.

between LES and DNS deteriorates as the wavenumber of the forcing increases. It also seems fair to assert

that even in the case of the best agreement between LES and DNS, that of Case 1, with kf = 1, quantities

based on the mean velocities, such as the bulk velocities, the work and the overall kinetic energy, are

simulated more accurately by the LES than are quantities determined by the 
uctuating velocity �eld, such

as the dissipation. The present results thus suggest that the steady-state Smagorinsky model becomes less

satisfactory for simulating non-equilibrium turbulent 
ows as the gradients in the 
ow become larger (a

criterion we shall attempt to make more precise below) and as one's interests are concentrated on higher-

order moments of the 
ow.

It is also clear that the plane-averaged history-integral model exhibits no improvement over the Smagorin-

13



Table 6.1

Summary of Cases.

Case kf Initial Re Final Re kuk Re�

1 1 28.2 39.9 1.00 2.2

2 4 28.0 39.6 0.85 15

3 6 28.1 39.7 0.85 34

Ref. [12] * * * * 43

sky model in the present investigation. In those cases where the results of the LES with the two models do

deviate, the deviation is on the order of the noise in the signal and is often in the wrong direction, anyway.

We consequently conclude that the discrepancies between the DNS and the Smagorinsky LES observed in

the present calculations are not the result of history e�ects, at least insofar as history e�ects are represented

by the plane-averaged history-integral model.

This second conclusion is in marked contrast to that indicated by the results of the accelerated plane

channel 
ow simulations of Nwafor and Woodru� [6]. There, too, LES with the Smagorinsky and the

plane-averaged history-integral models were compared with DNS for an impulsively-disturbed 
ow. Time-

histories of global quantities contributing to the energy balance of the 
ow were examined (production and

dissipation), as well as the time history of the wall shear stress. The simulations showed that the history-

integral model signi�cantly improved the LES predictions for the production and the dissipation in the initial

stage of the response to the disturbance and qualitatively improved some aspects of the wall shear stress

predictions.

In light of all this, it would be desirable to characterize as precisely as possible the di�erences between

the three cases of the present investigation which lead to the increasing discrepancy between the LES and

the DNS, as well as the di�erences between the present 
ow and the plane channel 
ow of [6] which cause

the simulations of one to be improved by the history-integral model but not those of the other.

Other than the increasing discrepancy between the LES and DNS as the wave number of the forcing

increases, the most obvious di�erence between the results of the three cases is the relative magnitude of the

resolved and subgrid portions of the dissipation. These two quantities may be regarded as characteristic of

the magnitudes of the viscous and Reynolds-stress terms in the �ltered-averaged equations and so their ratio

is likely to be an important non-dimensional parameter describing the interplay between the resolved and

sub-grid dynamics. The ratio of local values of the sub-grid to the resolved dissipation is

�sg
�R

=
(cs�)

2
(SmnSmn)

1=2
SijSij

�SijSij
=

c2s�(�Smn�Smn)
1=2

�
(6.1)

A characteristic value of this ratio may be formed with a characteristic strain rate S0,

c2s
� ��S0

�
:(6.2)

It may clearly be viewed as a Reynolds number based on the grid size � and the velocity �S0. This last

velocity scale may be regarded as a characteristic velocity di�erence induced by the shear for neighboring

points on the grid. We will consequently de�ne Re� = �2S0=� and examine the success of this parameter in

predicting the behavior of the simulations. (The Smagorinsky constant cs has been dropped; it is irrelevant

to our purpose of comparing the relative magnitudes between cases.)

Let us assume that the magnitude of the shear in the 
ows studied here may be characterized by the

magnitude of the shear of the (plane-averaged) mean-velocity pro�le. Then we may take S0 = kfk�uk,
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where k�uk is the mean peak value of the x-component of velocity in the initial turbulent state, and so �nd

that in the three cases of the present investigation Re� has, just before the instantaneous change in forcing

amplitude, the values 2:2, 15 and 34, respectively. (See Table 6.1) Correlating these values with the results

described in the previous section, we see that smaller (O(1)) values of Re� seem to correspond to fairly good

agreement between the LES and DNS, no measurable di�erence between the LES's with the history-integral

model and with the Smagorinsky model with Ch and much more dissipation in the resolved scales than in

the sub-grid scales. Intermediate values of Re� on the order of a dozen or so seem to correspond to larger

discrepancies between LES and DNS and the resolved dissipation exceeds the sub-grid dissipation by an order

of magnitude. Finally, values of Re� on the order of 30 or 40 seem to correspond to large deviations between

LES and DNS and to a sub-grid dissipation that is commensurate with the dissipation of the resolved scales.

An additional data point comes from the channel-
ow computations of Nwafor and Woodru� [6]; using

the shear at the wall as the characteristic value of the shear, one �nds that Re� at the initial state has the

value 43. The discrepancy between the DNS and the Smagorinsky LES, as well as the di�erences between the

Smagorinsky and plane-averaged history-integral model LES's, are consistent with the conclusions drawn in

the previous paragraph for simulations with moderate values of Re�. The di�erence between these channel-


ow results and the results of the present study, of course, is that the new model improved the LES results

in the channel-
ow simulations. No such improvement occured in the present investigation.

The Reynolds number Re� thus seems to provide some indication of whether a large-eddy simulation

using a steady-state model like the Smagorinsky model will faithfully reproduce at least the global quantities

in a non-equilibrium turbulent 
ow. It does not, however, help to explain when the history-integral model

employed here will o�er an improvement for an LES calculation.
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