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MINIMIZATION OF THE TRUNCATION ERROR BY GRID ADAPTATION

NAIL K. YAMALEEV�

Abstract. A new grid adaptation strategy, which minimizes the truncation error of a pth-order �nite

di�erence approximation, is proposed. The main idea of the method is based on the observation that the

global truncation error associated with discretization on nonuniform meshes can be minimized if the interior

grid points are redistributed in an optimal sequence. The method does not explicitly require the truncation

error estimate and at the same time, it allows one to increase the design order of approximation by one

globally, so that the same �nite di�erence operator reveals superconvergence properties on the optimal grid.

Another very important characteristic of the method is that if the di�erential operator and the metric

coe�cients are evaluated identically by some hybrid approximation the single optimal grid generator can

be employed in the entire computational domain independently of points where the hybrid discretization

switches from one approximation to another. Generalization of the present method to multiple dimensions

is presented. Numerical calculations of several one-dimensional and one two-dimensional test examples

demonstrate the performance of the method and corroborate the theoretical results.

Key words. truncation error, grid adaptation criterion, �nite di�erence approximation, error equidis-

tribution
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1. Introduction. Grid adaptation has now become widespread for solving multi-dimensional partial

di�erential equations in arbitrary-shaped domains. One of the most important problems associated with the

adaptive grid generation is an essential e�ect of the grid point distribution on error in the numerical solution.

Until the present time little attention has been paid to the fact that the concentration of grid points in regions

which most in
uence the accuracy of the numerical solution may at the same time introduce additional error

due to the grid non-uniformity [1]{[3].

There are two basic strategies of the grid adaptation, namely, grid re�nement and grid redistribution

techniques. In the �rst approach grid nodes are added to locally enrich the grid to achieve higher accuracy.

In the second approach the number of grid nodes is �xed and the idea is to adjust the position of grid points

to improve the numerical solution accuracy. In spite of signi�cant distinctions, for both methods reliable

and e�cient grid adaptation criteria are needed.

A number of grid adaptation criteria based on the equidistribution principle have been developed. As

has been shown in [4], the grid point distribution is asymptotically optimal if some error measure is equally

distributed over the �eld. One of the widely-used approaches is to redistribute grid points in accordance

with the arc length and the local curvature of the solution curve [5], [6]. This kind of clustering is intended

to reduce the error in the vicinity of strong gradients and local extrema of the numerical solution, but it

does not necessarily guarantee improvement in the accuracy where the solution is smooth.

Another class of methods is based on equidistribution or minimization of the local truncation error or

its estimate [7]{[10]. In [7] the error estimate obtained by using a �nite di�erence approximation of the
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leading truncation error term is equidistributed by the grid point redistribution. Klopfer and McRae [8]

solve a one-dimensional shock-tube problem using the explicit predictor-corrector scheme of MacCormack

on a grid dynamically adapted to the solution. The error estimate is the leading truncation error term

of the di�erential equations transformed to the computational coordinates. The metric coe�cient is taken

as a linear function of the smoothed error measure. For solving a second-order two-point boundary value

problem with a centered second-order �nite di�erence scheme Denny and Landis [9] suggest to determine

the optimal coordinate mapping so that the entire truncation error vanishes at all grid points. However,

this grid generator concentrates grid nodes where the solution is smooth rather than near steep gradients.

Thus, the error reduction occurs in regions which do not practically a�ect the numerical solution accuracy.

An alternative technique is employed in [10] where the optimal coordinate transformation is constructed as

the solution of a constrained parameter optimization problem minimizing a measure of the truncation error.

The error measure used is a �nite di�erence evaluation of the third derivative of the numerical solution

calculated in the computational space. The main drawback of all the methods mentioned above is the fact

that the error estimates do not properly take into account that part of the truncation error which is caused

by the nonuniform grid spacing. Furthermore, it is not clear how to extend these methods to more general

equations and discretizations as well as to multiple dimensions.

A grid adaptation procedure equidistributing an error estimate of the numerical solution has successfully

been used in [11] to reduce simulation error in such integral quantities as the lift or drag. This error

estimate is directly related to the local residual errors of the primal and adjoint solutions of the Euler

equations. As it follows from the numerical results presented in [11], the order of accuracy of the integral

outputs increases by one if the proposed adaptation strategy is employed. Although, this approach provides

signi�cant improvement in the accuracy of the functional, the error estimation procedure is quite expensive

in terms of computational time since except for the solution of the primal problem it is needed to solve the

adjoint Euler equations that doubles the computational e�orts.

The formulation of an adaptive mesh redistribution algorithm for boundary value problems in one

dimension has been presented in [12]. The analysis uses the error minimization to produce an optimal

piecewise-polynomial interpolant in a given norm that leads to the development of a family of grid adaptation

criteria. Despite the fact that the present approach works well in one dimension this error equidistribution

analysis can not be directly extended to multiple dimensions [13].

In [14] and [15] the �nite element residual is applied to provide a criterion for determining where a

�nite element mesh requires re�nement. As has been noted in [16] for hyperbolic problems with non-smooth

solutions the �nite element residual may be an ine�ective error estimator since for such problems the residual

measured in the L2 norm diverges whereas the numerical solution converges in this norm. The problem might

be overcome if the divergence of the residual is localized to the area of non-smoothness and the residual

would then be used as a local error indicator. However, the localization of discontinuities becomes a very

complicated problem in multiple dimensions.

It can be shown that the truncation error of any di�erential operator obtained on a nonuniform grid

consists of two di�erent parts. The �rst one, which always exists on a uniform mesh, is due to the ap-

proximation of the di�erential operator itself. The second one is caused by the contribution to the error

from the nonuniform grid spacing. As the grid is locally re�ned or redistributed the �rst part of the error

decreases while the second part may considerably increase because of the grid non-uniformity. All of the

equidistribution methods mentioned above redistribute grid points in accordance with one or another error

estimate obtained on a non-adapted grid, but in doing so the grid adaptation itself introduces additional
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error which changes the error distribution. Therefore, to account for this change in the error distribution

the grid adaptation procedure based on the error equidistribution strategy should be repeated iteratively

until the error estimate norm is equally distributed over the �eld. Note that for moving meshes dynamically

adapted to the solution the iterative procedure should be done at each time step to get the optimal mesh

characterized by having the error equidistributed throughout the domain.

The main objective of this paper is to construct an optimal coordinate transformation so that the

leading truncation error term of an arbitrary pth-order �nite di�erence approximation is minimized that

provides superconvergent results on the optimal grid. In contrast to the error equidistribution principle,

for the present technique a posteriori error estimate is not explicitly required. Furthermore, the new grid

adaptation criterion allows one to minimize the error due to the di�erential operator itself and the error owing

to the evaluation of the metric coe�cients simultaneously. Another very attractive feature of the present

approach is its applicability to hybrid approximations which depend on some basic properties of the solution

such as a 
ow direction, sonic line and others. If the metric coe�cients are evaluated by the same hybrid

discretization used for the di�erential operator, the new grid adaptation criterion remains valid in the whole

computational domain regardless to points where the hybrid scheme switches from one approximation to

another. Extension of the new adaptation criterion to multiple dimensions is presented. Numerical examples

considered illustrate the ability of the method and corroborate the theoretical analysis.

2. Grid Adaptation in One Dimension. We consider the truncation error of the �rst derivative

approximated on a 1D nonuniform grid. Let x and � denote the physical and computational coordinates,

respectively. Without loss of generality it is assumed that a � x � b and 0 � � � 1. A one to one coordinate

transformation between the physical and the computational domains is given by

x = x(�);(2.1)

where

x(0) = a

x(1) = b:
(2.2)

It is assumed that the above mapping is not singular so that the Jacobian of the transformation is a strictly

positive function, i.e.

x� > 0; 8� 2 [0; 1]:(2.3)

The nonuniform grid in the physical space is obtained as images of nodes of a uniform mesh in the compu-

tational domain

xi = x(�i); �i =
i

I
; i = 0; 1; : : : I:(2.4)

Taking into account the coordinate transformation Eq.(2.1) the �rst derivative of a function f(x) with respect

to x can be written as follows

fx =
f�
x�
:(2.5)

To construct a pth-order approximation of fx in the physical domain we approximate f� and x� by some

pth-order �nite di�erence expressions in the computational domain

Lh(fx) =

i+l2P
l=i�l1

�lfl

i+m2P
m=i�m1

�mxm

;(2.6)
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where xm = x(�m), fl = f(�l); Lh is a �nite di�erence operator; the indexes l1; l2 and m1;m2 as well as

the coe�cients �l and �m depend on particular approximations used for evaluating f� and x� , respectively.

Henceforth, we shall assume that the functions f(�) and x(�) are smooth enough so that all derivatives

needed for the derivation are continuous functions on � 2 [0; 1]. Expanding the nominator and denominator

of Eq.(2.6) in a Taylor series with respect to �i and omitting the index i on the right hand side yield

i+l2P
l=i�l1

�lfl = f� + Cfp f
(p+1)
� ��p +O(��p+1)

i+m2P
m=i�m1

�mxm = x� + Cxpx
(p+1)
� ��p +O(��p+1);

(2.7)

where

x
(p+1)
� =

@p+1x

@�p+1
; f

(p+1)
� =

@p+1f

@�p+1
; �� =

1

I
;

Cfp and Cxp are constants dependent on �l and �m, respectively. Substituting Eq.(2.7) into Eq.(2.6) and

taking into account that x� > 0; 8� 2 [0; 1] one can write

Lh(fx) =
f� + Cfp��

pf
(p+1)
�

x�

�
1 + Cxp

��p

x�
x
(p+1)
�

� +O(��p+1):(2.8)

Assuming that �� is chosen to be su�ciently small so that ��pjx(p+1)� =x�j � 1, Eq.(2.7) can be linearized

as follows

Lh(fx) =
1

x�

�
f� + Cfp��

pf
(p+1)
�

��
1� Cxp

��p

x�
x
(p+1)
�

�
+O(��p+1):(2.9)

Note that the error introduced by the linearization is of the order of O(��2p+2). Neglecting higher order

terms in Eq.(2.9) we have

Tp(x) = Lh(fx)� fx = Cfp��
p
f
(p+1)
�

x�
� Cxp��p

x
(p+1)
�

x2�
f�:(2.10)

The right hand side of Eq.(2.10) is the leading truncation error term. Thus, if the metric coe�cient x�

is evaluated numerically as in Eq.(2.6) the asymptotic truncation error of any pth-order �nite di�erence

approximation consists of two di�erent parts, one of which is due to the evaluation of f� and the second one

is caused by the discretization of the metric coe�cient x� . It should be emphasized that any grid adaptation

based on minimization or equidistribution of the �rst part of the truncation error alone is not su�cient since

the second part of the truncation error may drastically increase in regions where x(�) rapidly changes. In

other words, any inconsistent grid adaptation transfers the error from the �rst term of the truncation error

to the second one and vice versa. To minimize both parts of the truncation error simultaneously we impose

the following restriction on the coordinate mapping x(�), 8� 2 [0; 1]���Cfp f (p+1)� x� � Cxpx(p+1)� f�

��� � O(��)x2� :(2.11)

If Eq.(2.11) holds the asymptotic order of approximation of Eq.(2.6){(2.7) on the optimal grid generated by

the mapping x(�) is p+1 in the entire computational domain. Replacing the inequality sign by the equality

one in Eq.(2.11) the grid adaptation criterion can be expressed as

Cfp f
(p+1)
� x� � Cxpx(p+1)� f� = O(��)x2� :(2.12)
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Recall that the coe�cients Cfp and Cxp depend on the particular approximations used and do not depend on

f(�) and x(�). One of the most important classes of approximation is a consistent approximation when the

same di�erence operator is employed to evaluate the derivatives f� and x� . In this case the coe�cients Cfp

and Cxp are identical and Eq.(2.12) is simpli�ed to

f
(p+1)
� � fxx(p+1)� = O(��)x�(2.13)

or setting the right hand side equal to zero yields

f
(p+1)
� x� � f�x(p+1)� = 0:(2.14)

There are several advantages of such a simpli�cation. First of all, the use of the same di�erence approx-

imation for both f� and x� eliminates the fx term from the truncation error which is the most troublesome

part of the error being dependent on the �rst derivative which is evaluated. Actually, let us represent f� and

f
(p+1)
� in terms of the x derivatives

f� = x�fx

f
(p+1)
� =

�
@
@� + x�

@
@x

�p+1
f = x

(p+1)
� fx + (p+ 1)x

(p)
� x�fxx + : : :+ xp+1� f

(p+1)
x

(2.15)

Note that the binomial theorem can not be used to expand the power of the derivative operator in the above

formula since @=@� and x�@=@x do not commute. Substituting the above expressions into Eq.(2.10) the

leading term of the truncation error Tp(x) can be written as follows

Tp(x) = (Cfp � Cxp )��p
x
(p+1)
�

x�
fx + Cfp

h
(p+ 1)x

(p)
� fxx + : : :+ xp�f

(p+1)
x

i
(2.16)

From Eq.(2.16) it is clear that if Cfp 6= Cxp then the truncation error depends on the �rst derivative fx being

approximated. That is why it is very important to evaluate the metric coe�cient by the same di�erence

approximation used for f�. It should be noted, that if x� is approximated by the exact analytical expression

or any �nite di�erence formula di�erent from that which is employed to calculate f� it gives rise to the fx

term in the truncation error.

Another advantage of the consistent approximation of f� and x� is that the single optimal grid in the

sense of Eq.(2.14) can be generated for hybrid discretization, when the coe�cient Cfp may implicitly depend

on the function f(�). The identical numerical approximation of x� and f� removes the dependence of the

optimal mapping on points in the physical domain where the hybrid scheme switches from one approximation

to another. If this is the case the optimal grid point distribution depends only on the order of approximation

and is completely independent of the particular �nite di�erence formula used.

As has already been mentioned, Eq.(2.14) is a grid adaptation criterion, but at the same time this

equation can be treated as a grid generation equation. To provide the existence of the solution of Eq.(2.14)

it is assumed that f� > � > 0; 8� 2 [0; 1], and f(�) 2 Cp+1[0; 1]. It can easily be seen that x(�) =

c1f(�) + c2 is the solution of Eq.(2.14), but this trivial solution is not appropriate since it means that f(x)

is a linear function of x in the physical space. Another problem associated with the solution of Eq.(2.14)

is boundary conditions. Theoretically, to �nd the unique solution of Eq.(2.14) p + 1 boundary conditions

should be imposed while only two boundary conditions Eq.(2.2) are available. In spite on the abovementioned

di�culties the optimal grid generation problem Eqs.(2.14),(2.2) can be solved analytically for very important

cases p = 1; 2 and the approximate analytical solutions can be obtained for higher order discretizations p � 3.
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2.1. First-Order Approximation, p = 1. For a �rst-order accurate approximation p is equal to one

in Eq.(2.13) which takes the form

f��x� � f�x�� = O(��)x2� :(2.17)

Using the following expression for the second derivative

fxx =
f��x� � f�x��

x3�

Eq.(2.17) written in the physical space is reduced to

�x =
fxx

O(��)
:(2.18)

Integrating Eq.(2.18) and taking into account the boundary conditions �(a) = 0; �(b) = 1 yield

�(x) =

xR
a

fxxdx

bR
a

fxxdx

:(2.19)

However, to satisfy Eq.(2.18) the following restriction should be imposed on fxx

bZ
a

fxxdx = O(��):(2.20)

Since �x > 0 from Eq.(2.18) it follows that fxx > 0. Consequently, Eq.(2.20) means that the second

derivative fxx has to be of the order of O(��) for all x 2 [a; b]. In other words, if f(x) is an essentially

nonlinear function, so that Eq.(2.20) is not satis�ed, it is impossible to increase the global order of accuracy

of fx by the grid point redistribution.

2.2. Second-Order Approximation, p = 2. If both f� and x� are evaluated identically by a second-

order accurate formula the grid adaptation equation Eq.(2.13) written for p = 2 becomes

f���x� � f�x��� = O(��)x2�(2.21)

Let us transform the derivatives in Eq.(2.21) from the computational space to the physical space

f� = fxx�

f��� = fxxxx
3
� + 3fxxx�x�� + fxx��� :

(2.22)

Substituting Eq.(2.22) into Eq.(2.21) we have

fxxxx
2
� + 3fxxx�� = O(��)x2�(2.23)

Using the following expressions for the metric coe�cient and its derivative

x� = 1
�x

x�� = � �xx
�3x

and assuming that fxx 6= 0;8x 2 [a; b] Eq.(2.23) can be rewritten as

fxxx
fxx

= 3
�xx
�x

+O(��)
�2x
fxx

(2.24)
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Since a decrease in the last term in the above equation increases the approximation accuracy we neglect the

O(��) term and integrate the left and right hand sides of Eq.(2.24) with respect to x to give

�3x = Cfxx;(2.25)

where C is a constant of the integration. Equation (2.25) has one real and two complex roots. Since we seek

only real roots the complex roots are not considered. Taking into account the boundary conditions Eq.(2.2)

the above equation can readily be integrated, that gives

�(x) =

xR
a

(fxx)
1=3dx

bR
a

(fxx)1=3dx

:(2.26)

If a grid is generated in accordance with the optimal mapping Eq.(2.26) the leading term of the truncation

error is zero for all points in [a; b] and the global order of accuracy is increased from 2 to 3.

The optimal grid point distribution de�ned by Eq.(2.26) can be applied if fxx is a positive function

otherwise the mapping becomes singular that leads to the grid degeneration. However, this problem can be

overcome. For that purpose we divide the interval [a; b] on subintervals where fxx is of constant signs. Let

x�1 < x < x�2 be an interval where the second derivative is negative, i.e. fxx = �jfxxj < 0. Then, Eq.(2.26)

becomes

�(x) =

xR
x�1

(fxx)
1=3dx

x�2R
x�1

(fxx)1=3dx

=

�
xR
x�1

jfxxj1=3dx

�
x�2R
x�1

jfxxj1=3dx
=

xR
x�1

jfxxj1=3dx

x�2R
x�1

jfxxj1=3dx
(2.27)

From Eq.(2.27) it follows that the metric coe�cient �x given by Eq(2.26) is strictly positive in the interval

where fxx is negative. Taking into account the fact that the same formula Eq.(2.27) remains valid for positive

fxx the intervals of positive and negative signs except for the in
ection points of the function f(x) can be

joined so that

�(x) =

P
j

xR
xj+0

jfxxj1=3dx

P
j

xj+1�0R
xj+0

jfxxj1=3dx
; 8x : x 6= xj ;(2.28)

where xj are the in
ection points of f(x). To add the in
ection points fxx(xj) = 0 to the above integrals

special consideration is required.

Let x0 be a point of in
ection of the function f(x), i.e. fxx(x0) = 0. Note in passing that if we modify

the function f(x) by adding an arbitrary linear function the optimal grid Eq.(2.26) remains unchanged.

Furthermore, if the function f(x) is linear in the whole interval [a; b] then from Eq.(2.25) it follows that

�x = 0; 8x 2 [a; b]. It results in that the grid step size in the physical domain �x = ��=�x tends to in�nity.

It can be interpreted as to approximate the �rst derivative of the linear function exactly an arbitrary large

grid spacing can be used. Expanding fxx in a Taylor series about x = x0 in Eq.(2.26) and assuming that

fxxx(x0) 6= 0 yield

fxx(x) = fxxx(x0)(x� x0) +O((x � x0)2)
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Substituting the above expression in Eq.(2.26) and neglecting both O((x�x0)2) and higher order terms give

�3x = Cfxxx(x0)(x � x0)(2.29)

Letting x! x0 we have

�x(x0) = lim
x!x0

(Cfxxx(x0)(x � x0))1=3 = 0

As noted above, this kind of grid degeneration when the metric coe�cient �x vanishes does not impose any

restriction on the grid step size at the in
ection point. Therefore, in the vicinity of the in
ection point the

original second derivative fxx can be modi�ed as

~fxx(x) =

(
jfxxj; jfxxj � �
(fxx)

2+�2

2� ; jfxxj < �
(2.30)

where � is a small positive parameter. From the above consideration it follows that for an arbitrary f 2
C2[a; b] the optimal mapping minimizing the leading truncation error term globally is

~�(x) =

xR
a

( ~fxx)
1=3dx

bR
a

( ~fxx)1=3dx

:(2.31)

To estimate the asymptotic truncation error of the second-order di�erence expression for fx on the

optimal grid Eq.(2.26) we rewrite Eq.(2.8) including the third-order terms

Lh(fx) =
f� + C2��

2f��� + C3��
3f

(4)
�

x� + C2��2x��� + C3��3x
(4)
�

+O(��4):(2.32)

Linearizing Eq.(2.32) and collecting the terms of O(��2) and O(��3) the �rst two leading terms in the

truncation error are

T2(x) = C2
��2

x2�
[f���x� � x���f�] + C3

��3

x2�

h
f
(4)
� x� � x(4)� f�

i
:(2.33)

Since the �rst term on the right hand side of Eq.(2.33) is vanished on the optimal grid de�ned by Eq.(2.26)

the asymptotic truncation error becomes

T2(x) = C3
��3

x2�

h
f
(4)
� x� � x(4)� f�

i
:(2.34)

To determine the expression in the square brackets we di�erentiate Eq.(2.14) written for p = 2 with respect

to �. Thus,

f
(4)
� x� + f���x�� � f��x��� � x(4)� f� = 0:(2.35)

Resolving Eq.(2.14) with respect to f��� and substituting it in Eq.(2.35) give

f
(4)
� x� � x(4)� f� = x���x

2
�fxx:(2.36)

Using Eq.(2.36) the leading truncation error term on the optimal grid Eq.(2.26) can be recast as

T2(x) = C3��
3x���fxx:(2.37)
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Taking into account the fact that for the optimal grid Eq.(2.26) holds, x��� can be represented in terms of

the function f(x) and its derivatives as follows

x��� =
3�2xx � �xxx�x

�5x
=

5f2xxx � 3f
(4)
x fxx

9C3f3xx
;(2.38)

where C is the integration constant in Eq.(2.25). Substituting Eq.(2.38) into Eq.(2.37) the leading truncation

error term is given by

T2(x) = C3��
3 5f

2
xxx � 3f

(4)
x fxx

9C3f2xx
:(2.39)

This formula is valid for all points from the interval [a; b] except for the in
ection points of the function f(x).

Let us estimate the leading term of the truncation error at a point of in
ection x0 : fxx(x0) = 0. Since

we have modi�ed the second derivative fxx in the neighborhood of the in
ection point Eq.(2.30) the second-

order term in the truncation error does not vanish. Substituting Eq.(2.30) into Eq.(2.33) and neglecting

higher order terms we have

T2(x0) = C2��
2�fxx ~fxxx( ~fxx)�2=3 + ( ~fxx)

1=3fxxx
~fxx

:

Letting x! x0 yields

T2(x0) = C2��
2 fxxx(x0)

(�=2)2=3
:(2.40)

Equation (2.40) shows that, locally, near the in
ection point only the second order of approximation can be

obtained on the optimal grid. Note that it is not the case if the function f(x) is linear because then, any

second-order accurate approximation of f� and x� in Eq.(2.5) on an arbitrary nonuniform mesh gives us the

exact value of fx. By virtue of the fact that the number of the in
ection points is �nite the L2 norm of the

second-order accurate approximation of fx on the optimal grid should provide superconvergent results.

In regions where the function f(x) is discontinuous the above reasoning is not valid since the �rst and

higher derivatives do not exist there. In contrast to the in
ection point in the vicinity of local extrema of

f(x), where ~fxx achieves its maximum value, the fraction in Eq.(2.39) becomes very small so that locally,

even a higher order of accuracy may be obtained.

Remark 2.1 It can readily be checked that standard grid adaptation criteria such as the arc length of

the function f(x) and the second derivative fxx do not globally minimize the leading term of the truncation

error. Actually, using the arc length grid adaptation criterion the following grid point distribution is obtained

�(x) =

xR
a

p
1 + f2xdx

bR
a

p
1 + f2xdx

(2.41)

Substituting Eq.(2.41) into Eq.(2.33) yields

T2(x) = C2��
2�3fxf2xx + (1 + f2x)fxxx

(1 + f2x)
2

:(2.42)

The comparison of Eq.(2.42) with the leading term of the truncation error obtained on a uniform grid, which

is

T un2 (x) = C2��
2fxxx;

9



shows that this grid point distribution may improve the accuracy locally near steep gradients of the function

f(x). At the same time, in regions where fxx is much grater than fx, e.g. near local extrema of f(x), the

actual order of approximation may deteriorate to one or even be worth.

If instead of the arc length adaptation criterion one redistributes grid points in accordance with the

second derivative fxx the leading term of the truncation error is

T2(x) = �C2��
2 2fxxx
f2xx

:(2.43)

As it follows from the above formula in regions where jfxxj <
p
2 the local truncation error Eq.(2.43) is

always grater than the asymptotic truncation error on a uniform grid.

Summarizing what has been said above the following conclusions can be drawn. On the one hand, the

standard grid adaptation criteria do not provide the superconvergence. On the other hand, although, the

standard grid adaptation techniques may locally improve the accuracy of calculation the global truncation

error may become even larger than that obtained on the corresponding uniform mesh. Despite the fact that

the above consideration has been performed for the second-order discretization the same conclusion can be

done for higher order schemes.

Remark 2.2 We shall now brie
y describe an alternative way of the solution of Eq.(2.21). Integrating

Eq.(2.21) by parts and neglecting the O(��) term on the right hand side yield

f��x� � f�x�� = C;(2.44)

where C is a constant of the integration. The above equation is closed by using the boundary conditions

Eq.(2.2).

In order to �nd the unknown constant C we rewrite Eq.(2.44) in the following form

x2�
@

@�

�
f�
x�

�
= C;(2.45)

Taking into account the fact that

fxx =
1

x�

@

@�

�
f�
x�

�

Eq.(2.45) is reduced to Eq.(2.25) and the constant C can easily be determined, that gives

C =

0
@ bZ
a

(fxx)
1=3dx

1
A

3

:(2.46)

The boundary value problem Eq.(2.44),(2.46),(2.2) should be solved numerically. If at some point f� and f��

are equal to zero simultaneously Eq.(2.44),(2.46) is degenerated. The problem can be overcome by modifying

the derivatives f�, f�� and the constant C as follows

~f� =
~fx
�x

=
~fx

( ~C ~fxx)1=3

~f�� =
~fxx�x � �xx ~fx

�3x
=

3( ~fxx)
2 � ~fxxx ~fx

~C2=3( ~fxx)5=3

10



~C =

0
@ bZ
a

( ~fxx)
1=3dx

1
A

3

;

where ~fxx is given by Eq.(2.30), ~fx and ~fxxx are calculated by di�erentiating and integrating ~fxx with respect

to x, accordingly. Since the function ~fxx is strictly positive in the entire computational domain the �rst

derivative ~f� is a positive function as well. It makes the modi�ed equation fully consistent with Eq.(2.31).

It should be stressed that there are several di�erential forms of the optimal grid generation equation.

For example, instead of integration of Eq.(2.21) by parts we may consider Eq.(2.23) as a di�erential equation

for the optimal grid point distribution. Since each of the di�erential equations has its advantages and

disadvantages at the present time, it is di�cult to say which one of them is better.

2.3. High-Order Approximations, p � 3. If f� and x� are approximated identically by a third-order

accurate formula the optimal grid generation equation written in operator form in the physical space is

�
1

�x

@

@x

�4
f � fx

�
1

�x

@

@x

�4
x = 0:(2.47)

Performing the indicated di�erentiation we have

fxx
�
15�2xx � 4�x�xxx

�
+ �x

�
�6�xxfxxx + �xf

(4)
x

�
= 0(2.48)

Although, the above equation is much more complicated than the analogous one derived for the second-order

discretizations Eq.(2.24) we shall construct the solution of Eq.(2.48) in a similar form. On the one hand,

a solution in the form of � = g(fx), where g is an arbitrary function of fx, is not appropriate since in this

case the f
(4)
x term in Eq.(2.48) can not be canceled. On the other hand, if a solution depends on fxxx or

higher derivatives of f(x) it gives rise to the f
(5)
x term in the truncation error which is not canceled as well.

Therefore, we shall seek the solution of Eq.(2.48) in a form similar to Eq.(2.25)

�x = C(fxx)
�:(2.49)

Substituting Eq.(2.49) into Eq.(2.48) the leading truncation error term can be written as

T3(x) =
C3��

3

(fxx)1+2�

h
�(2� 11�)(fxxx)

2 + (4�� 1)fxxf
(4)
x

i
(2.50)

In contrast to the second-order discretization, for the third-order approximation the leading term of the

truncation error does not vanish at any � = const. Assuming that the parameter �(x) is a function which

weakly depends on x and setting the leading truncation error term equal to zero the following quadratic

equation for �(x) is obtained

�(x)(2 � 11�(x))(fxxx)
2 + (4�(x) � 1)fxxf

(4)
x = 0(2.51)

The solution of Eq.(2.51) is

�1;2 =
1

11

�
1 + 2r(x) �

p
1� 7r(x) + 4r(x)2

�
;(2.52)

with

r(x) =
fxxf

(4)
x

(fxxx)2
:

11



Without loss of generality it is assumed that fxxx 6= 0. If fxxx = 0 then the solution of Eq.(2.51) is � = 1=4.

Note that the function �(x) should be positive in the entire physical domain otherwise, the mapping Eq.(2.49)

with � < 0 concentrates grid points where f(x) is linear and makes the grid very coarse where the second

derivative fxx is large. Since the above analysis is valid if the function �(x) slightly depends on x we construct

� as follows

�(r) =

8><
>:

1
11

�
1 + 2r +

p
1� 7r + 4r2

�
; r � 0

� 48
343r

3 + 18
49r

2 � 3
22r +

2
11 ; 0 < r < 7

4
1
11

�
1 + 2r �p1� 7r + 4r2

�
; r � 7

4

(2.53)

where the polynomial in Eq.(2.53) has been chosen so that �(r) is a continuously di�erentiable function of

r. A plot of � versus r is shown in Fig.2.1. As can be seen in the �gure, the function �(r) is practically

equal to 1=4 in the whole range of r except for an interval �1 � r � 3. Although, �(r) is quite smooth the

function �(x) may be non-smooth because it depends on fxx, fxxx and f
(4)
x which are calculated numerically

and may therefore be very oscillatory. In numerical applications the function �(x) should be smoothed to

meet the requirements used for the derivation of Eq.(2.50).

r

A
lp

h
a

-10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

Fig. 2.1. Parameter � for a third-order accurate discretization.

Such a choice of �(x) provides that the leading truncation error term is approximately equal to zero

in the entire physical domain. As it follows from Eq.(2.49), the second derivative fxx must be a positive

function on [a; b]. Note that a general property of both Eq.(2.47) and Eq.(2.14) is that if �x is a solution

of Eq.(2.47) then ��x is a solution of Eq.(2.47) as well. The same is true for the function f(x) and its

derivatives, i.e. if we substitute f̂xx = �fxx into Eq.(2.47) we get the same equation in terms of f̂xx. Hence,

the second derivative fxx in Eq.(2.49) can be replaced with Eq.(2.30). Thus, if f� and x� are evaluated by

the same third-order accurate formula the optimal grid point distribution, which minimizes the leading term

12



of the truncation error in the entire computational domain, is

�(x) =

xR
a

( ~fxx)
�(x)dx

bR
a

( ~fxx)�(x)dx

;(2.54)

where ~fxx and �(x) are de�ned by Eq.(2.30) and Eq.(2.53), respectively.

From the above analysis one can see that the same strategy used for the third-order approximation can

be applied to higher order discretizations. Actually, the leading term of the truncation error for an arbitrary

pth-order approximation of fx is

Tp(�) =
Cp��

p

x2�

�
f
(p+1)
� x� � f�x(p+1)�

�
(2.55)

Accounting for the following relations between the �- and x-derivatives written in operator form

@

@�
=

1

�x

@

@x

@n

@�n
=

�
1

�x

@

@x

�n
the truncation error can be transformed into the physical space as follows

Tp(x) = Cp��
p�x

 �
1

�x

@

@x

�p+1
f � fx

�
1

�x

@

@x

�p+1
x

!
:(2.56)

Expanding the power of the derivative operatorh
1
�x

@
@x

ip+1
f =

hh
1
�x

@
@x

i
x @
@x

ip+1
=

=
h
1
�x

@
@x

ip+1
x@f@x + (p+ 1)

h
1
�x

@
@x

ip
x
h
1
�x

@
@x

i
@f
@x + : : :+

h
1
�x

@
@x

i
x
h
1
�x

@
@x

ip
@f
@x

(2.57)

it can be seen that the term with fx in Eq.(2.56) is canceled and therefore the highest derivatives of �(x)

and f(x) in the truncation error Tp(x) are �
(p)
x and f

(p+1)
x , respectively. Assuming that on the optimal grid

the leading term of the truncation error is of the order of O(��) we shall seek �(x) as a function of f(x)

and its derivatives. Comparing the highest derivatives of � and f one can observe that if �x = g(f; fx)

then the term f
(p+1)
x in Eq.(2.57) is never canceled while if �x is a function of f

(n)
x , n � 3 it introduces the

uncancellable f
(n+p�1)
x term in the truncation error Tp(x). In a similar manner to the �rst-, second-, and

third-order approximations the optimal grid for the pth-order accurate discretization is sought in the form

of Eq.(2.49). Substituting Eq.(2.49) into Eq.(2.57) the leading truncation error term becomes

Tp(x) =
Cp��

p

(fxx)p�

�
[1� �(p+ 1)] f (p+1)x + �G(�; fxx; fxxx; : : : ; f

(p)
x )
�

(2.58)

In the above formula it has already been taken into account that the second term on the right hand side is

proportional to �. This is no surprise since for � = 0, which corresponds to a uniform mesh, the asymptotic

truncation error Tp(x) is reduced to Cp��
pf

(p+1)
x that is why all the terms in Eq.(2.58) except for f

(p+1)
x

have to be proportional to �. For example, for fourth- and �fth-order discretizations the leading truncation

error terms obtained on the optimal grid Eq.(2.49) are

T4(x) =
C4��

4

(fxx)4�

 
(1� 5�) f (5)x + �

(
�10�(1 + 5�)

(f
(3)
x )3

(fxx)2
+ 5(9�� 1)

f
(3)
x f

(4)
x

fxx

)!
(2.59)
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and

T5(x) =
C5��

5

(fxx)5�

�
(1� 6�) f

(6)
x + �

n
(6 + 49�+ 196�2 + 274�3)

(f (3)x )4

(fxx)3
�

�(7 + 97�+ 421�2)
(f (3)x )2f (4)x

(fxx)2
+ 3(27�� 2)

f (3)x f (5)x

fxx
+ 2(26�� 1)

(f (4)x )2

fxx

o�
;

(2.60)

respectively. As it follows from Eq.(2.58) at any � = const both terms on the right hand side do not vanish

simultaneously. To minimize the leading term of the truncation error the following procedure is proposed.

At each grid point the parameter � is found as the solution of the nonlinear equation T (�) = 0, which is

solved by the Newton's method. That choice of � provides that the leading truncation error term is vanished

on the optimal grid. Since the above consideration is valid only if � slightly depends on x the function �(x)

has to be smoothed in numerical applications.

Remark 2.3 If p ! +1, i.e. the order of approximation is in�nitely large the leading term of the

truncation error Eq.(2.58) is vanished for � ! 0. In other words, the higher is the order of approximation

used to evaluate f� and x� the more uniform is the grid which minimizes the leading truncation error term.

In the limit of in�nitely high-order approximations a uniform grid is optimal in the sense of minimization of

the asymptotic truncation error.

3. Grid Adaptation in Multiple Dimensions. The two-dimensional transformation of the �rst

derivative is given by

fx =
y�f� � y�f�

J
;(3.1)

where the Jacobian of the transformation is

J = x�y� � x�y� :

Approximating the � and � derivatives in Eq.(3.1) by some pth- and qth-order �nite di�erence formulas,

respectively, we get

Lh(fx) =
(y� + Cq��

qy
(q+1)
� )(f� + Cp��

pf
(p+1)
� )� (y� + Cp��

py
(p+1)
� )(f� + Cq��

qf
(q+1)
� )

(x� + Cp��px
(p+1)
� )(y� + Cq��qy

(q+1)
� )� (x� + Cq��qx

(q+1)
� )(y� + Cr��py

(p+1)
� )

+O(��p+1;��q+1)

(3.2)

In the above expression it has already been taken into account that the metric coe�cients x� ; y� and x� ; y�

are evaluated by the same �nite di�erence operators which are used for calculating f� and f�, respectively.

In view of the fact that the mapping used is nonsingular J > 0, the denominator of Eq.(3.2) can be

linearized that yields

Lh(fx) =
1
J

h
y�f� � y�f� + Cp��

p(y�f
(p+1)
� � y(p+1)� f�) + Cq��

q(f�y
(q+1)
� � y�f (q+1)� )

i
�h

1� Cp��
p

J (y�x
(p+1)
� � y(p+1)� x�)� Cq��

q

J (x�y
(q+1)
� � y�x(q+1)� )

i
+ O(��p+1;��q+1)

(3.3)

Multiplying out the terms in the square brackets and neglecting higher order terms the leading term of

truncation error becomes

Tp;q(�; �) =
1
J

n
Cp��

p
h
y�f

(p+1)
� � y(p+1)� f� � fx(y�x(p+1)� � x�y(p+1)� )

i
+

+Cq��
q
h
f�y

(q+1)
� � y�f (q+1)� � fx(x�y(q+1)� � y�x(q+1)� )

io(3.4)

As in the 1D case, the truncation error Tp;q consists of two di�erent parts, one of which arises from the

evaluation of the metric coe�cients x� ; y�; x�; y� and the second one occurs due to the approximation of f�
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and f�. From Eq.(3.4) it follows that if the absolute value of the �rst expression in the square brackets is less

than O(��) and the abolute value of the second one is less than O(��) then the global truncation error is

O(��p+1;��q+1) rather than O(��p;��q). Thus, to increase the order of the �nite di�erence approximation

Eq.(3.2) by one globally grid points should be redistributed so that the following equations hold

J
�
y�f

(p+1)
� � y(p+1)� f�

�
= (y�f� � y�f�)

�
y�x

(p+1)
� � x�y(p+1)�

�
+O(��)J2

J
�
f�y

(q+1)
� � y�f (q+1)�

�
= (y�f� � y�f�)

�
x�y

(q+1)
� � y�x(q+1)�

�
+O(��)J2

(3.5)

Removing the parentheses and rearranging the corresponding terms Eq.(3.5) can be reduced to

y�

h
f
(p+1)
� � fyy(p+1)� � fxx(p+1)�

i
= O(��)J

y�

h
f
(q+1)
� � fyy(q+1)� � fxx(q+1)�

i
= O(��)J

(3.6)

Note that a reduction of the O(��) and O(��) terms in Eq.(3.6) decreases the truncation error on the

optimal grid.

The above equations can be treated as the optimal grid generation equations in the sense of minimization

of the leading truncation error term. It should be noted, that if y� = 0 in the entire computational domain

Eq.(3.6) is reduced to Eq.(2.14). At the same time, if the y coordinate does not depend on �, i.e. y = y(�)

Eq.(3.6) is simpli�ed to

x�f
(q+1)
� � f�x(q+1)� = O(��)x2� ;(3.7)

that can be treated as an analog of Eq.(2.13) in the � coordinate.

Another very useful property of the optimal mapping is that Eq.(3.6) are invariant with respect to both

translation and stretching of the x; y and �; � coordinates. Summarizing the above properties of Eq.(3.6) one

may conclude that the 2D optimal grid generation equations are fully consistent with the 1D counterpart

Eq.(2.14).

The present approach can directly be extended to three dimensions. Actually, the three-dimensional

transformation of the �rst derivative is

fx =
z�y� � y�z�

J
f� +

y�z� � z�y�
J

f� +
z�y� � y�z�

J
f�(3.8)

where the Jacobian of the mapping is given by

J = x�y�z� + x�y�z� + x�y�z� � x�y�z� � x�y�z� � x�y�z�:

With pth-, qth-, and rth-order �nite di�erence approximations for the �-, �-, and �-derivatives, respectively,

we have

Lh(fx) =
(��z��y � ��y��z)��f + (��y��z � ��z��y)��f + (��z��y � ��y��z)��f

��x��y��z + ��x��y��z + ��x��y��z � ��x��y��z � ��x��y��z � ��x��y��z+O(��
p+1;��q+1;��r+1);

(3.9)

where the di�erential operators ��, ��, and �� are de�ned by

�� =
@
@� + Cp��

p @p+1

@�p+1

�� =
@
@� + Cq��

q @q+1

@�q+1

�� =
@
@� + Cr��

r @r+1

@�r+1 :

(3.10)

Here, Cp, Cq , and Cr are constants dependent on particular pth-, qth-, and rth-order �nite di�erence

approximations which are applied to discretize the �-, �-, and �-derivatives, accordingly. In Eq.(3.9),(3.10)
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it has already been accounted for that the metric coe�cients are approximated by the same �nite di�erence

expressions which are used for evaluating f�, f�, and f� .

Having linearized the fraction in Eq.(3.9) the leading truncation error term is written as

Tp;q;r(�; �; �) =
1
J

n
Cp��

p
h
~F
(p+1)
� � ~J

(p+1)
� fx

i
+ Cq��

q
h
~F
(q+1)
� � ~J

(q+1)
� fx

i
+

+Cr��
r
h
~F
(r+1)
� � ~J

(r+1)
� fx

io
;

(3.11)

where

~F
(p+1)
� = f

(p+1)
� (z�y� � y�z�) + y

(p+1)
� (z�f� � z�f�) + z

(p+1)
� (y�f� � y�f�)

~F
(q+1)
� = f

(q+1)
� (z�y� � z�y�) + y

(q+1)
� (z�f� � z�f�) + z

(q+1)
� (y�f� � y�f�)

~F
(r+1)
� = f

(r+1)
� (z�y� � y�z�) + y

(r+1)
� (z�f� � z�f�) + z

(r+1)
� (y�f� � y�f�)

~J
(p+1)
� = x

(p+1)
� (z�y� � y�z�) + y

(p+1)
� (z�x� � z�x�) + z

(p+1)
� (y�x� � y�x�)

~J
(q+1)
� = x

(q+1)
� (z�y� � z�y�) + y

(q+1)
� (z�x� � z�x�) + z

(q+1)
� (y�x� � y�x�)

~J
(r+1)
� = x

(r+1)
� (z�y� � y�z�) + y

(r+1)
� (z�x� � z�x�) + z

(r+1)
� (y�x� � y�x�)

(3.12)

Similarly to the 1D and 2D cases described above the leading term of the truncation error Eq.(3.11) can be

divided into two parts. The �rst part, which also exists on a uniform mesh, is due to the approximation of

f�, f�, and f� . The second part, which is vanished on a uniform Cartesian mesh is caused by the evaluation

of the metric coe�cients. From Eq.(3.11) it is apparent that if a grid is constructed so that the �rst term

in the square brackets is of the order of O(��), the second one is of the order of O(��), and the third one

is of the order of O(��) for all � 2 [0; 1], � 2 [0; 1], and � 2 [0; 1] then the global order of approximation

of the di�erence operator Eq.(3.9) in �, �, and � on the optimal grid is increased from p, q, and r to p+ 1,

q + 1, and r + 1, respectively. Hence, in the sense of minimization of the leading truncation error term the

grid adaptation criteria are

~F
(p+1)
� � fx ~J (p+1)� = O(��)J(3.13)

~F (q+1)
� � fx ~J (q+1)� = O(��)J(3.14)

~F
(r+1)
� � fx ~J (r+1)� = O(��)J:(3.15)

Note that the above equations are not a system of equations and can be considered separately. If it is

necessary to improve the accuracy with respect to the � coordinate alone a grid should be generated so that

only Eq.(3.13) holds. However, if it is desirable to increase the order of approximation of fx by one in the

�, �, and � coordinates simultaneously then the grid has to obey the system of equations Eq.(3.13){(3.15).

As in the case of two dimensions the 3D grid adaptation criteria Eq.(3.13){(3.15) can be simpli�ed. After

the substitution of Eq.(3.12) in Eq.(3.13){(3.15) and considerable algebraic manipulation the grid adaptation

equations can be rewritten in a very compact form

(z�y� � y�z�)
h
f
(p+1)
� � fxx(p+1)� � fyy(p+1)� � fzz(p+1)�

i
= O(��)J

(y�z� � z�y�)
h
f
(q+1)
� � fxx(q+1)� � fyy(q+1)� � fzz(q+1)�

i
= O(��)J

(z�y� � y�z�)
h
f
(r+1)
� � fxx(r+1)� � fyy(r+1)� � fzz(r+1)�

i
= O(��)J;

(3.16)

where fx, fy, and fz are the �rst derivatives with respect to the x, y, and z coordinates, respectively. One of

the characteristic features of the above equations is that they do not depend on the coe�cients Cp, Cq , and
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Cr. Consequently, if in each spatial direction the metric coe�cients and the �rst derivatives of f(�; �; �) are

evaluated consistently by some hybrid �nite di�erence operators then the grid adaptation criteria Eq.(3.16)

can be applied in the whole computational domain regardless of points where the hybrid scheme switches

from one approximation to another. A comparison of Eq.(3.16), Eq.(3.6), and Eq.(2.13) shows that the 3D

grid adaptation criteria Eq.(3.16) are reduced to Eq.(3.6) if z� = z� = 0, z� 6= 0, while if in addition to these

conditions we require that y� = y� = 0, y� 6= 0 Eq.(3.16) are reduced to the 1D optimal grid generation

equation Eq.(2.13). In a similar manner as Eq.(2.13) and Eq.(3.6), it is easy to prove that Eq.(3.16) are

invariant with respect to stretching and translation of both the physical and computational coordinates.

As it follows from the analysis presented in the foregoing section the grid adaptation equation does not

assure that the coordinate mapping obtained as the solution of Eq.(2.14) is not singular. Since Eq.(3.16)

is converted to Eq.(3.6) and in its turn Eq.(3.6) is reduced to Eq.(2.14) if the dimension of the space is

decreased by one, the same singularity may occur in two and three dimensions as well.

Equations (3.6) and (3.16) have to be closed by corresponding boundary conditions. Since these equations

are (p+1)th-order partial di�erential equations p+1 boundary conditions should be imposed at each couple

of the opposite boundaries (i.e. � = 0 and � = 1; � = 0 and � = 1; � = 0 and � = 1) to �nd the unique

solution. However, at each boundary we have only one boundary condition. For example, in the 3D case in

the � coordinate we have

�(x; y; z) = 0; �(x; y; z) = 1:(3.17)

In other words Eq.(3.6) and Eq.(3.16) are not closed. The situation becomes even more uncertain when

only one of the grid adaptation criteria is used. However, this uncertainty gives us additional degrees of

freedom and at the same time, it is conceivable that there exists more than one optimal grid satisfying the

criteria Eq.(3.6) or Eq.(3.16). From this standpoint both Eq.(3.6) and Eq.(3.16) should be treated as the

grid adaptation criteria rather than the optimal grid generation equations.

One of the most general structured grid generation strategies is based on the variational approach

proposed by Brackbill and Saltzmann in [17]. In this method a grid is generated as the solution of the

minimization problem. By forming the variational principle using a linear combination of the integral

measures of smoothness, orthogonality, and adaptation, a system of elliptic equations is derived. The new

grid adaptation criteria can be incorporated into this approach by constructing an integral measure of

adaptation so that the Euler-Lagrange equations associated with the minimization of this integral alone give

us Eq.(3.16). On the one hand, the minimax principle guarantees that the coordinate mapping obtained as

the solution of this minimization problem is not singular. On the other hand , the new grid adaptation criteria

provide that the leading term of the truncation error is minimized so that the �nite di�erence approximation

Eq.(3.9) calculated on the optimal grid exhibits superconvergence properties.

Remark 3.1 In spite on the fact that the present analysis has been performed for the �rst derivative

fx it can be directly extended to an equation or a system of equations, which can be represented as

fx(x) = d(x):(3.18)

For example, for the steady state 1D Burgers equation written in conservation law form we have

@

@x

�
u2

2
� �@u

@x

�
= 0;(3.19)

where � is a positive constant. A comparison of Eq.(3.19) and fx shows that for the Burgers equation the
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optimal grid can be constructed using Eq.(2.54) with

f(x) =
u2

2
� �@u

@x
:(3.20)

It should be pointed out that the above conclusion is valid if the second derivative uxx = (ux)x and the

convective term (u2=2)x are approximated consistently.

The same approach can be applied to the Euler and Navier-Stokes equations. The 1D Euler and Navier-

Stokes equations can be written in conservation law form as

@F

@x
= 0;(3.21)

where F is the inviscid 
ux Fi for the Euler equations and Fi � Fv, where Fv is the viscous 
ux, for the

Navier-Stokes equations. As it follows from Eq.(3.16), any component of the vector F can be chosen as a

function with respect of which a grid is adapted. Although, that choice provides increase in accuracy for

this particular vector component but it may not result in decrease in the truncation error for the remaining

vector components. In fact, as there are components of the vector F as many the optimal grids can be

generated. Since the di�erent vector components may have strong gradients and local extrema in di�erent

regions of the physical domain this kind of grid adaptation is not e�ective. If this is the case the function

f(x) can be obtained by using the method of least squares. Because of the optimal grid generation equations

are invariant with respect to stretching of the function f(x) the vector components Fn; n = 1; N can be

normalized as

~Fn(x) =
jFn(x)j

max
x
jFn(x)j :(3.22)

It results in that all of the vector components are of the same order and, consequently, make proportional

contributions to the function f(x). The resulting function f(x) is obtained as the solution of the following

minimization problem

IX
i=0

NX
n=1

�
~Fn(xi)� f(xi)

�2
! min(3.23)

in the least square sense. The function f constructed in this fashion allows one to generate a grid which is

optimal for the whole vector F rather than for its particular component. Note that the power in Eq.(3.23)

should be chosen in accordance with the power of the Lk norm in which the solution of the Euler or Navier-

Stokes equations is sought.

4. Results and Discussion. To validate the applicability and e�ciency of the new method several

1D and one 2D test examples are considered. For each 1D test function �ve series of calculation on di�erent

grids with the same number of grid points have been executed. The �rst one is done on a uniform grid.

The second one uses the standard grid adaptation criterion based on the arc length or the second derivative

of the test function. The third one is performed on the optimal grid obtained as the analytical solution of

Eq.(2.14). The fourth one employs the optimal grid Eq.(2.54) generated numerically by using the following

approximation for the second derivative

(fxx)i =
hifi+1 � (hi + hi+1)fi + hi+1fi�1

hihi+1(hi + hi+1)=2
; hi = xi � xi�1;(4.1)

which is reduced to the second-order three-point central approximation of fxx if an equispaced grid in the

physical domain is used. The integrals in Eq.(2.54) is computed using the trapezoidal rule integration. As
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a result of this integration the strictly increasing function �(x) is obtained which is then reversed by using

a third-order accurate piecewise spline interpolation. The �fth calculation is also executed on the uniform

grid, however, instead of a pth-order approximation a (p + 1)th-order accurate dicretization is applied to

calculate both f� and x� . At each boundary one-sided pth-order di�erences are used for f� and x� .

In order to estimate the accuracy of the method the pth-order �nite di�erence approximation of fx is

compared with the exact value of the �rst derivative calculated at the same grid node in the L2 norm. The

order of approximation is estimated on successively re�ned grids the coarsest one of which contains 20 cells

and the �nest one has 2560 cells.

4.1. 1D Test Examples. Second-order approximation, p = 2

The �rst test example is evaluation of the �rst derivative of f(x) = xm, 0 � x � 1 by using a second-

order central di�erences for f� and x� . When m is su�ciently large this function has a boundary layer of

width O(1=m) near x = 1. For this test case the exact optimal grid point distribution de�ned by Eq.(2.21)

can be found analytically, which is

xopt(�) = �
3

m+1 :(4.2)

In contrast to [9] the new grid adaptation criterion provides the concentration of grid nodes near the boundary

layer of the function f(x).
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Fig. 4.1. Error convergence for a second-order approximation of fx, f(x) = xm calculated on: 1) uniform grid, 2) optimal

grid generated numerically, 3) analytical optimal grid, 4) grid adapted in accordance with the arc length criterion, 5) uniform

grid using third-order accurate discretization.

An error convergence plot for this test function is presented in Fig.4.1. As one might expect, the L2

norm of the truncation error calculated on a uniform grid exhibits the O(��2) convergence rate which is

consistent with the second order of accuracy of the central di�erences. However, the same second-order

approximation of fx on the optimal grid Eq.(4.2) exhibits the convergence rate which is even higher than
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O(��3). Although, the accuracy of fx obtained on the adaptive grid Eq.(2.26) with fxx evaluated by Eq.(4.1)

is slightly less compared to the optimal grid Eq.(4.2) results the order of approximation is about 3.5. To show

the superiority of the present method over the standard grid adaptation criterion Eq.(2.41) the truncation

error calculated on grids adapted in accordance with the arc length of f(x) is also shown in Fig.4.1. In

spite of the fact that the standard grid adaptation technique slightly improves the accuracy of calculation in

comparison with the equispaced grid point distribution the convergence rate is less than O(��2). We want

to emphasize that the new grid adaptation criterion Eq.(2.26) provides not only superconvergent results, but

on the �nest mesh it reduces the error by 6 orders of magnitude compared to the uniform grid results.

An advantage of the consistent grid adaptation Eq.(2.14), which is based on the fact that the truncation

errors due to the approximation of f� and x� cancel each other, becomes obvious when the optimal grid results

are compared with those obtained by using a third-order accurate approximation on a uniform grid. Figure

4.1 shows that both the second-order approximation on the optimal grid and the third-order discretization

on the uniform grid with the same number of grid points reveal the O(��3) convergence rate. However, the

optimal grid results are about 103 times more accurate.

It should be noted that the optimal grid Eq.(4.2) is essentially non-smooth and does not meet the

standard criterion of smoothness, which is jx��=x�j < O(1) [18]. Furthermore, the optimal mapping Eq.(4.2)

is singular at the point � = 0 where x� ! 1. In spite on this fact, the above comparisons corroborate the

theoretical analysis and demonstrate the advantage of the new grid adaptation criterion over the standard

approaches.
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Fig. 4.2. Error convergence of a second-order hybrid approximation calculated with the consistent and inconsistent dis-

cretizations of the metric coe�cient on the optimal and uniform grids.

Another very useful characteristic feature of the new method is its generality in the sense that if a

single second-order hybrid discretization is used for both f� and x� the same optimal mapping Eq.(4.2)

minimizes the leading truncation error term. To demonstrate this property the error convergence of the
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hybrid approximation obtained on the uniform and optimal grids with the same number of grid points are

depicted in Fig.4.2. The hybrid di�erence operator is constructed as follows

�
@f

@�

�
i

=

(
1

2�� (fi+1 � fi�1); i even
1

2�� (�3fi + 4fi+1 � fi+2); i odd
(4.3)

The identical approximation is employed for the metric coe�cient x� . A comparison shows that the global

order of the consistent approximation of f� and x� is increased by one on the same optimal grid Eq.(4.2)

used for the non-hybrid approximation. As has been shown in Section 2, the approximation of the metric

coe�cient and the �rst derivative f� should be the same otherwise the optimal mapping de�ned by Eq.(2.26)

does not minimize the leading truncation error term. To show that the discretiztion of the metric coe�cient

plays a crucial role in reduction of the truncation error we approximate x� by a two-point central di�erence

expression in the whole computational domain and use the same hybrid scheme Eq.(4.3) for f�. An error

convergence plot for this inconsistent approximation, which is also depicted in Fig.4.2, shows that if the

metric coe�cient are evaluated in a di�erent way than f� the order of approximation on the optimal grid

deteriorates to 2 as well as the truncation error increases by a factor of 103 compared to the consistent

discretization results.

The second test function considered is

f(x) =
1

(em � 1)x+ 1
; 0 � x � 1:(4.4)
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Fig. 4.3. Error convergence for a second-order approximation of fx, f(x) = 1=((em � 1)x+ 1) calculated on: 1) uniform

grid, 2) optimal grid generated numerically, 3) analytical optimal grid, 4) grid adapted in accordance with the arc length

criterion, 5) uniform grid using third-order accurate discretization, 6) numerical optimal grid generated iteratively.

In the present test example the parameter m was chosen to be 5. This function has a boundary layer

of width O(m=(em � 1)) at x = 0. For this function the optimal grid generation equation Eq.(2.14), which
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depends on the order of approximation rather than on a particular type of discretization, can be solved

analytically, that gives

xopt(�) =
em� � 1

em � 1
:(4.5)

It should be emphasized that Eq.(2.26) yields the same optimal mapping as Eq.(4.5). The optimal grid

Eq.(4.5) is the well-known exponential coordinate transformation, which is widely used in the literature

[1], [18] for solving boundary layer problems. However, the mapping Eq.(4.5) is optimal only for a special

class of functions such as Eq.(4.4) and not optimal for other functions. Similarly to Fig.4.1 and 4.2, error

convergence plots for the symmetric second-order and hybrid discretizations Eq.(4.3) are depicted in Fig.4.3

and 4.4, respectively. It is apparent in these �gures that the error obtained on the optimal grid reveals

the convergence rate of O(��3:5) that is even higher than it follows from the theoretical analysis. The

optimal grid point distribution constructed by the numerical integration of Eq.(2.26) reduces the truncation

error by about four orders of magnitude compared to the uniform grid results, but it does not provide

the same accuracy as the optimal grid Eq.(4.5). The accuracy can be improved if the following iterative

procedure is applied. Since the fxx approximation Eq.(4.1) depends on the grid spacing in the physical

domain, the second derivative can be updated when the new grid point distribution is found. For this test

problem about 15{20 iterations were needed to reach the convergence. No attempt was made to optimize the

iteration process. Referring to Fig.4.3 one can see that this procedure considerably increases the accuracy

and provides practically the same convergence rate as for the analytical optimal grid Eq.(4.5).
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Fig. 4.4. Error convergence of a second-order hybrid approximation calculated with the consistent and inconsistent dis-

cretizations of the metric coe�cient on the optimal and uniform grids.

The importance of the metric coe�cient evaluation is illustrated in Fig.4.4. Analogously to the foregoing

test case, the inconsistent discretization of f� and x� leads to decrease in both the order and accuracy of

the approximation. When the metric coe�cient and the �rst derivative f� are evaluated by using the same
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hybrid operator Eq.(4.3) the convergence rate obtained on the optimal grid Eq.(4.5) becomes O(��3).

From the present theoretical analysis it follows that the new grid adaptation strategy may be quite

sensitive to the in
ection points of the function f(x). In order to verify this conclusion the following function

f(x) =
1

36m2
[sin(3mx)� 27 sin(mx)] ; 0 � x � �;(4.6)

which has m in
ection points has been chosen as a test function. Despite the presence of the in
ection points

where fxx = 0 it is possible to construct the optimal mapping analytically without using Eq.(2.30). It can

be done if the optimal grid Eq(2.26) is generated in each interval of constant signs of fxx separately. Thus,

we have

xopt(�) =
�

m
(j � 1) +

1

m
arccos [2j � 2m� � 1] ;

j � 1

m
� � � j

m
; j = 1;m:(4.7)

In numerical calculations the parameter m was taken to be 5. The above optimal coordinate transformation

obeys Eq.(2.26) in the entire physical domain except for the in
ection points.
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Fig. 4.5. Error convergence for a second-order approximation of fx, calculated on: 1) uniform grid, 2) optimal grid

generated numerically, 3) analytical optimal grid, 4) grid adapted in accordance with the arc length criterion, 5) uniform grid

using third-order accurate discretization.

Figures 4.5 and 4.6 are analogous to Fig.4.1 and 4.2, accordingly. As one can see in Fig.4.5 the presence

of the in
ection points results in that the convergence rate is O(��2:5) that is lower than it is predicted

from the theoretical analysis. Nevertheless, the optimal grid adaptation reduces the truncation error by a

factor of 20 compared to the uniform grid results. One of the reasons of such a behavior is the fact that

high-order derivatives of the function f(x) Eq.(4.6) are well bounded that makes the approximation of fx

on the uniform grid su�ciently accurate. The use of the standard grid adaptation criterion based on ~fxx

Eq.(2.30) leads to deterioration of the convergence rate to O(��1:5) and at the same time, the L2 norm of

the truncation error is about 50 times less accurate than the uniform grid results. Figure 4.6 shows that the
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inconsistent approximation of f� and x� increases the truncation error by 5 orders of magnitude compared

to the consistent approximation results calculated on the optimal grid.
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Fig. 4.6. Error convergence of a second-order hybrid approximation calculated with the consistent and inconsistent dis-

cretizations of the metric coe�cient on the optimal and uniform grids.

To gain greater insight into where the maximum error occurs pointwise error distributions obtained

on both the uniform and optimal grids are shown in Fig.4.7. As expected, the truncation error calculated

on the optimal grid achieves its maximum values at the in
ection points, while the error on the uniform

grid occurs at points where the third derivative jfxxxj is large. In contrast to the uniform grid, the most

accurate approximation of the �rst derivative fx on the optimal grid is near the local extrema of f(x). For

demonstrating the gain in accuracy in the vicinity of the in
ection points due to the use of Eq.(2.30) instead

of fxx a pointwise error plot obtained in this case is also presented in Fig.4.7. It is signi�cant that the error

distribution obtained on the optimal grid is essentially nonuniform that gives an indication of the di�erence

between the present and equidistribution grid adaptation criteria.

From the practical point of view it is very important to improve the accuracy of calculation if the function

f(x) is discontinuous. In spite of the fact that the present analysis is not valid at discontinuities of f(x) it

can be used if the discontinuous function is approximated by some smooth one. In this test example the

following smooth function

f(x) =
2�x

�
17 + 73(�x)2 + 55(�x)4 + 15(�x)6

�
15�(1 + (�x)2)4

+
2

�
arctan(�x); �1 � x � 1(4.8)

is considered as a �tting of a step function. In this calculation the parameter � was taken to be 103 that

results in that the function Eq.(4.8) has a pronounced interior layer of width O(1=�) at x = 0. This function

has been chosen so that the optimal grid point distribution Eq.(2.26) can be integrated analytically. As in

the foregoing example, the singularity in the optimal mapping Eq.(2.26) due to the in
ection point at x = 0

can be overcome by generating the optimal grid in the �0:5 � x < 0 and 0 � x � 0:5 intervals separately,
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Fig. 4.7. Pointwise error distribution for a second-order approximation calculated on the analytical optimal, numerical

optimal, and corresponding uniform grids.

that gives

xopt(�) =

8<
:
�
q

1�2�
1+2�2� ; 0 � � < 0:5q
2��1

1+2�2(1��) ; 0:5 � � � 1:
(4.9)

The error convergence of the symmetric second-order discretization of fx evaluated on the optimal grid

Eq.(4.9) is compared with results obtained by second- and third-order approximations on a uniform grid as

well as with the truncation error calculated on grids generated by using the standard Eq.(2.41) and new

Eq.(2.26),(2.30) grid adaptation criteria in Fig.4.8. Because of the internal layer thickness is comparable

with the �nest grid spacing none of the uniform grids considered can provide second-order results. For

the analytical optimal grid the convergence rate is of the order of O(��2:5). Although, it is less than the

theoretical limit the truncation error on the �nest mesh (2560 cells) has been reduced by more than 5 orders

of magnitude compared to the uniform grid results. Since the standard grid adaptation criterion Eq.(2.41),

which is widely used to improve the resolution near steep gradients of the solution, does not provide the

cancellation of the leading truncation error term these results are about 2 orders of magnitude less accurate

than those obtained on the optimal grid Eq.(2.26),(4.1),(2.30) as is evident in Fig.4.8.

A comparison of the hybrid approximation Eq.(4.3) on di�erent grids and using di�erent approximations

for the metric coe�cient x� is presented in Fig.4.9. If f� and x� are evaluated identically the same optimal

grid Eq.(4.9) provides superconvergent results, while if these approximations are di�erent the convergence

rate is even less than O(��2).

High-order approximations, p � 3

For a third-order discretization the optimal grid generation equation Eq.(2.51) can not be solved ana-

lytically, however, the solution can be found in the approximate form of Eq.(2.53),(2.54). The same function
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Fig. 4.8. Error convergence for a second-order approximation of fx, calculated on: 1) uniform grid, 2) optimal grid

generated numerically, 3) analytical optimal grid, 4) grid adapted in accordance with the arc length criterion, 5) uniform grid

using third-order accurate discretization.

Eq.(4.4), which has been used in the second example is taken as a test function. The �rst derivative f� and

the metric coe�cient are evaluated by a third-order accurate formula as

(g�)i =
1

6��
(�2gi�1 � 3gi + 6gi+1 � gi+2) ;(4.10)

where g(�) is either f(�) or x(�).

Figure 4.10 shows error convergence plots obtained on the optimal Eq.(2.53),(2.54) and uniform grids

with the same number of grid cells. Although, for the mapping Eq.(2.53),(2.54) the leading term of the

truncation error is approximately equal to zero the error convergence rate obtained on the optimal grid is

about O(��3:8) that corroborates the theoretical results. Note that the same iterative technique used earlier

for the second-order approximations can be applied in the present case as well. However, due to the fact that

the optimal coordinate transformation Eq.(2.53),(2.54) is the approximate solution of Eq.(2.51) the iterations

do not practically improve the accuracy of calculation and therefore, these results are not presented here.

The truncation error can be reduced if the optimal grid generation equation Eq.(2.48) is solved numer-

ically. To avoid the solution of the third-order di�erential equation a new dependent variable u(x) = �x is

introduced. Then Eq.(2.48), which is a second-order di�erential equation in terms of u(x), is integrated nu-

merically on a uniform grid constructed in the physical domain. To close Eq.(2.48) the metric coe�cient �x is

taken to be proportional to ( ~fxx)
1=4 at the boundaries. The metric coe�cient �x found this way is integrated

and the optimal grid point distribution is obtained by a third-order accurate piecewise spline interpolation

of the function �(x). As one can see in Fig.4.10, these optimal grid results exhibit the convergence rate of

essentially O(��4) and provide higher accuracy than those calculated on the optimal grid Eq.(2.53),(2.54).

To demonstrate the superiority of the optimal grid adaptation over the equispaced grid point distribution

an error convergence plot of a symmetric fourth-order accurate approximation of fx calculated on a uniform
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Fig. 4.9. Error convergence of a second-order hybrid approximation calculated with the consistent and inconsistent dis-

cretizations of the metric coe�cient on the optimal and uniform grids.

grid with the same number of grid points is also depicted in Fig.4.10. The L2 norm of the truncation error

of the third-order approximation Eq.(4.10) on the optimal grid is reduced by a factor of several hundred in

comparison with the fourth-order accurate results obtained on the uniform grid.

Error convergence plots for the following hybrid approximation�
@f

@�

�
i

=

(
1

6�� (�2fi�1 � 3fi + 6fi+1 � fi+2) ; i even
1

6�� (�11fi + 18fi+1 � 9fi+2 + 2fi+3) ; i odd
(4.11)

calculated on the optimal and corresponding uniform grids are shown in Fig.4.11. The optimal grid results

are about 4{5 orders of magnitude more accurate than those obtained on the �nest uniform grid. However, if

the metric coe�cient is evaluated by Eq.(4.10) in the entire computational domain while the approximation

of f� remains the same Eq.(4.11) the error convergence rate of this inconsistent discretization becomes even

less than O(��3) as the grid is re�ned.

The next test example is a fourth-order accurate approximation of the �rst derivative of the function

f(x) = xm, where the parameter m has been chosen to be 49. The �rst derivatives f� and x� are discretized

by a �ve-point symmetric approximation

(g�)i =
1

12��
(gi�2 � 8gi�1 + 8gi+1 � gi+2) ;(4.12)

where g(�) is either f(�) or x(�). It can be shown that if the order of approximation p is an even number

then for f(x) = xm the optimal grid generation equation Eq.(2.14) can be solved analytically. Thus, we have

xopt(�) = �
p+1
m+1 :(4.13)

The above mapping is optimal in the sense of the minimization of the leading truncation error term if m > p

otherwise any pth-order accurate di�erence expression approximates the �rst derivative fx exactly. If we �x
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Fig. 4.10. Error convergence for a third-order approximation of fx, f(x) = xm calculated on: 1) uniform grid, 2) optimal

grid generated numerically, 3) analytical optimal grid, 4) grid adapted in accordance with the arc length criterion, 5) uniform

grid using fourth-order accurate discretization.

the parameter m to be su�ciently large one can observe that as the order of approximation p is increased

the optimal grid Eq.(4.13) becomes more uniform that correlates with the above theoretical analysis. The

optimal grid point distribution can also be calculated numerically by using Eq.(2.54). At each grid point

the unknown parameter �(x) is found as a solution of the equation

T4(�) = 0;(4.14)

where T4(�) is given by Eq.(2.59). For this particular choice of the function f(x), Eq.(4.14) can be solved

analytically that yields

� =
1

5

m� 4

m� 2
:(4.15)

Note that the optimal mapping Eq.(2.54),(4.15) is identical to Eq.(4.13) if we set p = 4 in it. Error

convergence plots calculated on the analytical Eq.(4.13) and numerical Eq.(2.54),(4.15) optimal grids as well

as on the corresponding uniform grid are shown in Fig.4.12. As one can see in this �gure the fourth-order

approximation Eq.(4.12) on the optimal grid Eq.(4.13) exhibits even a higher convergence rate than O(��5)

that allows one to reduce the L2 norm of the truncation error by 6 orders of magnitude compared to the

uniform grid results. The numerical approximation of both the second derivative and the integral in Eq.(2.54)

leads to that the optimal grid Eq.(2.54),(4.15) generated numerically provides superconvergent results only

on coarse grids while as the grid is re�ned the order of approximation deteriorates to 4. Nevertheless, the

evaluation of fx on the 80-cell optimal grid Eq.(2.54),(4.15) is about 3 orders of magnitude more accurate

than that on the uniform grid with the same number of grid points. One of the main reasons of such a

behavior is an error introduced by the numerical approximation of fxx in Eq.(2.54). As mentioned above,

the optimal mapping Eq.(4.13) is singular at � = 0 that considerably decreases the accuracy of the fxx
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Fig. 4.11. Error convergence of a third-order hybrid approximation calculated with the consistent and inconsistent dis-

cretizations of the metric coe�cient on the optimal and uniform grids.

approximation Eq.(4.1). This perturbation introduced into the optimal grid by the numerical evaluation

Eq.(4.1) destroys the superconvergence property. However, if one uses the exact expression for fxx despite

that the integral in Eq.(2.54) and x(�) are calculated numerically, the order of approximation is practically

recovered to its optimal value that can be seen in Fig.4.12.

To demonstrate the importance of the consistent approximation of f� and x� error convergence plots

calculated using di�erent hybrid approximations on the optimal and corresponding uniform grids are depicted

in Fig.4.13. The fourth-order accurate hybrid approximation is constructed as follows

(f�)i =

(
1

12�� (fi�2 � 8fi�1 + 8fi+1 � fi+2) ; i even
1

12�� (�3fi�1 � 10fi + 18fi+1 � 6fi+2 + fi+3) ; i odd
(4.16)

If the metric coe�cient x� is evaluated by the same di�erence expression employed for the �rst derivative

f� Eq.(4.16) then the leading term of the truncation error is vanished on the optimal grid Eq.(4.13). It is

evident in Fig.4.13 that the truncation error of the consistent hybrid approximation of f� and x� exhibits

the convergence rate of O(��5). At the same time, if the metric coe�cient is discretized by the symmetric

fourth-order accurate formula Eq.(4.12) in the entire computational domain, while the same approximation

Eq.(4.16) is used for f�, the convergence rate deteriorates to O(��
4) and the truncation error increases by

a factor of 50{100 in comparison with the consistent approximation results. The deterioration of the error

convergence rate on the �nest optimal mesh is presumably caused by the machine accuracy.

4.2. 2D Test Example. We shall seek a particular solution of Eq.(3.6) in the following form

f(�; �) = e��e��

xopt(�; �) = e
�e��

yopt(�; �) = e��e �;

(4.17)
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Fig. 4.12. Error convergence for a fourth-order approximation of fx, f(x) = xm calculated on: 1) uniform grid, 2)

optimal grid generated numerically, 3) analytical optimal grid, 4) grid adapted in accordance with the arc length criterion, 5)

uniform grid using �fth-order accurate discretization,6) numerical optimal grid generated with the exact fxx.

where �, �, and 
, �, �,  are given and unknown constants, respectively. Note that this choice of f ,

x, and y uniquely de�nes the function f(x; y) in the physical domain. Since the above mapping must be

nonsingular the Jacobian of the mapping, which is

J(�; �) = (
 � ��)e(
+�)�e(�+ )�;(4.18)

should be positive in the whole computational domain that leads to


 � �� > 0:(4.19)

Substituting Eq.(4.17) into the �rst equation of Eq.(3.6) yields

(
 � ��)�3 = (���+ 
�)�3 + ( �� ��)
3:(4.20)

Equation (4.20) together with the constraint Eq.(4.19) give us a family of the optimal grids. The equation

is simpli�ed considerably if we assume that � =  = � = 1. Under this assumption Eq.(4.20) and (4.19) are

reduced to

(
 � �)�3 = (
 � �)�3 + (�� �)
3(4.21)


 � � > 0;(4.22)

correspondingly. Equation (4.21) has three real roots


1 = �� �

2 = �


3 = �

(4.23)
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Fig. 4.13. Error convergence of a fourth-order hybrid approximation calculated with the consistent and inconsistent

discretizations of the metric coe�cient on the optimal and uniform grids.

The roots 
2 and 
3 are not appropriate because the second root does not meet the inequality Eq.(4.22)

while the third root implies that f(x) = x. Therefore, the only non-trivial solution of Eq.(4.21), (4.22) is


+ � = �. Introducing a parameter m so that 
=� = m the particular solution of Eq.(3.6) can be written in

the following form

xopt(�; �) = e
�m�
m+1 �e�

yopt(�; �) = e
��
m+1 �e�

f(x; y) = x�
m+2
m�1 y

2m+1
m�1 :

(4.24)

In the present test example the parameters m and � have been chosen to be 10 and 3, respectively. The

corresponding optimal 41 � 21 grid and 30 isolines of the function f(x; y) are depicted in Fig.4.14. It is

notable that the optimal grid is orthogonal neither in the domain nor at the boundaries. Moreover, the grid

lines are concentrated near strong gradients and at the same time, they are not strictly aligned to the isolines

of f(x; y). A second-order accurate approximation of fx is obtained by using two-point central di�erences for

all the derivatives in Eq.(3.1). A uniform grid is generated by the trans�nite interpolation of the boundary

nodes, which are uniformly distributed along the boundaries. Since the optimal grid Eq.(4.24) has been

constructed under the assumption that the leading term of the truncation error in the � coordinate vanishes

on the optimal grid we shall re�ne the grid only in � while the number of grid cells in � is �xed and equal

to 20. Note that the grid re�nement in the � coordinate makes no in
uence on the convergence rate of the

truncation error that is consistent with Eq.(3.6).

A comparison of the truncation error convergence obtained on the optimal and uniform grids is shown in

Fig.4.15. Similarly to the 1D test examples, the global order of the symmetric second-order approximation

in two dimensions is increased by more than one on the optimal grid. Furthermore, the L2 norm of the

truncation error is about 4 orders of magnitude less than that obtained on the corresponding uniform grid.
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Fig. 4.14. Optimal 40� 20 grid and 30 isolines of the function f(x).

As can be seen in Fig.4.15, the new grid adaptation criterion enables one to reach the asymptotic convergence

rate on coarse grids while the application of a third-order accurate discretization on the uniform grid does

not permit us to get so essential reduction in the truncation error as on the optimal grid.

The importance of the identical approximation of the �rst derivatives f� and f� and the metric coe�cients

x� , y�, and x� , y�, respectively is illustrated in Fig.4.16. The �gure shows that if f�, x� , and y� are evaluated

by the same hybrid discretization Eq.(4.3) the order of approximation in � is increased by one if grid points
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Fig. 4.15. Error convergence for a second-order approximation of fx calculated on: 1) uniform grid, 2) analytical optimal

grid, and 3) uniform grid using third-order accurate discretization.

are redistributed in accordance with Eq.(4.24) regardless what second-order approximations are used for f�,

x� , and y� . However, if the metric coe�cients x� and y� are evaluated by the two-point symmetric second-

order di�erence expression in the entire computational domain, whereas both the hybrid approximation of f�

Eq.(4.3) and the optimal grid Eq.(4.24) remain the same, the order of approximation of fx in � deteriorates

to 2 and the truncation error is increased by a factor of 103.

5. Conclusion. The new grid adaptation strategy based on the minimization of the leading truncation

error term of an arbitrary pth-order �nite di�erence discretization has been developed. The basic idea of the

method is to redistribute grid points so that the leading truncation error terms due to the di�erential operator

and the metric coe�cients cancel each other so that the design order of approximation on the optimal grid

is increased by one in the entire computational domain. In contrast to most of the adaptive grid techniques,

for the present method neither the truncation error estimate nor the speci�cation of weighting parameters is

required. Another very attractive characteristic of the new approach is its applicability to hybrid discretiza-

tions. It has been proved that if the di�erential operator and the metric coe�cients are evaluated identically

then the same optimal grid adaptation criterion, which is valid for non-hybrid discretizations, can be used

in the entire computational domain regardless of points where the hybrid di�erence operator switches from

one approximation to another. One of the main advantages of the new method is that it can be directly

extended to multiple dimensions. It has been shown that the multidimensional grid adaptation criteria are

fully consistent with the one-dimensional counterpart. The 1D and 2D numerical calculations show that

the truncation error obtained on the optimal grid is both superconvergent and reduced by several orders

of magnitude in comparison with the uniform and standard adaptive grid results for all the test examples

considered.

33



log10(Cells)

lo
g

10
(E

rr
or

)

1 1.5 2 2.5 3 3.5
-7

-6

-5

-4

-3

-2

-1

0

1

2
Uniform, hybrid
Optimal, consistent
Optimal, inconsistent

3

1

1

2

Fig. 4.16. Error convergence of a second-order hybrid approximation calculated with the consistent and inconsistent

discretizations of the metric coe�cient on the optimal and uniform grids.

Acknowledgments. The author would like to thank J.L. Thomas and M.H. Carpenter for many helpful

discussions.

REFERENCES

[1] J.F. Thompson and C.W. Mastin, Order of di�erence expressions on curvilinear coordinate systems,

in Proc. ASME Fluid Engrg. Conf. Advances in Grid Generation, Houston, June 1983, p. 17.

[2] J.D. Hoffman, Relationship between the truncation errors of centered �nite-di�erence approximation

on uniform and nonuniform meshes, J. Comput. Phys., 46 (1982), p. 469.

[3] E. Turkel, Accuracy of schemes with nonuniform meshes for compressible 
uid 
ows, ICASE Report

No. 85-43, (1985), p. 48.

[4] I. Babu�ska and Rheinboldt, A-posteriori error estimates for the �nite element method, Int. J.

Numer. Methods Engrg., 12 (1978), p. 1597.

[5] A.B. White, On selection of equidistributing meshes for two-point boundary-value problems, SIAM J.

Numer. Anal., 16, No. 3 (1979), p. 472.

[6] H.A. Dwyer, Grid adaptation for problems in 
uid dynamics, AIAA J., 22, No. 12 (1984), p. 1705.

[7] M. Letini and V. Pereyra, An adaptive �nite di�erence solver for nonlinear two-point boundary

problems with mild boundary layers, SIAM J. Numer. Anal., 14, No. 1 (1977), p. 91.

[8] G.H. Klopfer and D.S. McRae, The nonlinear modi�ed equation approach to analyzing �nite

di�rence scheme, AIAA Paper No. 81-1029, (1981), p. 317

[9] V.E. Denny and R.B. Landis, A new method for solving two-point boundary-value problems using

optimal node distribution, J. Comput. Phys., 9 (1972), p. 120.

[10] B. Pierson and P. Kutler, Optimal nodal point distribution for improved accuracy in computational

34




uid dynamics, AIAA J., 18, No. 1 (1980), p. 49.

[11] D. Venditti and D. Darmofal, A multilevel error estimation and grid adaptive strategy for improving

the accuracy of integral outputs, AIAA Paper No. 99-3292, (1999).

[12] G.F. Carey and H.T. Dinh, Grading functions and mesh redistribution, SIAM J. Numer. Anal., 22,

No. 5 (1985), p. 1028.

[13] K. Chen, Error equidistribution and mesh adaptation, SIAM J. Sci. Comput., 15, No. 4 (1994), p. 798.

[14] W. Rheinboldt, Adaptive mesh re�nement processes for �nite element solutions, Int. J. Numer. Meth-

ods Engrg., 17 (1981), p. 649.

[15] G.F. Carey and D. Humphrey, Mesh re�nement and iterative solution methods for �nite element

computations, Int. J. Numer. Methods Engrg., 17 (1981), p. 1717.

[16] A. Mackenzie, D.F. Mayers, and A.J. Mayfield, Error estimates and mesh adaptation for a cell

vertex �nite volume scheme, Notes on Numerical Fluid Mechanics, 44 (1993), p. 291.

[17] J.U. Brackbill and J.S. Saltzman, Adaptive zoning for singular problems in two dimensions, J. of

Comput. Phys., 46 (1982), p. 342.

[18] J.F. Thompson, Z.U.A. Warsi, and C.W. Mastin, Numerical Grid Generation: Foundation and

Applications, North Holland, p. 483, 1985.

35


